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Within aquaculture industries, selection based on genomic information (genomic selection) 
has the profound potential to change genetic improvement programs and production 
systems. Genomic selection exploits the use of realized genomic relationships among 
individuals and information from genome-wide markers in close linkage disequilibrium 
with genes of biological and economic importance. We discuss the technical advances, 
practical requirements, and commercial applications that have made genomic selection 
feasible in a range of aquaculture industries, with a particular focus on molluscs (pearl 
oysters, Pinctada maxima) and marine shrimp (Litopenaeus vannamei and Penaeus 
monodon). The use of low-cost genome sequencing has enabled cost-effective genotyping 
on a large scale and is of particular value for species without a reference genome or 
access to commercial genotyping arrays. We highlight the pitfalls and offer the solutions 
to the genotyping by sequencing approach and the building of appropriate genetic 
resources to undertake genomic selection from first-hand experience. We describe the 
potential to capture large-scale commercial phenotypes based on image analysis and 
artificial intelligence through machine learning, as inputs for calculation of genomic breeding 
values. The application of genomic selection over traditional aquatic breeding programs 
offers significant advantages through being able to accurately predict complex polygenic 
traits including disease resistance; increasing rates of genetic gain; minimizing inbreeding; 
and negating potential limiting effects of genotype by environment interactions. Further 
practical advantages of genomic selection through the use of large-scale communal 
mating and rearing systems are highlighted, as well as presenting rate-limiting steps that 
impact on attaining maximum benefits from adopting genomic selection. Genomic 
selection is now at the tipping point where commercial applications can be readily adopted 
and offer significant short- and long-term solutions to sustainable and profitable aquaculture 
industries.
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INTRODUCTION

Animal improvement programs are based on using phenotypic 
information of individuals in conjunction with knowledge on 
genetic relationships and quantitative genetic principles. Breeders 
have enhanced production traits of farmed species by selecting 
superior individuals as parents for succeeding generations. 
Aquaculture is the farming of aquatic organisms and is the 
fastest growing animal protein production sector globally, 
supplying approximately 50% of seafood in 2015 (Fishery 
Statistics, FAO, 2017). However, despite the rapid growth in 
aquaculture production, only ~10% is currently based on 
genetically improved animals (Gjedrem et  al., 2012). This low 
percentage of improved animals under culture is due to several 
factors, including the size and maturity of industries, the 
inability to domesticate or control reproduction in many species, 
the large number of species farmed, difficulties in retaining 
pedigree throughout the entire production process, inability 
to collect large phenotypic data sets, and a general lack of 
informative genetic parameter information for traits (Jerry 
et  al., 2001; Gjedrem et  al., 2012).

Within aquaculture breeding programs, the initial focus has 
been on growth, which is a moderately heritable trait and 
relatively easy to select. Here the industry achieved rates of 
genetic progress per generation 4–5 times greater than that 
realized in livestock (Gjerde and Korsvoll, 1999). For aquaculture 
species that have been improved, such as Atlantic salmon 
(Salmo salar), Nile tilapia (Oreochromis niloticus), and the Pacific 
white shrimp (Litopenaeus vannamei), selection for growth has 
dramatically increased efficiencies helping establish these species 
as global commodities. While growth is one of the important 
determinants of aquaculture productivity, other traits such as 
disease resistance, feed conversion efficiency, environmental 
tolerance, and carcass or product quality are also significant. 
These later traits are typically harder to select for as they are 
difficult-to-measure, can often only be  measured late in life, 
involve destructive sampling, or have low heritability (e.g., 
Yáñez et  al., 2015). Additionally, the estimation of breeding 
values (EBVs) for breeding candidates themselves often cannot 
be  estimated for these traits based on individual phenotypes, 
but rather they are estimated based on phenotypic records 
and EBV of their siblings (termed sib selection). Sib selection 
therefore only utilizes the between-family genetic variance 
within a population and ignores half of the available genetic 
variance (i.e., ignores the within-family genetic variance; see 
Hill, 2013). Reduced phenotypic variance and increased 
generation intervals to measure close relatives for lifelong 
performance traits invariably result in sub-optimal genetic gain.

The development of species-specific breeding objectives is 
based on economic goals of the industry and a comprehensive 
understanding of the genetic architecture of the traits. Within 
silver lipped pearl oyster Pinctada maxima breeding programs, 
host oyster shell size, donor oyster pearl quality traits (i.e., 
size, weight, color, luster, and complexion), and disease resistance 
have all been identified as important phenotypes for selection 
based on their economic value and genetic basis (Kuchel et al., 

2011; Jerry et  al., 2012; Jones et  al., 2014a,b). However, due 
to difficulties in obtaining accurate on-farm animal performance 
and relationship data, selective breeding progress of these traits 
has been somewhat limited (e.g., Jones et  al., 2017a). For 
marine shrimp (i.e., white-legged shrimp L. vannamei and black 
tiger shrimp Penaeus monodon), phenotypes such as animal 
morphology (i.e., size, weight, color, and carapace dimensions), 
fecundity, disease resistance, and/or environmental robustness 
have been identified by industry as important traits to ensure 
ongoing commercial productivity (e.g., Cock et  al., 2009; 
Castillo-Juárez et al., 2015). Here the challenge is again obtaining 
robust on-farm animal performance and relatedness data, which 
then can be  used to calculate accurate environment-specific 
breeding values.

General Principles of Genomic Selection
With the realization that traditional breeding programs for 
traits other than growth are difficult to implement, alternative 
approaches to estimate the genetic merit of breeding individuals 
of these traits have been explored. In particular, rapid 
developments in genomics and quantitative analytical methods 
have resulted in breeders incorporating genetic marker 
technology in the form of marker-assisted selection (MAS) 
to aid animal selection. Although this technique can be useful 
for some traits where quantitative trait loci (QTL) of large 
effect have been identified, application of MAS to improve 
complex traits controlled by many genes of smaller effect is 
limited. Genetic improvement in these traits can only 
be  achieved through more advanced genomic-based methods, 
where it is now possible to accurately predict genome-wide 
molecular breeding values for improved animal selection (Eggen, 
2012). This approach, termed genomic selection, first proposed 
by Meuwissen et  al. (2001), has gained significant application 
within the animal and plant breeding communities. In this 
approach, decisions on selecting breeding candidates are derived 
from genomic breeding values predicted from genome-wide 
loci (VanRaden, 2008).

Genomic selection is based on the theory that with sufficient 
high numbers of loci across the genome, most quantitative 
trait loci will be  in strong linkage disequilibrium with at least 
one marker (Meuwissen et al., 2001). As such, genomic selection 
simultaneously estimates the combined genetic effects of all 
relevant QTL and provides accurate predictions of genetic merit 
for a trait. Furthermore, genome-wide markers are directly 
used to compute the genomic relationship matrix (GRM), which 
can then be  used to compute genomic estimated breeding 
values (GEBVs) using genomic best linear unbiased prediction 
methods (i.e., GBLUP, VanRaden, 2008; Legarra et  al., 2009; 
Aguilar et  al., 2011; Goddard et  al., 2011). GRM, even based 
on a smaller subset of markers, can provide an accurate estimate 
of the proportion of the genome shared by related individuals 
and hence provides higher accuracy of estimation of breeding 
values as compared to estimates based on pedigree information 
alone (Habier et  al., 2007; Forni et  al., 2011; Vallejo et  al., 
2017). However, GBLUP accuracy is also reliant on other 
parameters including range of genome linkage disequilibrium 
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(LD), training population size (Daetwyler et al., 2008; Andonov 
et  al., 2017), relationship between training and validation data 
sets (Meuwissen et al., 2001), heritability of the trait (Daetwyler 
et  al., 2008), and genetic architecture of the trait, including 
the size of allele substitution effects at QTL (Meuwissen et  al., 
2001; Goddard, 2009).

