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The Irano-Turanian floristic region spans a topographically complex and climatically

continental territory, which has served as a source of xerophytic taxa for neighboring

regions and is represented by a high percent of endemics. Yet, a comprehensive picture

of the abiotic and biotic factors that have driven diversification within this biota remains to

be established due to the scarcity of phylogenetic studies. Acantholimon is an important

component of the subalpine steppe flora of the Irano-Turanian region, containing

c. 200 cushion-forming sub-shrubby pungent-leaved species. Our recent molecular

phylogenetic study has led to enlarging the circumscription of this genus to include eight

mono- or oligospecific genera lacking the characteristic life-form and leaves. Using the

same molecular phylogeny, here we investigate the tempo and mode of diversification as

well as the biogeographic patterns in this genus, to test the hypothesis that a combination

of key morphological innovations and abiotic factors is behind Acantholimon high species

diversity. Molecular dating analysis indicates that Acantholimon s.l. started to diversify

between the Late Miocene and the Pliocene and the biogeographic analysis points to

an Eastern Iran–Afghanistan origin. Macroevolutionary models support the hypothesis

that the high diversity of the genus is explained by accelerated diversification rates

in two clades associated with the appearance of morphological key innovations such

as a cushion life-form and pungent leaves; this would have favored the colonization

of water-stressed, substrate-poor mountainous habitats along the newly uplifted IT

mountains during the Mio-Pliocene. Given the apparent similarity of mountain habitats

for most species of Acantholimon, we hypothesize that its current high species diversity

responds to a scenario of non-adaptive radiation fueled by allopatric speciation rather
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than evolutionary radiation driven by ecological opportunity. Similar scenarios might

underlie the high diversity of other speciose genera in the topographically complex

Irano-Turanian landscape, though this remains to be tested with fine-grained distribution

and climatic data.

Keywords: Acantholimon, allopatric speciation, ancestral area reconstruction, extinction, Irano-Turanian, key

innovations, mountain habitats, rapid diversification

INTRODUCTION

The disparity of organismal diversification rates (speciation
minus extinction) and its causes are a hot topic in evolutionary
biology (Ricklefs, 2006; Linder, 2008; Losos, 2010; Morlon et al.,
2011; Pyron and Burbrink, 2013; Stadler, 2013; Morlon, 2014;
Alexander et al., 2016; López-Estrada et al., 2018). Variations
in the rates of speciation and extinction over time and across
lineages and the factors underlying those changes are key to
understanding how diversity is generated, which in turn is
instrumental in designing how it can be preserved (Linder, 2005;
Condamine and Hines, 2015; Sanmartín and Meseguer, 2016).
Molecular phylogenies of species-rich groups are suitable models
for investigating the tempo, rate andmode of diversification (Nee
et al., 1992; Paradis, 1997; Pybus andHarvey, 2000; Harmon et al.,
2003), and for inferring the spatial component of diversification
by testing hypotheses about biogeography andmigration patterns
(Moore and Donoghue, 2007; Antonelli and Sanmartín, 2011;
Condamine et al., 2012).

Evolutionary radiations are usually defined as involving rapid
cladogenesis from a common ancestor and yielding taxon rich
clades (Simpson, 1953; Ober and Heider, 2010). Most studies
on radiations have focused on adaptive radiation, defined as
“the evolution of ecological and phenotypic diversity within
a rapidly multiplying lineage” (Schluter, 2000), a process in
which ecological opportunity and key innovations are important
features (Givnish, 2010; Yoder et al., 2010). While there is
both empirical (Seehausen, 2006; Fior et al., 2013; Joly et al.,
2013; Lagomarsino et al., 2016) and theoretical (Gavrilets and
Vose, 2005) support for the occurrence of this model, which
elements are central to the hypothesis of adaptive radiation
remain controversial (Glor, 2010; Losos and Mahler, 2010;
Givnish, 2015). For instance, in line with the view that adaptive
radiation is distinct from ecological speciation, some models
suggest that speciation during adaptive radiation is largely non-
ecological and involves processes other than niche evolution
(Grant and Grant, 2008; Rundell and Price, 2009; Glor, 2010).
Other views question the focus on extraordinary diversification
(Glor, 2010; Givnish, 2015), connecting with the old idea that
adaptive radiation in a wider sense may be the predominant
mode of biological diversification (Simpson, 1953; Stebbins,
1974). In addition, others openly advocate the role than non-
adaptive radiation, i.e., involving niche conservatism, may play
in radiative processes (Gittenberger, 1991; Kozak et al., 2006).
Such alternative models and views on how radiations may be
generated suggest that theoretical preconceptions should be
minimized when examining new empirical data that involve
rapid diversification in species-rich groups.

In flowering plants, there has been substantial research into
themorphological, ecological (environmental), and physiological
correlates of cladogenesis (Ree, 2005; Hughes and Eastwood,
2006; Lagomarsino et al., 2016; Meseguer et al., 2018). Whether
abiotic factors such as climate and geography or the appearance
of morphological evolutionary novelties are behind changes
in a lineage’s diversification trajectory is the subject of a rich
recent literature (Donoghue and Edwards, 2014; Donoghue
and Sanderson, 2015). Causality in correlations between key
innovations and changes in diversification rates are difficult
to demonstrate because evolution rarely affects a separate
evolutionary trait (Donoghue and Sanderson, 2015), and often
these changes appear only once in the phylogeny, preventing
adequate statistical testing (Maddison and FitzJohn, 2015). Yet,
the causal link between key innovation and rapid diversification
is one of the major appeals of studies of radiations.