Following on from GBLUP, a single-step GBLUP method 
(ssGBLUP) was developed (Legarra et  al., 2009; Aguilar et  al., 
2010) to utilize all available information. This method 
simultaneously uses all phenotypic, genotypic, and pedigree 
information, including trait information on non-genotyped 
individuals, thus increasing genomic prediction accuracy (e.g., 
Aguilar et  al., 2011). Both the GBLUP and ssGBLUP methods 
generally assume that all SNPs (and genomic regions) have 
the same weight and variance. However, this is not entirely 
accurate, and alternate genomic evaluation methods such as 
Bayesian methods (i.e., BayesA, BayesB and BayesC; Meuwissen 
et al., 2001; Habier et al., 2011; Gianola, 2013), weighted GBLUP 
and ssGBLUP (WGBLUP and WssGBLUP, respectively; Snelling 
et  al., 2011; Tiezzi and Maltecca, 2015), and trait-specific 
marker-derived relationship matrix (TABLUP; Zhang et  al., 
2010) have been developed to take a priori information such 
as the presence of major genes or QTL that affect the trait 
of interest into account. These methods can set alternate weights 
to SNPs that are in high LD with a causal mutation or associated 
with QTL with a relatively large effect, which improves accuracy 
of predicting GEBV.

The basic principles for implementing genomic selection 
(see Figure 1) involve a training population in which animals 
are phenotyped and genotyped, and SNP effects estimated 
using a range of statistical models (Taylor, 2014). This typically 
involves splitting the training population into reference and 
validation data sets to test performance of the statistical 
models (Eggen, 2012). Following this, the predictive SNP 
effects are then independently validated in a related test 
population (independent of the training population) and 
checked for accuracy of prediction against highly reliable 
estimated breeding values (EBV). Once the prediction equation 
has been fully developed, the appropriate genomic selection 
method is applied to a group of new selection candidates 
with GEBV data generated for each animal and the best 
animal selected for breeding. The prediction equation for 
the GEBV is under constant refinement as breeding programs 
progress.

Applications of Genomic Selection to 
Aquaculture
The application of genomic selection can significantly improve 
the genetic response of breeding programs in aquaculture. 
Initial theoretical investigations of genomic selection in aquatic 
species suggest that a higher accuracy of selection and 
subsequently higher rates of genetic gain (up to 10% for 
body weight) can be achieved compared to traditional selection 
(Campos-Montes et  al., 2013; Ødegård et  al., 2014b; 

FIGURE 1 | Schematic representation of genomic selection approach in aquaculture. Implementation consists of optimizing prediction equations in a 
reference population (i.e., farm breeding population), with large numbers of individuals, which have genotype and phenotype information. The prediction 
equations are then validated on independent test animals (i.e., related generations to reference population). Once the prediction equations are fully 
optimized, the prediction method is applied to selection candidates to select superior replacement broodstock.
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Castillo-Juárez et  al., 2015). Additional improvements in the 
rate of genetic gain can also be made by reducing generation 
interval by selecting candidates early in life based on their 
genomic breeding value (Campos-Montes et al., 2013; Castillo-
Juárez et  al., 2015). Furthermore, genomic selection can 
reduce rates of inbreeding by up to 81% when compared 
with traditional selection programs (Vandeputte and Haffray, 
2014). This is particularly important for aquaculture species 
where fecundity can be  extremely high, potentially limiting 
on-farm effective population size (Ne), leading to loss of 
diversity and/or inbreeding (Dupont-Nivet et  al., 2006; 
Holtsmark et al., 2008). Within aquaculture, genomic selection 
has the profound potential to change the breeding structure 
from single-line mating systems to multi-family breeding 
programs in communal rearing environments, decreasing 
infrastructure requirements and potentially optimizing genetic 
diversity and gain (Fernández et al., 2014). Further efficiency 
of breeding programs can be  captured through structured 
management of genotype by environment interactions and 
incorporating dominance and epistatic effects (Dupont-Nivet 
et  al., 2008; Nilsson et  al., 2016). Finally, genomic selection 
can help track signatures of artificial selection and genetic 
diversity in the process of domestication of farmed species 
(López et  al., 2014; Yáñez et  al., 2015).

The success of the practical implementation of genomic 
selection in aquaculture is through well-designed breeding 
programs negating genotype by environment interactions (Ibarra 
and Famula, 2008; Rauw and Gomez-Raya, 2015) and common 
environmental and inbreeding effects (Bentsen and Olesen, 
2002; Havenstein et al., 2003; Hely et al., 2013). The foundation 
of such programs requires effective genomic resources, 
understanding trait genotype to phenotype relationships, accurate 
phenotypic recording systems at an industrial scale, and 
appropriate mating designs to optimize genetic gain (Gjedrem 
et al., 2012). Each of these aspects can have different challenges 
depending on the specific aquaculture species and production 
system. In this review, we provide an overview of the requirements 
and challenges of implementing genomic selection, with a 
particular emphasis on shrimp and pearl oyster industries.

PATHWAY FOR INCORPORATION OF 
GENOMIC SELECTION INTO 
AQUACULTURE BREEDING PROGRAMS

Building Genomic Resources
Single-nucleotide polymorphisms (SNPs) have become the 
marker of choice in genetics research due to their high abundance, 
co-dominant inheritance, relative ease of high-throughput 
discovery, and low cost of genotyping per locus. The use of 
microarray technology has been a feasible choice for large-scale 
SNP genotyping across terrestrial and crop production industries 
(Fan et  al., 2010; Rasheed et  al., 2017). As a result, there has 
been increasing interest from researchers and industry in the 
development of medium-density (1,000–10,000 s) to high-density 
(>100,000  s) solid-state SNP genotyping arrays for aquaculture 

species. Although the value of SNP genotyping arrays has been 
widely recognized for genetic map development, association 
studies, genomic selection predictions, and population genetic 
studies (Abdelrahman et  al., 2017; Guppy et  al., 2018), there 
are only a handful of aquaculture species that have off-the-
shelf commercially available arrays listed (e.g., catfish, oyster, 
salmon, and trout – Affymetrix Axiom, Santa Clara, CA, USA; 
shrimp – Illumina Infinium, San Diego, CA, USA), or previously 
custom built SNP genotyping arrays developed (Table 1). The 
lack of commercially available genotyping SNP arrays for the 
majority of aquaculture species adds additional cost to genetic 
investigations, as these resources need to be  first developed 
and tested. Furthermore, comprehensive genome sequence 
assembly projects required for large-scale SNP identification, 
and array probe design is limited among many aquaculture 
species (Guppy et  al., 2018).

Owing to the recent advances in next-generation sequencing 
(NGS), high-throughput genotyping-by-sequencing (GBS) 
technologies, which detect and genotype SNPs through whole 

TABLE 1 | Development of medium- to high-density SNP microarrays used 
in aquaculture species.

Species Number of 
array SNPs

SNPs 
utilized

Platform 
technology

References

Atlantic salmon 286,021 135,682 Affymetrix 
Axiom

Houston 
et  al. (2014)

200,000 159,509 Affymetrix 
Axiom

Yáñez et  al. 
(2016)

55,000 47,070 Affymetrix 
Axiom

Bangera 
et  al. (2018)

5,919 5,918 Illumina 
Infinium

Lien et  al. 
(2011)

Catfish 250,113 200,860 Affymetrix 
Axiom

Liu et  al. 
(2014)

693,567 535,618 Affymetrix 
Axiom

Zeng et  al. 
(2017)

Coho salmon 220,001 189,501 Affymetrix 
Axiom

Martine 
et  al. (2018)

Common carp 250,000 185,150 Affymetrix 
Axiom

Xu et  al. 
(2014)

European 
oyster

14,950 11,151 Affymetrix 
Axiom

Gutierrez 
et  al. (2017)

Giant tiger 
shrimp

6,000 4,237 Illumina 
Infinium

Baranski 
et  al. (2014)

Nile tilapia 58,466 40,190 Affymetrix 
Axiom

Joshi et  al. 
(2018)

Pacific oyster 1,536 1,172 Illumina 
GoldenGate

Hedgecock 
et  al. (2015)

190,420 133,984 Affymetrix 
Axiom

Qi et  al. 
(2017)