Covering one third of the surface of Eurasia, the Irano-
Turanian (hereafter, IT) region is one of the largest floristic
regions in the world (Takhtajan, 1986) but its limits have been
debated and recently reviewed in Manafzadeh et al. (2017). It
encompasses a vast topographically complex and climatically
very continental territory (Djamali et al., 2012a) that includes
two hotspots sensuMittermeier et al. (2005), the Irano-Anatolian
and the Mountains of Central Asia, as well as the southern and
eastern parts of a third one, the Caucasus. Overall, the IT region
extends from the Anatolian Plateau (excluding the southeastern
Mediterranean fringe) and Levant region (up to northern part of
the Sinai peninsula) on the west to the western China provinces
of Gansu and western Sichuan on the east; and from southeastern
Russia, Kazakhstan and Southern Mongolia on the north to the
Iranian plateau (except the Iranian Gulf and Gulf of Oman),
Afghanistan and the western Himalayas on the south. The IT
biota, represented by a high percent of endemics, has also
served as a source of xerophytic taxa for neighboring regions,
in particular the Mediterranean region (Blondel et al., 2010;
Manafzadeh et al., 2017), via migration corridors during dry
climate episodes. Its dynamic geological history, resulting from
the tectonic collision of three major plates, Eurasia, Arabia, and
India, offers good opportunities for studying patterns of episodic
biotic exchange between independently evolving biotas. Yet, the
IT region has been scarcely studied from a biogeographical and in
general an evolutionary point of view (Manafzadeh et al., 2014).

A key step in explaining the high botanical diversity of IT
hotspots is demonstrating whether such diversity is the result of
a rapid diversification compared to neighboring regions, and, if
so, whether this is the result of a higher rate of speciation or a
lower rate of extinction. The recent origin and radiation of IT
species-rich groups, such as Cousinia Cass. subgen. Cousinia (c.
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8.7 Mya; López-Vinyallonga et al., 2009) and Acanthophyllum
C.A.Mey. s.l. (c. 11.1 Mya; Pirani et al., 2014), lends support to
the idea of high diversification rates in the IT region, though old
lineages with slower diversification rates also occur in this region,
e.g.,HaplophyllumA. Juss. (Manafzadeh et al., 2014). Yet, explicit
comparisons of diversification rates between groups within and
outside IT hotspots remain rare.

The IT region is characterized by a dynamic geological history,
with several active tectonic lines, ongoing plate subduction
(e.g., the African Plate beneath the Anatolian Plate), and
several orogenic uplift events (e.g., Tibet, Caucasus). This
has probably resulted in numerous opportunities for species
formation, through geographic isolation (allopatry), colonization
of novel environmental niches (mountain peaks and slopes), or
adaptation to a more continental climate.

Acantholimon Boiss. is one of the richest angiosperm plant
genera in the IT region and the second most species-rich
genus in the Plumbaginaceae, with c. 200 species, most of
which are geographically restricted (Mobayen, 1964; Kubitzki,
1993). All the species occur in the IT region but <5% of
them also occur in the Mediterranean region (Bunge, 1872;
Mobayen, 1964; Linczevski, 1967; Kubitzki, 1993; Peng and
Kamelin, 1996; Assadi, 2005, 2006; Dogan and Akaydin, 2007;
Dogan et al., 2011). Acantholimon species have been traditionally
recognized by their pulvinate (cushion forming) to densely-
branched cespitose pungent subshrubby life-form. They occur
in mountainous regions, mostly at mid- and higher elevations,
growing in gravelly and stony soils or on exposed rocks.
A recent molecular phylogenetic study, including c. two-
thirds of the species diversity, has revealed that Acantholimon
as currently defined is not monophyletic, and supports a
widely circumscribed Acantholimon, with the small genus
Goniolimon Boiss. (c. 20 species) as its sister group (Moharrek
et al., 2017). This new definition of the genus—which we
refer below as Acantholimon s.l.—includes the species-poor
genera Bamiania Lincz., Bukiniczia Lincz., Chaetolimon (Bunge)
Lincz., Cephalorhizum Popov & Korovin, Dictyolimon Rech.f.,
Gladiolimon Mobayen, Popoviolimon Lincz., and Vassilczenkoa
Lincz., which differ markedly from Acantholimon s.str. in their
overall morphology, in particular life-form and leaves. Moharrek
et al. (2017) placed these genera, except for Gladiolimon, as early
diverging lineages relative to two different clades that contained
the species traditionally included within Acantholimon, hereafter
Acantholimon s.str. Ancestral character state reconstruction of
morphological traits revealed that the cushion life-form and
pungent leaves, characteristic of Acantholimon (it is also present
in the IT genus Acanthophyllum, Pirani et al., 2014), evolved
independently in the two main Acantholimon s.str. clades
(Moharrek et al., 2017). These authors suggested that the current
high diversity of Acantholimon s.l. could be related to the
evolution of these key innovations and driven by orography and
climate change in the IT region. Yet, the absence of an explicit
spatiotemporal framework prevented the statistical testing of this
hypothesis. Because of its large species-richness in the IT region,
compared to its sister genus Goniolimon, and the inclusion
of species-poor and rich lineages, Acantholimon represents an
ideal model system for testing the potential correlation between

changes in diversification rates, morphological key innovations,
and ecological opportunity in driving the high diversity of the IT
region.

Here, we used the phylogenetic hypothesis of Acantholimon
s.l. in Moharrek et al. (2017), c. 65% of all species, to investigate
the tempo and mode of diversification and reconstruct the
spatiotemporal evolution of this genus. Specifically, we aimed
to test the hypothesis that key morphological innovations in
life form are behind Acantholimon s.l.’s current high species
diversity, and to explore the role that biogeographic events
such as the colonization of new areas and abiotic factors
(e.g., climate change toward aridification and continentality)
played in the rapid diversification of this genus. For this, we
(1) estimated the age of divergence of major lineages within
Acantholimon using relaxed molecular clocks; (2) inferred point
changes in diversification rates along the evolutionary history
of Acantholimon over time and across clades; (3) tested for
a causal relationship between transitions in life-form and leaf
morphology and changes in speciation and extinction rates; and
(4) reconstructed the biogeographic pathways by which this
genus reached its current range. By reconstructing evolutionary
patterns in the second largest genus of Plumbaginaceae, we also
provide new insights on the evolution of this family.

MATERIALS AND METHODS

Taxon Sampling
For the reconstruction of the temporal evolution and
biogeographic patterns of the study group, we used a simplified
dataset of that in Moharrek et al. (2017). The original was a
combined dataset of nuclear ribosomal DNA ITS and plastid
trnY-T sequences. Since no incongruence was found between
the two markers, subsequent analyses were based on the
concatenated nuclear-plastid matrix (2,021 bp). This dataset
was trimmed to include a single accession per species covering
130 species of Acantholimon, as the ingroup, and 26 species,
belonging to subfamilies Limonioideae and Plumbaginoideae,
as the outgroup. The sampling encompasses the major areas of
occurrence of Acantholimon in the IT region, including its main
center of diversity in Iran and Afghanistan, as well as Anatolia,
the southern Caucasus, Central Asia, and Pakistan. All samples
except that of A. ulicinum from Greece lie within the limits of
the IT region. Voucher information and GenBank accession
numbers are shown inData Sheet S1.