40,625 27,697 Affymetrix 
Axiom

Gutierrez 
et  al. (2017)

Pacific-white 
shrimp

8,967 6,941 Illumina 
Infinium

Jones et  al. 
(2017b)

Rainbow trout 57,501 49,468 Affymetrix 
Axiom

Palti et  al. 
(2015)

Silver-lipped 
pearl oyster

2,782 1,343 Illumina 
Infinium

Jones et  al. 
(2013)
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or reduced genome sequencing simultaneously, have significantly 
reduced both the cost of developing and genotyping SNPs 
for non-model species (e.g., Elshire et al., 2011; Andrews et al., 
2016). As such, GBS is rapidly becoming one of the SNP 
genotyping methods of choice for aquaculture species (see 
Robledo et  al., 2017), either by directly providing genotype 
data or by discovering markers for the design of solid-state 
SNP arrays. However, compared to SNP array-based genotyping 
platforms, GBS requires significantly more quality control (QC) 
measures to ensure robust genotype data. This is primarily a 
result of the molecular technique itself, which can introduce 
spurious and missing data without rigorous QC and data 
filtering methods. Erroneous GBS data could then result in 
incorrect biological conclusions, such as unreliable inferences 
about individual/population diversity and relatedness (Gorjanc 
et  al., 2015; Andrews et  al., 2016). Genotyping errors in GBS 
data are often derived from multiple factors, including sequencing 
base-call errors, sequence alignment/clustering errors, and null 
alleles from low-coverage sequencing or mutations in the 
restriction enzyme binding site in library preparations (e.g., 
Nielsen et  al., 2012; Bryc et  al., 2013; Davey et  al., 2013; Ilut 
et  al., 2014; Sims et  al., 2014; Mastretta-Yanes et  al., 2015; 
Verdu et  al., 2016). Aquaculture species can be particularly 
vulnerable to these GBS errors as many species genomes are 
highly polymorphic and repetitive, which can inflate erroneous 
genotype data based on the aforementioned factors. This is 
a problem particularly observed for crustaceans and oysters (e.g., 
Lal et  al., 2016; Abdelrahman et  al., 2017; Yuan et  al., 2017).

There are currently a number of methods and software 
available for detecting aberrant GBS data and for improving 
the reliability and accuracy of genetic calculations used in 
genomic studies using GBS. Methods for the detection and 
exclusion of aberrant SNP data are based on the elimination 
of GBS loci that contain too many SNPs, deviate from Hardy-
Weinberg or Mendelian inheritance, have too high or too low 
read coverage for specific allele/genotype combinations, or are 
revealed by software capable of detecting existence of paralogous 
loci (Catchen et  al., 2013; Gayral et  al., 2013; Bianco et  al., 
2014; Eaton, 2014; Lexer et al., 2014; Torkamaneh et al., 2017). 
Apart from ensuring the highest quality sequence reads (i.e., 
QScore  ≥  30), a commonly used method to discard possible 
sequencing errors in GBS data sets consists in the elimination 
of very low minor allele frequency SNPs (i.e., 1/50 allele ratio), 
particularly when not observed among multiple individuals or 
populations (Roesti et  al., 2012; Lal et  al., 2016). Overall, the 
QC and filtering methods used should be  carefully chosen 
based on the error rate of the sequencing method, the read 
depth obtained, the assembly and SNP calling method used, 
and the repeat complexity and polymorphism level of the 
genome studied (Schatz et al., 2010; Sims et al., 2014). Currently, 
the impact of cumulative GBS errors on genomic selection 
accuracy is not fully understood.

The outcome of robust GBS data filtering is ultimately the 
reduction of downstream data analysis errors, but the approach 
also comes at a cost of reducing the overall number of available 
SNPs and/or individuals (when achieving higher sequence 
depth), or increasing costs to achieve a required threshold 

(Kim et  al., 2016). To address this issue, recent methods have 
been developed to accurately impute low confidence or missing 
SNPs among individuals based on comprehensive GBS metric 
data (e.g., Money et  al., 2015; Chan et  al., 2016; Brouard 
et al., 2017). Furthermore, this approach can also be incorporated 
into downstream genomic analyses to improve the reliability 
and accuracy of computational outcomes. For example, 
improvements in the calculation accuracy of unbiased estimates 
of relatedness (i.e., GRMs) for genomic selection applications 
were obtained when accounting for sequence read depth of 
genotype calls within different mathematical models (Dodds 
et  al., 2015; Cericola et  al., 2018). The improvements are 
gained through correcting for individual/genotype sequence 
depth and standardizing SNP density and quality. A similar 
approach has also been applied in a novel genetic linkage 
mapping method, whereby improved confidence in placement 
of loci was obtained by incorporating GBS read depth 
information, improved filtering capability, and using a statistical 
approach to model and correct errors (Bilton et  al., 2018). 
The ability to maximize GBS data and generate accurate 
computational outcomes is especially important for aquaculture 
species that often have genetic resource limitations. Based on 
the continued interest in this area, it is highly likely that 
approaches to fully utilize GBS data (particularly in aquaculture 
species) will continue to be  developed, or at least until high-
density solid-state SNP genotyping arrays become more accessible 
and cost-effective.

Optimizing Use of Genomic Resources
In general, a large training population is required for accurate 
genomic prediction, particularly for traits with low heritability 
(Goddard et  al., 2011). However, most commercial breeding 
stocks in aquaculture have small effective population size 
meaning a moderate size training population would 
be  sufficient. Apart from optimizing the number of training 
or selection candidates for routine genotyping (i.e., based on 
genomic selection modeling and farm breeding scheme, e.g., 
Sonesson and Meuwissen, 2009), reducing the cost or number 
of genome-wide markers is a viable solution. Our own data 
using shrimp and pearl oysters (Jones et  al., 2017a; Khatkar 
et  al., 2017) show that derivation of accurate genomic 
relationships can be  achieved with relatively low-density SNP 
panels (~3,000 SNPs; Figure 2; Zenger et al., 2017), compared 
to those derived from medium- to high-density SNP panels 
(e.g., ~50,000+ SNPs; see also Ødegård et  al., 2014a). This 
result has also been observed in Pacific-white shrimp (3.2  k 
SNPs; Wang et  al., 2017) and Atlantic salmon (5  k SNPs; 
Tsai et  al., 2015) investigations. However, such accuracies 
deteriorate rapidly if very low-density SNP panels are used 
(<1,000 SNPs). In addition, a larger panel of SNPs is required 
for accurately estimating lower degree of relationships present 
in an outbred population.

Another method to reduce the cost of genotyping is 
through imputation of genotypes, where most of the animals 
can be  genotyped with a low-cost, low-density SNP panel. 
The genotypes of these animals can be  imputed up to high 
density by using information on a smaller number of reference 
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individuals (typically broodstock) genotyped with a larger 
high-density SNP panel that also captures the same SNP 
as represented on smaller arrays. Such imputed in silico 
genotypes can then be used for genomic selection and other 
genomic analyses. Such strategies have been shown to improve 
the accuracy of genomic selection in livestock (Khatkar 
et  al., 2012) and aquaculture species (Tsai et  al., 2017). 
However, the accuracy of imputed genotypes is critical for 
efficient use of these low-density panels. The accuracy of 
imputation is affected by a number of factors including 
proportion of markers to be  imputed, relatedness between 
reference and imputed test individuals (Hickey et  al., 2012; 
Khatkar et  al., 2012), correct ordering of markers on the 
genome map, local pattern of linkage disequilibrium and 
minor allelic frequency (e.g., Hickey et  al., 2012; Badke 
et  al., 2013), and number of individuals represented in the 
reference set (Druet et  al., 2010).

The required number of individuals in the reference panel 
and number of markers in the low-density panel depends on 
the effective population size of the breeding stock and relationship 
between reference and test populations. A small effective 
population size, as present in many aquaculture stocks, will 
require smaller number of animals in the reference panel and 
can be  imputed with high accuracy with smaller number of 
SNPs in the low-density panel. Moreover, if all the contributing 
broodstocks are genotyped with the high-density panel, the 
accuracy of imputation in the progeny, genotyped with even 
smaller SNP panel, could be quite high using a pedigree-based 
imputation approach (Hickey et  al., 2012).

There are limited number of studies into imputation accuracy 
and its application to aquaculture breeding programs. Kijas 
et  al. (2017) reported high accuracy (0.89–0.97) of imputing 
genotypes from a low-density panel (0.5–5 K) to a high-density 
panel (78  K) using a multi-generation reference population in 
farmed Tasmanian Atlantic salmon. Similarly, Tsai et al. (2017) 
showed that an accuracy of imputation of 0.90 could be achieved 
using very low-density panels in farmed Atlantic salmon using 
two-generation pedigree data sets. However, accurate imputation 
requires knowledge about the precise location of SNPs across 
the genome. For most aquaculture species, genetic linkage maps 

and/or genome assemblies are in the early stages of development 
(Abdelrahman et  al., 2017).

Linking Genotype to Phenotype – Genes 
of Large Effect
Industrial-scale selective breeding programs in aquaculture 
commenced in the 1960s with the development of Atlantic 
salmon breeding programs in Norway. Today, selective breeding 
programs have been implemented in over 60 species of fish 
and shellfish (Gjedrem and Baranski, 2009; Abdelrahman et al., 
2017; Houston, 2017). Following traditional phenotypic or 
genetic selection (i.e., EBVs), the integration of genetic markers 
into MAS breeding programs was expected to increase the 
genetic response observed by increasing the efficiency and 
accuracy of selection (Laghari et  al., 2014; Yue, 2014; 
Abdelrahman et  al., 2017). However, for a MAS breeding 
program, utility is limited to detect genes of large effect with 
closely linked loci. These gene effects are typically detected 
through QTL linkage mapping and association studies.

QTL detection is the first step toward identifying causative 
genes and polymorphisms that contribute directly to the variation 
observed within a trait. However, very few examples of causative 
genes have been identified. In practice, QTL mapping is a 
powerful approach, where large family groups are clearly defined 
even if marker density is low. In contrast, since association 
testing exploits linkage disequilibrium, it is more suitable for 
large outbred populations with small family sizes and requires 
high marker density (Witte, 2010). The development of high-
density SNP genotyping arrays in aquaculture has led to an 
increased uptake of genome-wide association studies (GWASs), 
including Atlantic salmon (Tsai et  al., 2015), rainbow trout 
Oncorhynchus mykiss (Reis et al., 2018), catfish Ictalurus punctatus 
(Zhou et  al., 2017), and common carp Cyprinus carpio (Zheng 
et  al., 2016).

Increasing growth and body size has been a major goal of 
many aquaculture selective breeding programs due to its ease 
of measure and moderate-to-high heritability (Gjedrem, 2000; 
Gjedrem and Baranski, 2009). As a result, much research effort 
has been invested in QTL mapping, whereby QTL have been 
detected for these complex traits, for example, the rainbow 

A B C

FIGURE 2 | Comparison and correlations of SNP-based kinship estimates (rG) (A) 96 versus 7,500 SNPs, (B) 384 versus 7,500 SNPs, and (C) 3,000 
versus 7,500 SNPs calculated on 1,000  L. vannamei samples.
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trout (Wringe et  al., 2010), Asian Lates calcarifer, European 
sea bass Dicentrarchus labrax (Massault et  al., 2010; Wang 
et  al., 2015), Atlantic salmon (Reid et  al., 2004; Baranski et  al., 
2010; Gutierrez et  al., 2012; Tsai et  al., 2015), common carp 
(Laghari et  al., 2015), scallop Argopecten irradians (Li et  al., 
2012), Pacific oyster Crassostrea gigas (Guo et  al., 2012), pearl 
oyster P. maxima (Jones et  al., 2014a,b), shrimp (Baranski 
et  al., 2014; Abdelrahman et  al., 2017), and many others. 
However, these QTL only explain a small proportion of the 
total additive genetic variation, and the validation of these 
QTL is limited, with only a few being confirmed in multiple 
independent families or populations.

Another high priority for aquaculture breeding programs 
is delaying time to sexual maturation in several species since 
it is energetically expensive and precocious maturation can 
impair growth and reduces meat quality (Thorpe, 1994; Küttner 
et  al., 2011). As a result, QTL analysis for sexual maturity 
has been carried out in many species including the rainbow 
trout (Haidle et  al., 2008; Easton et  al., 2011), Atlantic salmon 
(Pedersen et  al., 2013; Gutierrez et  al., 2014a,b), and Atlantic 
char Salvelinus alpinus (Moghadam et  al., 2007; Küttner et  al., 
2011). One major QTL for sexual maturation in the Atlantic 
salmon was found independently by two studies (Ayllon et  al., 
2015; Barson et  al., 2015). Both studies report that these QTL 
explain from 33 to 39% of the phenotypic variation and are 
likely controlled by the gene VGLL3 (Ayllon et al., 2015; Barson 
et  al., 2015). Finally, disease outbreaks are a major problem 
for the culture of aquatic species, and therefore, identifying 
disease resistant stock has been a major goal of breeding 
programs. Disease challenge testing is often utilized to measure 
the response to a disease within a species by recording survival 
of animals within known pedigrees. Such studies have reported 
moderate-to-high heritabilities indicating that there is high 
potential for improvement of disease resistance through breeding 
programs (reviewed in Jørgen et  al., 2011). However, a recent 
review by Guppy et  al. (2018) concluded that although QTL 
studies in L. vannamei and P. monodon provided a valuable 
insight into the architecture of disease survival and tolerance 
traits, they failed to provide the necessary information to apply 
findings through commercial MAS programs.

One successful MAS disease resistance case study has been 
reported on infectious pancreatic necrosis (IPN) resistance in 
Atlantic salmon, where major QTL explain more than 29% 
of the observed variance (Moen et  al., 2009; Houston et  al., 
2010). The incorporation of these QTL within selective breeding 
programs resulted in a reduction in IPN from 47% in 2009 
to 7% in 2010 within freshwater populations (Moen et  al., 
2009; Houston et  al., 2012) and has now been demonstrated 
as a successful means of controlling the disease (Moen et  al., 
2015). A second case study is on the Lymphocytis disease in 
the Japanese flounder Paralichthys olivaceus, whereby one QTL, 
inherited in a dominant Mendelian fashion, accounted for over 
50% of the total phenotypic variance associated with survival 
to the Lymphocytis disease (Fuji et  al., 2006; Sakamoto et  al., 
2006; Ozaki et  al., 2012). QTL mapping for disease resistance 
has also been conducted in the eastern oyster Crassostrea 

virginica for MSX and Dermo (Yu and Guo, 2006), the European 
flat oyster Ostrea edulis for Bonamiosis (Lallias et  al., 2009), 
and the Atlantic salmon for salmonid alphavirus (Gonen et al., 
2015), ISAv (Moen et  al., 2007), and Gyrodactylus salaris 
parasitic disease (Gilbey et  al., 2006; for review, see Yáñez 
et  al., 2014).

Since the proliferation of QTL analysis in aquaculture species 
and even with documented success cases, MAS programs have 
only been successful for relatively simple traits where major 
QTL have been identified (Yue, 2014). Most traits of economic 
importance in aquaculture species are proving themselves to 
be  polygenic and often have low-to-moderate heritabilities. As 
a result, these QTL studies searching for specific loci may 
be of limited commercial value in the era of genomic selection. 
Furthermore, the benefit of incorporating a priori weighted 
SNP effects of these QTL into genomic selection methods 
needs to be  fully evaluated.