Divergence Time Estimation
Divergence times were inferred with BEAST v1.8.0 (Drummond
et al., 2012a), ran at the CIPRES Science Gateway (http://www.
phylo.org/; Miller et al., 2010) assuming a Bayesian relaxed
molecular clock. Molecular rates were allowed to vary among
lineages around an average value, by enforcing an uncorrelated
lognormal clock of evolutionary rates. A birth–death branch
process prior was used in the analysis. A general time reversible
model with rate variation across sites, modeled using a gamma
distribution and invariant proportion of sites (GTR + G + I),
was applied to the concatenated data matrix.
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There are no known macrofossils in Plumbaginaceae, which
is mainly composed of herbs and subshrubs, but there is a pollen
record. Pollen of Limonium Mill., Armeria Willd., Goniolimon,
Acantholimon, Psylliostachys (Jaub. & Spach) Nevski, and most
likely the other genera in the Limonioideae, are virtually
indistinguishable. They consist of two morphs associated to
an incompatibility system (Baker, 1948; Bokhari, 1972; Weber,
1981; Weber-El-Ghobary, 1987; Morretti et al., 2015) and are
usually reported in palynological papers indistinctly either as
Limonium or Armeria type. Using the available fossil pollen
from the Upper Miocene (van Campo, 1976; Muller, 1981),
Upper-Middle Miocene (Rivas-Carballo et al., 1994) or Middle
Miocene (Valle et al., 1995) is thus problematic. Therefore,
we calibrated our dating analysis with age estimates from a
recently published time tree of angiosperms calibrated with 171
macrofossils (Magallón et al., 2015). Specifically, we calibrated
the root node of our tree, the crown age of the family, using
a normal distribution prior with median = 41.67 Mya and
standard deviation (SD) = 10.8 Mya that covers the 95% high
posterior density (HPD) credibility interval for that node in the
original study (S. Magallón, pers. comm.). However, because
the use of secondary calibrations has been recently criticized
(Schenk, 2016), we used the Limonioideae pollen record as
an additional calibration point, after performing a sensitivity
analysis to explore the influence of the assignment of this fossil
pollen to different nodes in our tree. Focusing conservatively
on the Upper Miocene records only, we assigned the Limonium
or Armeria type pollen record to the following nodes, in
four alternative analyses (using exclusively this calibration):
(1) the most-recent-common-ancestor (MRCA) of all Armeria,
Psylliostachys, and Limonium species in our analysis, (2) the
MRCA of Armeria and Psylliostachys species, (3) the MRCA of
all Armeria species, and (4) the MRCA of all Limonium species in
our analysis. These nodes were assigned a lognormal distribution
prior with offset = 5.33 Mya, and SD = 1.15 Mya, covering
the entire Upper Miocene geological interval (5.333–11.62 Mya).
In doing this, we accounted for the possibility that the pollen
belonged to either genus Armeria or Limonium, since these two
genera are well-represented in the Iberian Peninsula where the
original fossils were collected, or to a common ancestor of these
two genera. Since the results of the analyses using the fossil
pollen calibration point applied in four different positions were
within the 95% HPD of each other (Table S1), we assigned the
Limonioideae pollen record to the Armeria stem-node. We then
performed the final dating analysis using two calibration points:
the secondary calibration for the Plumbaginaceae crown-node
and the fossil calibration for Armeria stem-node in our analysis
(Data Sheet S2). The resulting chronogram (Figure 1) was used
for the subsequent diversification and biogeographic analyses.

The MCMC chain was run in two separate analyses for
50 million generations sampling every 1000th generation.
LogCombiner v1.7.5 (Drummond et al., 2012a) was used to
combine the log and tree files after discarding the initial 5
million iterations of each analysis as burn-in. Tracer v1.6
(Rambaut et al., 2014) was used to assess that Effective Sample
Sizes (ESS) were above 200 for optimal convergence and tree
likelihood stationarity. Tracer automatically removed the first

10% of the log statistics from the combined sample, so we
correspondingly discarded the first 10% of trees. A maximum
clade credibility (MCC) tree was constructed in TreeAnnotator
v1.7.5 (Drummond et al., 2012a) depicting the maximum sum
of posterior clade probabilities (nexus file inData Sheet S3). The
MCC Tree was visualized in FigTree v1.4.1 (Drummond et al.,
2012a).

Diversification Analyses
We used macroevolutionary methods implemented in R (R
Development Core Team, 2018) to evaluate potential factors
underlying diversification in Acantholimon. All analyses were
run on the BEAST MCC tree pruned to leave only the 130
terminal taxa belonging to Acantholimon s.l., to avoid biases
related to incomplete taxon sampling in the outgroup. We
first visualized variation in diversification rates over time by
plotting a semilogarithm lineage-through-time (LTT; Nee et al.,
1992) plot with the R package ape (Paradis et al., 2004) using
both the MCC tree and a random sample of 1,000 trees
from the BEAST MCMC posterior distribution to account for
dating uncertainty. Second, we used the whole-tree maximum
likelihood methods implemented in the R package TreePar
(Stadler, 2011) to detect the signal of mass extinctions and
temporal shifts in the diversification rate using the MCC
tree as phylogenetic hypothesis. The function “bd.shifts.optim”
with the option ME = FALSE was used to estimate the
time and magnitude of changes in the rate of diversification
(r = speciation minus extinction) and background extinction
(ε = extinction/speciation) at discrete points in time. Sampling
fraction at present was set to rho = 0.65 to reflect incomplete
taxon sampling, and we estimated potential rate shifts in an
interval grid of every 0.1 Mya, using the option posdiv= FALSE
to allow for negative diversification rates (periods of declining
diversity). We compared a constant birth-death model against
models with an increasing number of rate shifts by using
likelihood ratio tests (LRTs) at a significant alpha level of 0.05
(Stadler, 2011). We also run analyses with the ME option set
to TRUE to detect mass extinction events (MEEs), i.e., tree-
wide sampling events in which a percentage of extant diversity
is instantaneously removed at a point in time. This option
assumes r and ε to be constant before and after the MEE
but allows estimating the magnitude of the MEEs. Though in
theory it is possible to estimate simultaneously tree-wide rate
shifts and MEEs, in practice this leads to problems of parameter
non-identifiability, since these two types of events are modeled
identically in the likelihood BD framework (Stadler, 2011). We
tested models with increasing number of MEEs via LRTs.