From MAS to Genomic Selection
Currently, the reported implementation of genomic selection 
in commercial aquaculture is still in its early days and has 
been limited to a handful of high-value species (i.e., rainbow 
trout, Abdelrahman et al., 2017; Atlantic salmon, Bangera et al., 
2018; and the Tasmanian Atlantic salmon strain, Verbyla et al., 
2018). However, a number of examples of demonstrating accuracy 
of genomic prediction across a range of traits and other species 
in aquaculture species have been recently published, for example, 
sea lice resistance in Atlantic salmon (Tsai et  al., 2016, 2017), 
bacterial cold-water disease resistance in rainbow trout (Vallejo 
et  al., 2017, 2018), pasteurellosis resistance in gilthead sea 
bream Sparus aurata (Palaiokostas et  al., 2016), shell size in 
Yesso scallops Patinopecten yessoensis (Dou et  al., 2016), 
Greenshell mussel Perna canaliculus (Ashby et  al., 2018), body 
weight and meat quality in large yellow croaker Larimichthys 
crocea (Dong et  al., 2016) and channel catfish (Garcia et  al., 
2018), growth traits of Pacific white shrimp (Wang et al., 2017), 
resistance to viral nervous necrosis in European sea bass 
(Palaiokostas et  al., 2018a), juvenile growth rate in common 
carp (Palaiokostas et al., 2018b), resistance against Piscirickettsia 
salmonis in a farmed Atlantic and coho salmon Oncorhynchus 
kisutch population (Barría et  al., 2018), resistance against P. 
salmonis and infectious pancreatic necrosis virus in rainbow 
trout (Yoshida et  al., 2018), growth traits in yellowtail kingfish 
Seriola lalandi (Nguyen et al., 2018), and resistance to amoebic 
gill disease in Atlantic salmon (Robledo et  al., 2018). The 
accuracy of genomic prediction reported in the aforementioned 
studies varies from 0.16 to 0.83 (median  =  0.60) for various 
disease survival traits and from 0.3 to 0.8 (median  =  0.6) for 
the growth and body size-related traits. The accuracy of genomic 
predictions was higher (i.e., 155%, Barría et  al., 2018; and 
11%, Yoshida et  al., 2018) than those based solely on pedigree 
information. However, most of these studies implemented cross 
validation with test data sets derived from randomly separating 
validation individuals from training populations and are thus 
near identical in distribution (i.e., mirror predictions). Experience 
from other species suggests that the accuracy represented by 
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a mirror prediction is substantially higher than a forward 
prediction (i.e., candidates under selection; Moser et al., 2009). 
Nevertheless, the levels of accuracies observed in these initial 
investigations demonstrate potentially for applying genomic 
selection in breeding schemes in aquaculture species. Within 
our own current selective breeding research programs, genomic 
selection has been evaluated for direct integration into shrimp 
breeding programs for multiple production traits (e.g., size, 
disease resistance, color, and survival; Khatkar et  al., 2017), 
as well as pearl oyster breeding programs for both host oyster 
and donor oyster traits (e.g., shell size and pearl quality traits; 
Jones et  al., 2017a).

Accurate and Low-Cost Phenotyping
Accurate phenotypes on commercially important traits are critical 
for any breeding program and particularly in the case of genomic 
selection. This becomes especially challenging in aquaculture, 
where large numbers of animals need to be  recorded. Any error 
in the trait recording will reduce effective estimated heritability 
and hence realized genetic gain. High-throughput and precise 
phenotyping strategies are required to supply the large amount 
of trait data required for commercial scale genomic selection 
applications. Within this framework, the objective is to increase 
the accuracy, precision, and throughput of phenotypic assessment 
while reducing costs and minimizing labor in an intensive 
production system. Today, phenotyping is quickly emerging as 
the major operational bottleneck limiting the power and speed 
of commercial genomic selection programs (e.g., Cobb et  al., 
2013). This problem is compounded in aquaculture, where 
fecundity, progeny numbers from breeding pairs, and variable 
survival rates create circumstances, where individual phenotypes 
and traceability are nearly impossible to obtain without new 
methodologies. Furthermore, aquaculture does not have the 
benefit of standardized global phenotyping programs such as 
in livestock (e.g., dairy cattle). Designing effective on-farm 
phenotyping strategies requires integrated solutions incorporating 
biologists, computer scientists, statisticians, and engineers.

Over the last decade, mechanized automation, imaging, and 
software developments have paved the way for high-speed 
accurate data acquisition. Within these developments, digital 
imaging has emerged as a cornerstone to capturing high 
volumes of phenotypic information. Computer vision is an 
enabling technology and has already allowed many animal 
and plant production traits to be  measured efficiently and 
accurately across different production industries, including 
aquaculture (i.e., McCarthy et  al., 2010; Mathiassen et  al., 
2011; Cobb et  al., 2013; Nasirahmadi et  al., 2017; Saberioon 
et  al., 2017). Aquaculture animal monitoring and evaluation 
with machine vision systems (MVSs) over the past several 
years have led to higher productivity and profitability through 
improved farm management practices and/or superior phenotype 
data collection used for selection strategies (see Mathiassen 
et  al., 2011; Zion, 2012; Saberioon et  al., 2017). MVS (2D 
or 3D imaging) in aquaculture has been extensively examined, 
and the accuracy between animal image analysis (i.e., fish, 
shrimp, oysters, and scallops) and phenotypic measurements 
(i.e., shape, size, volume, weight, color, and fillet quality) is 

very high (i.e., ≥ 0.95; see Odone et  al., 2001; Harbitz, 2007; 
Pan et  al., 2009; Zion, 2012; De Verdal et  al., 2014; Hong 
et  al., 2014; Zhang et  al., 2014; Hao et  al., 2015; Sture et  al., 
2016; Saberioon et  al., 2017; Konovalov et  al., 2018). When 
applying this technology to non-invasive automated on-farm 
flow-through MVS, fish length has accurately been estimated 
in the rainbow trout (Miranda and Romero, 2017), as with 
fish mass in Jade Perch (Viazzi et  al., 2015) with low relative 
mean errors (5.2 and 6.0%, respectively). Furthermore, fish 
skin or fillet color and pearl quality traits (e.g., color, luster, 
and complexion), which are traditionally recorded as categorical 
traits, can now be  recorded as highly reliable continuous 
quantitative traits based on ultraviolet-vis spectrophotometry 
measurements (e.g., Urban et  al., 2013; Kustrin and Morton, 
2015). The performance of MVS and traditional color 
measurements has been compared with Atlantic salmon, rainbow 
trout, and pearls with spectral patterns produced by MSV 
more representative and consistent of the real color (Yagiz 
et  al., 2009; Mamangkey et  al., 2010; Colihueque et  al., 2011, 
2017; Toyota and Nakauchi, 2013), which will ultimately improve 
genomic selection predictions.

Other emerging aquaculture phenotyping techniques are 
near infra-red (NIR) spectroscopy and hyperspectral imaging 
(HSI), which combines spectroscopy with imaging technology. 
These techniques are able to quantify and evaluate the chemical 
(e.g., fat, protein, and moisture) and physical (e.g., freshness, 
texture, and color) attributes of aquatic animals with relatively 
high accuracies of prediction (r  >  0.8; see Liu et  al., 2013; 
Saberioon et  al., 2017). In HSI, the spectral reflectance of 
each pixel is acquired for a range of wavelengths including 
visual and NIR spectra. The resulting information is a set 
of pixel values at each wavelength in the form of an image, 
which can be  correlated with traits with detailed spectral 
and spatial distribution information (ElMasry and Sun, 2010). 
All of these MVSs are able to extract and analyze quantitative 
information from digital images and have the ability to 
improve the accuracy of the phenotype by electronically 
analyzing the data at a pixel level across spectral regions 
not always visible to the human eye. More importantly, these 
technologies are advancing toward being fully non-invasive 
and automated, whereby animals need not be  removed from 
their environment or sacrificed to obtain accurate phenotypic 
measurements. This not only improves farm productivity but 
also allows within-family selective breeding for traits that 
could only be recorded on siblings due to destructive sampling 
techniques.