Third, we used Bayesian Analysis of Macroevolutionary
Mixture (BAMM v2.5, Rabosky, 2014) to detect heterogeneity
in evolutionary rates across lineages within the phylogeny of
Acantholimon s.l. This method employsMCMC and Bayes Factor
comparisons and Compound Poisson Process (CPP) models
to explore alternative diversification dynamic regimes, allowing
for both rate-heterogeneity across lineages and variation in
speciation rates over time. To account for incomplete taxon
sampling, we specified a global sampling probability of 0.65. The
R package BAMMtools v2.1 (Rabosky et al., 2014) was used to
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FIGURE 1 | Bayesian inference analysis of Acantholimon s.l. based on two DNA regions (ITS and trnY-T). Chronogram represents the maximum clade credibility tree

estimated in BEAST, with mean divergence dates in million years ago (Mya) shown for key nodes, some of which are labeled following Moharrek et al. (2017). Colored

circles label samples according to formerly recognized genera as well as Acantholimon traditional circumscription. White dots denote strongly supported nodes

(≥95% posterior probability, PP); black dots, intermediately supported nodes (85–94% PP); gray bars represent 95% highest posterior density credibility intervals for

node ages. Asterisks indicate nodes used as calibration points. Dotted line, scaled on the left, indicates change of average global deep ocean temperature over time

based on benthic foraminiferal oxygen-isotope records corrected to account for ice-sheet accumulation according to Hansen et al. (2008).
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choose appropriate prior distributions for all parameters in the
analysis, and to analyze and visualize the output, using 15% of
samples as burn-in. BAMM has been questioned, in particular its
initial versions, because of the unrealistic treatment of extinction
in unobserved (non-sampled or extinct) lineages and flawed CPP
priors (Moore et al., 2016). The first one was suggested to be
a minor bias for most datasets based on simulations (Rabosky
et al., 2017), but its effect on empirical cases remains to be
tested. Sensitivity to the choice of the CPP prior, which informs
the expected number of rate shifts, was assessed by performing
multiple BAMM analyses with varying CPP priors (1, 5, and 10).
We ran each analysis for 5 million generations, sampling every
5,000th generation. Since the selected CPP prior had little effect
on our results, we ran the final analysis with the default prior
in BAMMtools (a prior rate shift of 1) and four independent
chains of 10 million generations each, sampled every 10,000th
generation.

Trait-Dependent Diversification Analyses
We tested for the effect of life-form and leaf type on
diversification rates using the binary-state speciation and
extinction (BiSSE) algorithm (Maddison et al., 2007)
implemented in the DIVERSITREE R package (FitzJohn
et al., 2009; FitzJohn, 2012). Coding of morphological states
for each species was based on Moharrek et al. (2017), who
used the taxonomic literature and direct observations to
distinguish between two predominant overall morphologies or
“syndromes” within Acantholimon s.l., defined mostly on the
basis of life-form and leaves. The “Acantholimon syndrome”
consists of a pulvinate to densely branched caespitose subshrub
bearing mostly spike-like or capitate inflorescences, with linear
rigid acuminate leaves, and occurs in Acantholimon s.str. and
Gladiolimon. The “Limonium syndrome” is a perennial herb with
thick rootstock, rosulate, spathulate, and slightly fleshy basal
leaves, and flowering stems bearing paniculate inflorescences.
This syndrome occurs in the species-poor Bamiania, Bukiniczia,
Cephalorhizum, Dictyolimon, and Popoviolimon, but was
here ascribed also to Chaetolimon and Vassilczenkoa since,
although they do not exhibit spatulate leaves, their life-form
is closer to the representatives of this syndrome than to those
showing Acantholimon syndrome. We compared a model
with syndrome-dependent speciation and extinction rates, and
asymmetrical transition rates between the Acantholimon and
Limonium syndromes (full BiSSE model, six parameters), against
simpler, nested models where speciation, extinction or transition
rates were constrained alternatively to be equal for the two
states (five parameters). We assessed the significance of model
differences by LRTs. To account for uncertainty in the estimation
of model parameters, a Bayesian MCMC was run for 10,000
generations using an exponential prior under the best fitting
model. Chain convergence was verified using the R package coda
(Plummer et al., 2006). All chains converged within the first
1,000 generations. However, to be conservative, we discarded the
first 2,500 steps of every chain and concatenated the last 7,500
steps for each tree together to construct the posterior probability
distributions.

Ancestral Area Reconstruction
The biogeographic history of Acantholimon and allied genera
was reconstructed using Lagrange (Ree and Smith, 2008) with
the C++ implementation (http://code.google.com/p/lagrange).
As for diversification, we removed all outgroup taxa. Lagrange
implements the maximum likelihood dispersal–extinction–
cladogenesis (DEC) model (Ree et al., 2005) to estimate the most
likely ancestral geographic range based on current distributions
of extant lineages. TheDECmodel has been used broadly to study
biogeographic patterns in closely related taxa with restricted
geographic ranges (e.g., Fabre et al., 2013). This model assumes
extinction or dispersal by contraction or expansion of the
ancestral geographic range, respectively, and allows estimating
the probability of ancestral areas at each node of a phylogenetic
tree. The range of Acantholimon s.l. and its close relatives was
divided into seven major areas. In defining the boundaries of our
operational areas, we considered the current distribution patterns
of Acantholimon s.l. species, i.e., geographic areas defined by
the congruence in distribution of two or more species, but
also the existence of significant geological features that could
have acted as barriers to dispersal, or whose appearance could
have resulted in the formation of new species due to vicariance
(Sanmartín, 2014). For instance, area B (Levant and E Anatolia)
is separated from area A (Eastern Mediterranean region and
W Anatolia) by the Anatolian Diagonal, an area that is both
species-rich and seems to have functioned as barrier for many
organisms (Davis, 1971; Avci, 1996). The large deserts lying in
the middle of the Iranian plateau, Dasht-e Kavir and Dasht-
e Lut, mark the geographical boundary between areas D (W
Iran) and E (E Iran and Afghanistan). This “mixed” biotic-
geological criterion was adopted to maximize congruence with
other biogeographic studies on animal and plant organisms
endemic to this region but with slightly different ecological
and distribution patterns (Sanmartín, 2003; Roquet et al., 2009;
Barres et al., 2013, etc.). We did not strictly follow Takhtajan’s
floristic regions because in our case it did not entirely capture the
fine-grained distribution patterns in Acantholimon, and because
boundaries between floristic regions in Takhtajan’s classification
reflect current geological and climatic settings but not necessarily
older history. Use of Takhtajan’s subregions within the IT floristic
region was also problematic because of the intractability of a
DEC analysis including more than 9 areas (Landis et al., 2013).
The seven areas considered were: (A) Eastern Mediterranean
region andWAnatolia including Greece and western Turkey; (B)
Levant and E Anatolia; (C) Caucasus region including Georgia,
Azerbaijan, and Armenia; (D) W Iran including most of the
Iranian Plateau except for the eastern part; (E) Eastern Iran and
Afghanistan including the eastern part of the Iranian plateau
and Afghanistan; (F) Central Asia defined as the Turanian or
trans-Caspian region, including the republics of Turkmenistan,
Uzbekistan, Tajikistan, Kirzigistan, and most of Kazakhstan;
and (G) Western Himalayas. The BEAST MCC tree was used
for the Lagrange analysis. A geographical range matrix was
constructed, coding each species as present or absent in each
of the seven geographical areas. To reduce the size of this
matrix and avoid non-identifiability with optimized ranges,
we constrained widespread ancestral ranges to include only
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geographically adjacent areas assuming that transitions between
widespread non-adjacent ancestral ranges involve an additional
extinction event.

RESULTS

Estimated Divergence Time
Acantholimon s.l. diverged from its sister genus 7.48 Mya (4.91–
11.72 95% HPD) and started to diversify 4.08 Mya (2.61–
6.22 95% HPD). Ages of the earliest diverging lineages within
Acantholimon s.l., i.e., clades A and B, were estimated to be 2.88
Mya (1.21–4.88 95% HPD) and 2.58 Mya (0.98–4.28 95% HPD),
respectively (Figure 1). Within clade A, non-cushion species
corresponding to the formerVassilczenkoa andChaetolimon (A1)
diverged 0.74 Mya (0.22–1.46), whereas those corresponding
to Cephalorhizum, Bamiania, and Popoviolimon (clade A2)
diverged 1.50 Mya (0.79–2.37). Within clade B, the lineage
including non-cushion species gathered in the former genera
Dictyolimon and Bukiniczia (B1) diverged 1.49 Mya (0.53–2.10).
Cushion forming species—exhibiting Acantholimon syndrome—
originated around 1.14 Mya (0.19–1.88; clade A3) and 1.20 Mya
(0.50–2.10; clade B2), respectively (Figure 1).

Diversification Analyses
The lineage-through-time (LTT) plot shows slow diversification
before c. 1.5 Mya, after which the slope of the curve (rate of
lineage accumulation) increases, accelerating toward 0.1 Mya
(Figure 2). Among rate-variable models, TreePar supported a
one-rate shift model, within Acantholimon s.l., with a slight
increase of diversification rate and a joint marked decrease
in turnover at time t = 0.015 Mya (Table 1). This model
showed a significantly better fit (p = 0.99) to the curve than a
constant birth-deathmodel based on LRT tests; the two-rate-shift
model was not significantly better than the one-rate-shift model
(p= 0.83). The model supporting one MEE showed a better fit to
the data than a constant birth-death model, albeit non-significant
(p = 0.90), but worse than the one-rate-shift model (p = 0.99).
Such MEE removed c. 89% of extant lineages at t = 1.81 Mya
(sp = 0.11, Table 1). Subsequent models allowing for a higher
number of MEEs were not significant (Table 1).

BAMM supported significant rate heterogeneity within
Acantholimon s.l., recovering two significantly supported shifts in
diversification at the crown nodes of Acantholimon s.str. species
within clade A and clade B (A3, B2; Figures 1, 3A); the two
most credible rate shift sets differed only in the position of the
shift along the stem or crown node of Acantholimon s.str. species
within clade B (B2; Figures 1, 3A). Mean diversification rates in
clades A3 and B2 were inferred to be almost twice as high as in
the rest of the tree (Table 2; Figure 3B). Rate-through-time plots
showed that this was due to accelerated speciation rates, up to 7.6
(Figure 3A), starting c. 1 Mya (Figure 3B).

Trait-dependent diversification models (BiSSE) suggest that
the diversification rate heterogeneity detected by BAMM is
an effect of morphological syndrome on diversification rates
(Table S2). In particular, we detected a significant effect
on speciation rates, as the “symmetric speciation” model
was rejected for the MCC tree. Bayesian estimation of

FIGURE 2 | Accumulation of Acantholimon s.l. lineages through time, showing

the maximum clade credibility tree (dash black line) and 1,000 trees from the

post-burnin 95% highest posterior density distribution, representing

uncertainty time estimates. The dotted green line marks a possible mass

extinction event inferred by TreePar.

BiSSE parameters revealed significantly higher speciation and
diversification rates for the Acantholimon syndrome than for
the Limonium syndrome, as shown by the non-overlapping 95%
credibility intervals obtained when analyzing the MCC tree
(Figures 4A,C). No effect on extinction rates was detected (see
the widely overlapping 95% credibility intervals in Figure 4B).
Transition rates were not significantly different between
syndromes, as indicated by overlapping Bayesian posterior
densities of the estimated rate (Figure 4D).

Ancestral Area Reconstruction
The eastern Iran–Afghanistan region (area E) was inferred as
the most likely ancestral area for Acantholimon s.l., as well as
for the two main lineages (clades A and B; Figure 5; Table S3).
Many species were also reconstructed as having originated within
this region. The ancestral area for the MRCA of Acantholimon
s.str. species within clade B (subclade B2) was widespread in
Western Iran and Eastern Iran–Afghanistan (areas DE), implying
a dispersal event to the west. Within clade A, the ancestral
area of the MRCA of Acantholimon s.str. species (subclade
A3) was inferred to be widespread in Iran–Afghanistan and
Central Asia (DEF). The other regions (A to C, and G) seem
to have been colonized by later dispersal events westwards and
eastwards, followed by peripatric speciation, or rarely vicariance
(e.g., between C and D; Figure 5).