MVS usually consists of two components, the image acquisition 
system hardware (i.e., UV-vis, NIR, and HIS) and data extraction 
system software. The latter typically incorporates computer-
based processing and optimized statistical methods and 
algorithms specific for the trait of interest, which is often the 
limiting factor in applying MVS. The development of advanced 
image analysis software including artificial neural network 
(ANN) algorithms based on machine learning approaches has 
been an important step forward in the development of analysis 
systems for automated MVS phenotyping (e.g., Grys et  al., 
2017). Machine learning ANNs are devised of algorithms that 
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broadly aim to mimic neural pathways in the human brain. 
By developing and selecting the correct architecture, ANNs 
can distinguish parameters of effect from inputs of noisy digital 
image data to outputs of the key signals of effect, to be  used 
in regression, classification, clustering, reducing dimensionality, 
or detecting anomalies (Bishop, 2006; Schmidhuber, 2015). This 
is particularly important within industry settings, where MVS 
often needs to be  implemented as a part of ongoing farm 
practices and is sometimes subject to non-uniformity in digital 
image recording.

Within our own research programs (i.e., marine shrimp 
and pearl oyster), machine learning algorithms have allowed 
precise inexpensive phenotyping across diverse production 
traits. For example, body weight of black tiger shrimp P. 
monodon at harvest could be predicted from the high-throughput 
images with very high accuracy with a correlation coefficient 
between actual and predicted weight of 0.97 in the test animals 
using deep learning models. Similarly, MVSs have been used 
for pearl oyster growth data as well as pearl quality traits 
(e.g., color, size, luster, and completion). Although still in 
development, sliding window algorithms and convolutional 
neural network (CNN) with rule association-based clustering 
yielded high accuracy (exceeding 96%) in object character 
recognition for the pearl oysters in nets within the full spectrum 
of commercial situations (Figure  3; Zenger et  al., 2017). By 
definition, CNN learning algorithms get more precise when 
presented with more data. This supervised learning approach 
has been undertaken with developing methodologies on how 
to automate the entry of commercial data into a NoSQL or 
graph-based database.

UNDERSTANDING FACTORS AFFECTING 
UTILITY OF GENOMIC SELECTION

In aquaculture, genomic-based improvement programs can have 
a rapid impact on genetic improvement, particularly through 
the use of a structured nucleus-breeding scheme. As with 
traditional selective breeding programs, the potential of genomic 
selection will vary across different species depending on 
differences in life cycle, fecundity, effective population size, 
and breeding objectives. To our knowledge, there have been 
no empirical examples that compare commercial strategies to 
maximize rate of genetic gain using genomic information. 
Simulation studies provide a powerful alternative to experimental 
empirical estimates for parameters affecting responses in selective 
breeding programs in aquaculture, including inbreeding rates 
(Bentsen and Olesen, 2002; Dupont-Nivet et al., 2006; Sonesson 
et al., 2010, 2012; Skaarud et al., 2011, 2014), estimating the 
genetic gain (Sonesson and Meuwissen, 2009; Nirea et  al., 
2012b; Sonesson and Ødegård, 2016), and increasing the accuracy 
of selection (Nielsen et  al., 2009; Vela-Avitúa et  al., 2015). 
These general principles equally apply to selective breeding 
programs incorporating genomic selection. Consequently, 
we  review the current state of knowledge in this area applied 
to aquaculture breeding programs. At present, 36 simulation 
studies based on traditional breeding strategies or genomic 
selection based have been conducted relevant to aquaculture 
of which most have predominantly focused on mating design, 
number and size of families, number of generations, genome 
size, marker density, and selection strategy. However, most of 
these studies were adopted through relatively simplistic 

(C)

FIGURE 3 | Different stages of predicting pearl oyster size through MVS and machine learning algorithm. Pearl oysters in net are placed on a table 
while being cleaned, and visual image is taken from above. (A) Oyster net image depicts one of the most challenging visual capture situations in 
pearl oyster commercial environment. (B) Oysters and net have low contrast from the background, and lighting is variable. (C) Sliding window CNNs 
correctly identified and measured oyster size with >96% accuracy. (Photo image by Preston Toole).
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approaches in breeding designs tackling few single parameters 
at a time and omitting complicated interactions between multiple 
parameters. Furthermore, parameters such as genotype by 
environment interactions, application of heterosis in multi-trait 
selection, realistic linkage disequilibrium, bio-economical 
modeling, and index selection have been largely ignored in 
simulation studies to date, yet warrant investigation in order 
to efficiently optimize potential breeding programs. An overview 
of different parameters and their influence on selective breeding 
programs including genomic selection are identified later.

Mating Design
Choosing the right optimized mating strategy is one of the 
key components in any breeding design that could affect the 
rates of inbreeding and long-term genetic gain (Nirea et  al., 
2012a; Sonesson and Ødegård, 2016). Dupont-Nivet et al. (2006) 
compared single pair, nested design and factorial mating on 
genetic variability, inbreeding, and selection response. The results 
showed that a factorial mating strategy results in the lowest 
inbreeding and highest response to selection, while single pair 
mating was the worst option. Holtsmark et  al. (2006) and 
Holtsmark et al. (2008) investigated different approaches through 
the combination of several sub-populations and random or 
structured diallel-cross mating in the base population while 
holding a fixed rate of inbreeding. The results showed that a 
diallel-cross mating within the base population followed by 
optimum contribution selection in subsequent generations can 
reduce the inbreeding to 0.5% per generation. Later, it was 
shown that application of “minimum co-ancestry and maximized 
ancestry co-variation mating” was even better in reducing 
inbreeding to roughly 0.004 per generation (Nirea et al., 2012a). 
However, variation in inbreeding coefficients and genetic gain 
across studies has been seen as a result of interactions between 
mating design (Nirea et  al., 2012a) and effective population 
size (Dupont-Nivet et  al., 2006).

Number of Families
The number of families or breeders included within a breeding 
program can dramatically influence the trade-off between the 
rate of inbreeding or retention of genetic diversity and the 
selection intensity. Through the application of mass selection, 
Bentsen and Olesen (2002) highlighted that increasing the 
number of breeders from 4 to 100  in isolated lines can 
significantly reduce the rate of inbreeding across different 
heritabilities. It was also expected that the response to selection 
would increase at the same time, but significant improvements 
were not seen for the higher rates of heritability. It was further 
shown that increasing the number of families from 50 to 400 
and applying the optimum contribution selection increased 
total genetic gain, while using 400 full-sib families kept the 
selection intensity at approximately 0.6 (Skaarud et  al., 2014). 
Nonetheless, within genomic selection simulations, using less 
than 1,000 markers in combination with different family sizes 
(1, 10, and 100) did not result in meaningful reductions in 
the rate of inbreeding (ΔF  =  0.019–0.011) (Sonesson et al., 
2010). However, increasing the number of families from 100 

to 1,000  in conjunction with 5,000 SNPs reduced inbreeding 
from 0.014 to 0.006, while it also substantially increased genetic 
gain (ΔG  =  0.17–0.40) without any noticeable effect on the 
accuracy of selection (Sonesson and Ødegård, 2016). The large 
number of families resulted in higher genetic gains by increased 
selection intensities, whereas 5,000 SNPs allowed accurate 
prediction of breeding values. Overall, it seems that total number 
of 200 families in conjunction with optimum contribution 
selection could be  a reasonable quantity in breeding designs 
(Skaarud et al., 2011, 2014).

Size of Families
Most aquaculture species are highly fecund compared to livestock. 
The ability of aquaculture species to produce large numbers 
of progeny to satisfy commercial operations can result in 
reduced numbers of contributing families on farm, leading to 
reduced genetic progress and higher rates of inbreeding (Gjedrem 
and Baranski, 2009). Therefore, optimizing the contribution of 
families can significantly improve the efficiency of the breeding 
program. Sonesson (2005) applied optimum contribution 
selection with constraints on change in inbreeding and obtained 
76–92% of genetic gains by selecting parents from only the 
top 100 genotyped selection candidates as compared to genotyping 
all individuals (1,000, 5,000, 10,000). Dupont-Nivet et al. (2006) 
could not obtain significant level of improvement of genetic 
gain by increasing family size from 20 to 200 progeny per 
family. Increasing the size of the families from 4,000 to 8,000 
has also shown to be  ineffective in capturing extra genetic 
gain (Nielsen et al., 2011; Sonesson and Ødegård, 2016). Skaarud 
et al. (2011) compared breeding designs with 8 to 200 progeny 
per family and showed genetic gain increased sharply by 
increasing family size to 50 with diminishing returns with 
further increases in family size, especially beyond 100. It appears 
that a family size of 50–100 progeny per family maybe optimal 
for minimizing inbreeding and maximizing genetic gain.