DISCUSSION

Parallel Diversification Rate Shifts and Key
Innovations Explain Diversity Patterns
Within Acantholimon
The uneven distribution of species diversity across clades and
regions is a candent topic in evolutionary biology (Wiens,
2017). Species-rich clades can be explained by either their
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TABLE 1 | Results of TreePar diversification analyses with or without mass extinction.

Models Mass extinction events disallowed Mass extinction events allowed

Birth-death One-rate-shift Two-rate-shifts Models One MEE Two MEEs

NP 2 5 8 NP 4 6

logL 3.5723197 −2.794629 −5.2786554 logL 1.2051645 −3.534386e-01

P (LRT) null model 0.9947511a 0.8258485b P (LRT) 0.9953212c

0.906253d
0.4615936e

r1 0.7409803 7.341848e-01 −2.49688967 r 1.2957501 1.525927

ε1 0.8875540 1.479852e-07 4.56728246 ε 0.7877387 7.441365e-01

st1 – 1.530905e-02 0.01530905 st1 1.8153090 1.815309

r2 – 6.188155e-01 2.93064817 sp1 0.1140093 1.156866e-01

ε2 – 9.179178e-01 0.52331151 st2 – 3.215309

st2 – – 0.41530905 sp2 – 3.420166e-08

r3 – – 0.29091967 – –

ε3 – – 0.92531393 – –

aLRT (constant birth-death vs. one-rate-shift).
bLRT (one-rate-shift model vs. two-rate-shift model).
cLRT (1 MEE vs. one-rate-shift model).
dLRT (constant birth-death vs. one MEE).
eLRT (one MEE vs. two MEEs).

NP, number of parameters; logL, (–log-likelihood value); mass extinction event (MEE), P (LRT), p-value of the likelihood ratio test; r, rate of diversification; ε, turnover (extinction/speciation);

st, shift time; sp, survival probability after a MEE; in which “r1”, “ε1”, and “sp1” denote the diversification rate, the turnover, and the probability of survival, respectively, inferred between

present (0 Mya) and the first rate or MEE (st1).

FIGURE 3 | BAMM analysis of rate shifts in diversification within Acantholimon s.l. (A) Rate shift configurations (credible rate shift sets) with the highest posterior

probability model showing two significant rate shifts in speciation (λ)—color coded by λ and marked by circles in the nodes. (B) Rates-through-time analysis of

speciation (λ), extinction (µ) and net diversification (r) in Acantholimon s.l. over the last 4.08 Mya.

age of origin, i.e., older clades have more time to accumulate
lineages (McPeek and Brown, 2007), or by events of rapid
diversification (evolutionary radiations). Our analyses using
several diversification rate methods support the hypothesis
that Acantholimon s.l. species diversity resulted from two
parallel events of accelerated speciation rates in subclades A3

and B2 (Figure 3A), which were linked to the acquisition
of morphological novelties in habit and leaf form. Clade
heterogeneity-aware method BAMM identified these two events,
with only slight uncertainty on the timing along the stem/crown
node of clade B2, and linked them to an increase in speciation
rates (Figure 3). Trait-dependent diversification method BiSSE
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supported an association between diversification rates and
morphological evolution: the (independent) acquisition of the
Acantholimon syndrome, i.e., the joint occurrence of cushion life-
form and linear rigid pungent leaves, was associated to higher
speciation rates, with no significant effect on extinction rates,
compared to the Limonium syndrome.

Time-dependent diversification models implemented in
TreePar supported one rate shift toward higher diversification
rates at 0.015 Mya, and a potential mass extinction event
removing more than 90% of extant diversity at 1.81 Mya,
which predates the clade-dependent rate shifts detected by

TABLE 2 | Speciation (λ), extinction (µ) and mean diversification rates (λ-µ) for the

entire tree, and for Acantholimon s.str. from BAMM.

Entire tree

Speciation rate (λ) 3.26 (90% HPD: 2.61–4.07)

Extinction rate (µ) 1.38 (90% HPD: 0.52–2.50)

Mean diversification rate (λ-µ) 1.88 species Mya−1

Acantholimon s.str. within clade A (subclade A3)

Speciation rate (λ) for subclade A3 5.58 (90% HPD: 4.58–6.48)

Extinction rate (µ) for subclade A3 2.45 (90% HPD: 0.31–5.55)

Mean diversification rate (λ-µ) 3.13 species Mya−1

Acantholimon s.str. within clade B (subclade B2)

Speciation rate (λ) for subclade B2 4.98 (90% HPD: 3.67–5.99)

Extinction rate (µ) for subclade B2 1.53 (90% HPD: 0.17–3.53)

Mean diversification rate (λ-µ) 3.45 species Mya−1

BAMM (Figure 2, Table 1). However, we recommend caution
in interpreting these results since it has been shown that
methods such as TreePar exhibit a high Type II error in
the case of rate heterogeneity due to clade-specific shifts
(Laurent et al., 2015). Thus, sister-clades exhibiting different
diversification dynamics such as in the case of Acantholimon
s.str. species (A3, B2) and their species-poor relatives (A1,
A2, B1) (Figure 1) could have misled the TreePar results.
Yet, we cannot reject the possibility that high extinction
rates in Acantholimon before the divergence of the major
clades could have contributed to the observed diversification
pattern.

Diversification rates estimated in Acantholimon (up to
r = 3.45 species Myr−1; Table 2, Figure 3B) are comparable to
those in other lineages proposed as examples of rapid radiations
(e.g., Pelargonium L’Hér., Bakker et al., 2005; Lupinus L., Hughes
and Eastwood, 2006; Drummond et al., 2012b; Astragalus L.,
Scherson et al., 2008; CastillejaMutis ex L. f., Tank and Olmstead,
2008, 2009; Indigofera L., Schrire et al., 2009; Dianthus L.,Valente
et al., 2010; Tragopogon L., Bell et al., 2012; Lobelioideae,
Lagomarsino et al., 2016). These radiations have generally
been attributed to ecological opportunity and/or evolutionary
innovation, but relatively few studies have identified multiple
diversification rate shifts coinciding with the evolution of the
same derived traits (Drummond et al., 2012b). Our analyses with
BAMM and BiSSE indicate that the newly arisen Acantholimon
syndrome facilitated two parallel events of accelerated speciation
rates in clades A3 and B2, suggesting that these morphological

FIGURE 4 | BiSSE analysis of diversification of the MCC tree and its association to morphological trait evolution, specifically life-form and leaves, represented by the

Acantholimon (Type I) and the Limonium (Type II) syndromes. Posterior distributions of parameters obtained in the MCMC-BiSSE analysis: (A) speciation rates, (B)

extinction rates, (C) diversification rates, (D) character transition rates. Horizontal bars indicate the 95% credibility interval for each parameter.
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FIGURE 5 | Ancestral Area Reconstruction of Acantholimon s.l. estimated in

LAGRANGE using the seven operational areas shown in the map above.

Current species distribution across the seven areas is indicated by

color-coded squares next to the terminals; black squares indicate absence in

the corresponding area. Ancestral areas and pie charts at nodes represent

alternative range probabilities; black slices in pie charts indicate equivocal

range probabilities. Scale depicts geological period time scale. An outline of

Acantholimon distribution is provided by dots representing specimen locations

obtained from GBIF.org (7th October 2015). GBIF Occurrence Available online

at: (http://doi.org/10.15468/dl.aeqcxf).

novelties in life form and leaf shape provided a competitive
advantage for species in those lineages.

What could have been those advantages? We can hypothesize
that dry continental environmental conditions, poor soils, and
herbivory exerted strong selection pressures on Acantholimon s.l.
lineages. Cushion life-form is a classic example of a convergent
character that has repeatedly favored the colonization of cold and
dry environments (Boucher et al., 2016). Not all species in the
two speciose lineages (A3 and B2) are cushion-forming, but those
that are not form densely branched subshrubs. Though there are
some species living below 1,000m in the Mediterranean parts
of Anatolia (Dogan and Akaydin, 2007), most Acantholimon

species occur inmountainous habitats, where cushion (or densely
cespitose) life-forms are suitable to thrive. Only 14 (8.53%) of the
164 Acantholimon species recognized in the Flora Iranica include
herbarium records below 1,000m of elevation (Rechinger and
Schiman-Czeika, 1974). And for 13 of those species with records
below 1,000m, there are additional records well above such
elevation, even up to 3,000m. The highest specimen recorded
for this genus in Flora Iranica is at 4,650, 4,800m in the Flora of

China (Peng and Kamelin, 1996; note that Flora Iranica covers
not only Iran but also Afghanistan and adjacent territories of
Turkmenistan, Pakistan and Iraq).

The other morphological character associated to the parallel
acceleration in diversification rates is leaf shape. Flattened leaves
with an expanded limb occur in most of the genera merged
under Acantholimon based on molecular data (Moharrek et al.,
2017), i.e., Bamiania, Bukiniczia, Cephalorhizum, Dictyolimon,
and Popoviolimon, as well as, profusely, in the outgroups, e.g.,
Goniolimon and Limonium. In contrast, those species included in
the two highly diversified lineages (clades A3 and B2, Figure 1)
typically show linear rigid acuminate leaves, representing a
minimal leaf surface that reduces water loss, and whose pungency
defends the plant against large herbivores. Nine of those 14
species with records below 1,000m in Flora Iranica belong in sect.
Tragacanthina Bunge. This was characterized by some degree of
seasonal leaf dimorphism consisting of non-rigid spring leaves—
a season when evapotranspiration is lower—and rigid summer
leaves. This example suggests that rigid acuminate leaves may
have been selected for extreme dry continental climates and that
only Acantholimon species with relatively mild climate during
part of the year exhibit non-rigid leaves. It is likely that the
joint occurrence of these two characters—cushion life-form and
rigid acuminate leaves—, with important functions for survival
in extreme continental environments helped Acantholimon to
become one of the dominant genera along vast extensions of
the IT region. Interestingly, a strikingly similar morphological
syndrome including life-form and leaves is exhibited by the genus
Acanthophyllum, another large IT genus occurring in similar
habitats, but belonging to another family, Caryophyllaceae
(Pirani et al., 2014).

But, is the Acantholimon syndrome a key innovation? This
term is subjected to controversy; possibly in part because of
the recurring comparison with the most paradigmatic example,
i.e., the pharyngeal jaw apparatus of cichlid fishes (Liem, 1973;
Givnish, 2015). This anatomical structure triggered the invasion
of a wide range of adaptive zones based on its maximum
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versatility. In contrast, the two morphological traits acquired
independently in Acantholimon seem to lack the potential
adaptive versatility of the pharyngeal jaw apparatus, but could
have facilitated the colonization of vast territories of seemingly
homogeneous continental high elevation environments and
promoted a rapid subsequent diversification. It is in this sense
that key innovation may be applied to the cushion life-form and
pungent leaves in Acantholimon although alternatively a new
term could be needed (Losos and Mahler, 2010).