Number of Generations
Utilizing simulation studies, the effect of altering the number 
of generations within aquaculture selective breeding programs 
has yet to be  studied separately. However, it has been shown 
that both additive genetic variation and genetic gain could 
reduce over generations using selection based on pedigree 
information (Holtsmark et  al., 2006, 2008). Although inclusion 
of genetic marker data improved the capture and retention of 
genetic gain over several generations through genomic selection 
simulations (Sonesson, 2007), it also increased inbreeding. This 
initial sub-optimal result was thought to be due to assumptions 
of low mating ratio (male/female: 1:2) and a relatively low 
number of QTL and markers. However, subsequent analysis 
using higher number of loci (1,000–5,000) in combination with 
greater population size (30–60) increased the accuracy of 
selection and genetic gain over five generations (Sonesson and 
Meuwissen, 2009). Beyond that, even using the combination 
of 10,000 loci and different QTL sizes (100, 400, and 2,000) 
did not really increase the genetic gain by great margins after 
15 generations (Liu et  al., 2015).
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Genome Marker Density and Total 
Number of Markers
Benefits of genomic selection using different SNP densities 
across different chromosomes have been evaluated over traditional 
means of estimating breeding values through the use of pedigree 
and phenotype information (Solberg et  al., 2008; Sonesson and 
Meuwissen, 2009). The number of chromosomes used in different 
simulation studies ranged from 1 (Uleberg and Meuwissen, 
2011) to 20 (Fernández et  al., 2014; Meuwissen et  al., 2014; 
Vela-Avitúa et  al., 2015). In a major QTL simulation analysis, 
Sonesson (2007) showed that doubling the number of markers 
from two to four could increase the total genetic gain by 
approximately 2% in Generation 2 and 11% in Generation 3. 
Given the relative low allelic diversity of SNP markers, Solberg 
et  al. (2008) concluded that almost three times as many SNP 
markers are needed compared to microsatellites to reach the 
same accuracy in genomic selection. Moreover, increasing the 
marker density eightfold (from 1Ne/morgan to 8Ne/morgan) 
can increase the accuracy of genomic selection from 0.69 to 
0.86 (Solberg et  al., 2008). They then concluded that using a 
family size of 100, at least 24,000 loci (100Ne for 30 morgan) 
are needed to obtain adequate selection accuracy. Lillehammer 
et  al. (2013) later showed that even lower density of markers 
at 50–100 per Morgan can increase the accuracy of selection 
and genetic gain while reducing inbreeding, if the size of families 
is set to 200 across at least 100 families in the breeding program. 
They simply investigated the variation in marker density from 
50 to 100 per Morgan, which resulted in increasing the accuracy 
of selection from 0.48 to 0.56 and raising the total genetic 
gain from 1.58 to 1.82, while at the same time, inbreeding 
was reduced from approximately 0.01 to 0.009.

Application of Stagewise and Index 
Selection
The application of multi-stage selection in traditional breeding 
programs was modeled in the simulation by Sonesson (2005). 
The study used the combination of walk-back and optimum 
contribution selection. This method resulted in a reduction in 
genotyping for parentage analysis while also maintaining genetic 
gains and avoiding an increase in inbreeding. This simulation 
was later expanded by Sonesson (2007) through using a lower 
number of markers and a simple breeding design. When applying 
these outcomes to genomic selection implementation on farm, 
the data suggest that total genotyping effort and hence cost 
can be  greatly reduced by using a staged selection approach 
while capturing most if not all the benefits of genomic selection.

Index selection is relatively new in aquaculture simulation 
studies. When considering multi-trait selection, over- or under-
weighted indices can result in sub-optimal profitability of the 
breeding program. Sánchez-Molano et  al. (2016) investigated 
productivity and fitness traits based on different indexes (50/50, 
75/25, and 100/0 index weights between the two objectives, 
respectively). The inbreeding coefficient in all scenarios increased 
over 20 generations using both pedigree and genomic information, 
but genomic selection was more efficient at reducing inbreeding 
and increasing genetic gain compared to pedigree-based selection. 

Most simulation studies to date have focused on simple trait 
analysis, while most commercial breeding applications are currently 
concentrating on multi-trait designs. Therefore, there is a need 
to expand genomic selection studies incorporating multi-trait 
breeding designs and capturing multi-trait genomic effects (i.e., 
pleiotropy) and genetic correlated effects at a genome level.

Exploiting Non-additive Genetic Variance
Most simulation studies have applied a simplistic additive model. 
The utilization of dominance and epistasis can potentially increase 
the power of genomic selection in cross-bred populations including 
family line crosses. Hence, both epistasis and dominance effects 
in addition to additive effects help to predict animal phenotypes 
more accurately. Besides, dominance and epistasis effects might 
also impact the additive genetic effect (Esfandyari et  al., 2015). 
While Esfandyari et  al. (2015) accounted for heterosis in cross-
bred populations, the simulated genome size was quite small, 
which might have resulted in an overestimation of the accuracy 
of selection. Consequently, there is further requirement to expand 
simulation studies comparing efficiency of breeding design and 
incorporating non-additive components and possibility of 
developing lines with higher cross-bred performance.

Unequal Family Distribution and 
Maternal Effects
In traditional on-farm communal breeding designs, identification 
of families before selection is almost impossible, and using 
fixed family size is not realistic. For example, both shrimp 
and molluscs are highly prolific spawners with large variation 
between females and have unequal family sizes, and contribution 
is highly variable in commercial breeding programs (Khatkar 
et al., 2017). As such, unequal contribution, or over representation 
of a few highly fecund families, has the risk of increasing 
inbreeding, especially if the number of families is low. Therefore, 
accounting for unequal family contribution in simulation studies 
in order to avoid higher rates of inbreeding is warranted. 
Furthermore, in commercial breeding designs, some females 
produce most of the commercial progeny, and this puts an 
emphasis on investigating the importance and prediction of 
maternal effects through genomic selection, especially in aquatic 
systems where the number of breeders is low. No studies have 
considered these aspects in the application of genomic selection.

Use of Realistic Species-Specific 
Linkage Disequilibrium
Using genomic information, accuracy of prediction strongly 
depends on linkage disequilibrium (LD) between QTL and 
marker loci, as well as co-segregation over multiple generations 
(Sun et  al., 2016). The magnitude of linkage disequilibrium 
in aquaculture species is extensive (Jones et  al., 2017b), but 
assumed LD in most simulation studies has been low in both 
population-wide and within-family studies (Toro et  al., 2017). 
Therefore, accounting for realistic LD in optimization of breeding 
design in the aquaculture industry needs to be  tailored for 
each species where known in order to accurately predict accuracy 
of genomic breeding values and their sustained utility in practice.
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Genotype by Environment Interaction
Most simulated breeding studies have assumed common 
environmental rearing conditions and high similarity between 
selection environment and commercial environment, where 
progeny is produced (Calus and Veerkamp, 2011; Hely et  al., 
2013). However, in reality, this almost certainly will not be  the 
case (particularly with disease), and the impact of G × E 
interactions could be  substantial. Hence, simulation studies 
should attempt to model the impact of G × E on genomic 
selection and accuracies of selection and responses, as a function 
of genetic correlations between divergent environments, including 
long-term changes in environments such as predicted to occur 
through global warming for instance.

Bio-economical Modeling
Most of the simulation studies to date have focused on genetic 
gain and inbreeding however, the objective of the breeding 
program should be to maximize long-term profit. In that sense, 
cost and benefit analysis of genomic selection and profitability 
of the breeding program, particularly the additional cost of 
genotyping, should be evaluated using bio-economical modeling. 
This will include translating genetic gain and inbreeding on 
economic returns. Bio-economic modeling becomes more 
important in simulations when we realize that it has substantial 
effects on genetic improvement and efficiency of the selective 
breeding programs (Llorente and Luna, 2016).