Biogeographic History of Acantholimon
What was the climatic and geological framework within which
Acantholimon evolved? Molecular dating analysis suggests that
Acantholimon s.l. started to diversify sometime between the Late
Miocene and Pliocene, whereas the onset of differentiation within
the two lineages that constitute Acantholimon s.str. (clades A3
and B2) is dated in the Pleistocene (Figure 1). These dates are
much younger than the tectonic and climatic events that shaped
the current environmental conditions of the Irano-Turanian
region. Climatically, the history of the region is shaped by
both aridification and cooling. The Pleistocene glacial episodes
took place over an already existing global gradual cooling trend
that had started in the Oligocene (Zachos et al., 2008) and
an aridification in central continental Asia that started by the
early Miocene (Guo et al., 2002; Miao et al., 2012). Two major
tectonic events shaped the topography and climate of IT region:
the collisions of the Indian and Eurasian plates, started in
the early Eocene (Yin, 2010; Smit et al., 2013), and that of
the Arabian and Eurasian plates, started in the late Oligocene
(Mouthereau et al., 2012). These two collisions triggered the
uplifts of mountain ranges (Taurus, Caucasus, Zagros, Alborz,
Kopet Dagh, Tian Shan, Pamir) and plateaus (Iranian, Anatolian,
Qinghai-Tibetan) in the region, in a rather asynchronic and
discontinuous fashion over the last 20Ma (Li et al., 1996; Koçyigit
et al., 2001; Wu et al., 2001; Meulenkamp and Sissingh, 2003;
Popov et al., 2004; Guest et al., 2007; Buslov et al., 2008;
Hatzfeld and Molnar, 2010; Mosar et al., 2010; Djamali et al.,
2012b; Mouthereau et al., 2012; Favre et al., 2015). The uplift of
these mountain ranges and plateau regions caused an increasing
climate cooling and aridification through the formation of rain
shadows on a large scale (Manafzadeh et al., 2017). It is in
this context of increasing aridity and cooling in the IT region
where diversification and expansion of Acantholimon species
could have found favorable conditions over the last two million
years. The Pleistocene date for the accelerated diversification
events found inAcantholimon (Figure 1) contrasts with the older,
Miocene, radiation reported in other speciose IT genera such as
Cousinia (López-Vinyallonga et al., 2009; Djamali et al., 2012b).
In this genus, Pleistocene climatic oscillations were inferred
to have caused only moderately negative effects on preexisting
diversification. By contrast, in Acantholimon, the altitudinal
distribution of its cold-adapted xerophytic species, together
with the inferred tempo of diversification, is consistent with
an allopatric speciation scenario, in which Pleistocene climatic
oscillations actively promoted diversification: range contraction
and differentiation in isolation in the highest peaks during
interglacial periods vs. range expansion and migration during

glacial periods likely contributed to the divergence of gene pools
and eventually to allopatric speciation.

The biogeographic analysis suggests that the origin of
Acantholimon s.l. is most likely eastern Iran–Afghanistan; an
area that may have acted as a “species pump” (Figure 5). This
possibility is consistent with the fact that Iran and Afghanistan
are the major centers of the taxonomic diversity of the genus
(Kubitzki, 1993). The origin of the two major clades A and
B is inferred to be eastern Iran–Afghanistan and migrations
from this region appear to have occurred mainly following
several lines: (1) westwards into W Iran and then northwards
to the Caucasus, Anatolia and Eastern Mediterranean regions,
(2) eastwards into the northern parts of Pakistan (Baluchistan)
and the western Himalayas (India), (3) northwards into Central
Asia and the Pamir mountains and then westwards to the
Caucausus and Anatolia (Figure 5). A westward colonization
of the Mediterranean region from IT lineages has been also
described in other IT groups such as Haplophyllum (Manafzadeh
et al., 2014). However, our phylogenetic results in Acantholimon
indicate that most species from the same floristic region do
not form monophyletic groups (Figure 5). The Anatolian and
eastern Mediterranean representatives of the genus do not all
cluster together but are embedded within clades that primarily
include species from the inferred origin of the genus, Iran and
Afghanistan (area E), and species that occur in more than one
floristic region (Figure 5). This suggests that multiple westward
invasions of the western regions from the core of the IT region
took place during the evolution of the genus. A similar lack
of monophyly is found for species occurring north and east
of Iran and Afghanistan (areas F, G) although several central
Asian species seem to have a single origin (A. glumaceum to
A. laxum in clade B; Figure 5). Our results suggest that the IT
region acted both as a cradle for new species, via high speciation
rates, and as a museum, preserving older lineages that began to
radiate outside this region. Additionally, one could ask about
the relative importance of colonization vs. in situ diversification
in assembling the IT biota (e.g., Xing and Ree, 2017). The high
number of endemics in Acantholimon concentrated in an area
inferred as the origin of the genus indicates a major contribution
of in situ diversification.

Non-adaptive Radiation?
The elements and limits of the classical adaptive radiation model
(Schluter, 2000; Glor, 2010; Givnish, 2015) and its relative
importance compared to other models of evolutionary radiations
(Simões et al., 2016) have been much debated. Niche modeling
and niche overlap studies of every Acantholimon species are
needed to determine the interactions between environmental
factors and the fast diversification and associated key innovations
documented in this genus. However, available data suggest that
speciation in the IT Acantholimon was not accompanied by
niche differentiation. A large amount of information on habitats
of Acantholimon species recorded in floras, herbarium records,
regional works (Linczevski, 1967; Rechinger and Schiman-
Czeika, 1974; Peng and Kamelin, 1996; Assadi, 2005; Dogan
and Akaydin, 2007) and personal observations consistently
depict a rather uniform habitat: stony mountain slopes or
summit areas with poorly developed soils, often dry, sometimes
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directly on rocky outcrops both limestone and granite. These
environments where Acantholimon species occur are frequent
and even dominant in the IT region, and host also other species-
rich genera, such as Acanthophyllum, Astragalus, Cousinia,
Haplophyllum, Onobrychis Mill. (Podlech and Maassoumi, 2003;
Ranjbar and Karamian, 2003; López-Vinyallonga et al., 2009;
Djamali et al., 2012b; Manafzadeh et al., 2014; Pirani et al., 2014;
Amirahmadi et al., 2016).

If such a lack of niche differentiation is confirmed in
Acantholimon species, a non-adaptive model, i.e., involving
niche conservatism (Gittenberger, 1991; Kozak et al., 2006;
Rundell and Price, 2009), would be the best explanation for
its diversification patterns. Specifically, such a scenario could
approach a geographic radiationmodel sensu Simões et al. (2016)
and Givnish (2015), which states that geographic speciation in
“extensive cordilleras, archipelagoes, lake systems or submarine
outcrops dissected by multiple natural barriers to gene flow and
species dispersal” can also result in explosive diversification.

In sum, rapid diversification in Acantholimon was
probably facilitated by colonization of available mountainous
environments enabled by key innovations, and by climatic-
driven Pleistocene range shifts. Further work is needed to assess
the role that niche differentiation vs. allopatry have played in its
evolutionary radiation and the contribution of those elements to
the assembly of the entire IT flora.
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using the two-calibration point strategy (see main article).

Data Sheet S3 | Maximum clade credibility (MCC) tree showing mean estimates

and 95% high-posterior-density (HPD) credibility intervals obtained from the

BEAST analysis of the molecular dataset comprising 130 species from

Acantholimon s.l. and 26 outgroups taxa, using the two-calibration point strategy

(see Table S1). The tree is the same as the one shown in Figure 1.
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