PRACTICAL CONSIDERATIONS FOR 
IMPLEMENTING GENOMIC SELECTION 
ON FARM

The greatest immediate value from genomic selection is realized 
where genomic breeding values can be  targeted against traits that 
drive economic returns to commercial farmers. Typically, such 
traits are based on yields of harvested product. Although this 
sounds straightforward enough, practical limitations become 
immediately apparent in situations where traits under commercial 
grow-out conditions vary substantially from performance recording 
environments in often pathogen-free central nucleus breeding 
facilities (as used in specific pathogen free shrimp breeding programs, 
for instance). For most aquaculture systems, the G × E interactions 
are largely unknown and limit the value of genomic selection 
training data if the genetic correlation between the central nucleus 
breeding values and on-farm breeding values is significantly less 
than unity (i.e., < 0.6). Fortunately, genomic selection platforms 
allow for field data to be  linked to nucleus broodstock through 
DNA derived genomic relationships and on-farm phenotyping. 
Second, genomic selection programs become increasingly more 
complex when harvest yields are determined by diverse genomes, 
as is the case of pearl oyster, with a host recipient seeded with 
the saibo of a donor. The need to have accurate breeding values 
for both host and donor oyster may eventually result in the need 
of separate breeding lines for both relatives to their contribution 
to pearl quality. Pearl formation in P. maxima and P. margaritifera 
appears to be  influenced by environmental effects and genetic 

components of both the donor and host oyster (McGinty et  al., 
2012; Blay et  al., 2017, 2018). The unclear genetic interactions 
between host and donor further complicate the application of 
genomic selection if such effects are significantly greater than zero. 
In the case of pearl oyster, the multi-factorial nature of pearl 
value adds to the complexity of setting up multi-trait genomic 
selection. Thirdly, and potentially of greatest commercial appeal 
for genomic selection is to build disease resistance into the genetic 
improvement program as has been highlighted above. Most central 
nucleus breeding programs are pathogen free, and breeding decisions 
are based on family sib selection, but commercial grow-out 
environments are under constant disease challenge. It is unlikely 
that simply screening commercial stocks will yield data of sufficient 
quality to obtain genomic breeding values for disease resistance, 
since most disease field challenges are uncontrolled, and often 
resistance to multiple pathogens is of interest. One potential solution 
is to expose large mixed-family progeny cohorts to standardized 
disease challenge and ascertain survival statistics from pooled 
genotype data pre- and post-challenge. Finally, it is almost certain 
that for most genomic selection programs, there will be  a need 
for ongoing phenotyping to update the training sets and cross 
validate data collected under diverse commercial environments 
and to monitor unfavorable genetic correlated responses.

Perhaps one of the greatest advantages offered by the 
application of genomic selection over conventional breeding 
programs is that large-scale multi-family data can be  resolved 
retrospectively through genomic relationships. This has two 
immediate and highly significant advantages. First, the predicted 
genetic response and realized inbreeding are far superior over 
the management of multiple single-family lines. Simple simulation 
shows that a cohort of 100 families in a single line outperforms 
the average of 100 single-family lines and creates the long-
term sustainable value for the industry (Khatkar et  al., 2017). 
Second, the enormous costs in establishing and maintaining 
single-family mating, spawning, and rearing facilities are not 
required under a genomic selection program using a large-
scale multi-family breeding program. In many cases, the 
commercial infrastructure for propagation is sufficient, and 
the cost saving outweighs the cost incurred for genotyping.

In our experience, the transition from existing/traditional 
selection programs into a genomic selection program is challenging 
since most mating and infrastructure designs in central nucleus 
breeding facilities do not capture the advantages offered by 
genomic selection programs. In the case where simple mass 
produced, commercial stocks are produced, or where no genetic 
improvement programs are in place, imposing a genomic selection 
program is potentially straightforward. The main requirement 
is that the species is domesticated, since life cycles need to 
be  closed for ongoing selection and capture of genetic gain. 
Where source broodstock has been harvested from wild stock, 
the base generation needs to be  adequately represented in the 
foundation stocks, and inclusion of “new” ongoing sampling 
of wild stocks limited. Once an adequate training data set 
against commercially well-defined breeding objectives has been 
completed, a robust test-set and validation phase is required 
to determine the accuracy of the genomic predictions. For easy 
to measure traits of moderate-to-high heritability, this is relatively 
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easy to achieve; however, for most, if not all diseases, and 
complex multi-factorial traits, the development of adequate 
training data sets will remain a logistical challenge. Of practical 
concern is also how best to use available information. For most 
applications, genotyping potential candidates under selection 
remains a significant cost. The use of multi-stage selection, 
based on simple phenotypic selection as a primary selection, 
followed by genomic sampling (DNA sampling genotyping and 
tracking tagged individuals) and selection is likely the most 
cost-effective application of this technology (Khatkar et  al., 
2017). Other applications of genomic selection include the 
genomic management to minimize inbreeding by candidate 
selection and mate allocation to maximize genomic diversity. 
Genomic selection also offers an additional commercial benefit, 
to pre-screen females and males in the current generation for 
the production of commercial animals, given that relatively few 
females are needed to generate the many millions of larvae 
for commercial production. The exact benefits of genomic 
selection breeding programs will be  dependent on the species 
and nature of the aquaculture enterprise.

FUTURE OUTLOOK FOR SHRIMP AND 
PEARL OYSTER GENOMIC SELECTION 
APPLICATION

With rapid technological advances throughout the genomic 
selection pipeline, it is understandable that uptake by the 
industry is often lagging behind. This is also the case with 
emerging breeding programs in aquaculture in particular those 
that do not have a strong historical background in structured 
genetic improvement programs. In L. vannamei, the advances 
are significantly ahead of P. monodon, despite similarity in 
genomic resources, phenotyping, and broad principles of culture 
systems. A fundamental difference is in the stage of domestication, 
and being able to fully close life cycles between the species, 
which is a significant limitation for the adoption of advanced 
breeding systems in P. monodon. In pearl oyster the complexities 
of definition of breeding objectives, the relative importance of 
host and donor lines, which ultimately may require separate 
breeding programs, will challenge genomic selection programs 
in this production species. The importance of production focused 
outputs, versus key determinants that affect production efficiency, 
particularly disease outbreaks and production inputs (largely 
feed and labor requirements), will remain a technological 
challenge in defining appropriate multi-trait breeding objectives 
and selection programs for both shrimp and oyster. As 
phenotyping systems for disease resistance become better defined 
and manageable on a commercial scale, advanced selective 

breeding programs will become a better place to generate 
relevant genomic selection training populations and rapidly 
implement genomic breeding values to aid selection.

In the medium term, the continued collection of commercial 
phenotypes across a diverse range of environments combined 
with large-scale low-cost genotyping will provide avenues for 
systematic analysis and exploitation of G × E effects including 
the establishment of specialized breeding lines as well as the 
potential capture of non-additive effects through heterosis. The 
impact of genomic selection on the prediction of phenotypes 
within commercial production systems, and recording of detailed 
environmental effects right down to individual pond and 
hatchery effects, will see genomic information integrated in 
precision farming systems.

In the long term, incorporation of accurate and low-cost 
industrial-scale genotyping and on-farm phenotyping technologies 
will become the pipeline to generate data-rich resources matching 
genotype, by the way of full genome sequence, to extensive 
trait panels on many hundreds of thousands of animals phenotyped. 
This may allow QTL to be  mapped down to quantitative trait 
nucleotide (QTN) polymorphisms as the causative determinants 
for such complex traits. Accordingly, such QTN could then 
be incorporated in genomic breeding value estimates, but ultimately 
it will open the way for alternative technologies such as 
CRISPR-Cas9 genome editing tools to enhance genetic 
improvement programs. In conclusion, the opportunities for 
genomic information to generate profitable and sustainable 
aquaculture systems for shrimp and oyster are currently at their 
infancy but with a real and potentially unprecedented return 
on investment for the near and long-term future.
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