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Here, we propose a heuristic technique of data trimming for SVM termed FLOating
Window Projective Separator (FloWPS), tailored for personalized predictions based on
molecular data. This procedure can operate with high throughput genetic datasets like
gene expression or mutation profiles. Its application prevents SVM from extrapolation
by excluding non-informative features. FloWPS requires training on the data for the
individuals with known clinical outcomes to create a clinically relevant classifier. The
genetic profiles linked with the outcomes are broken as usual into the training and
validation datasets. The unique property of FloWPS is that irrelevant features in validation
dataset that don’t have significant number of neighboring hits in the training dataset are
removed from further analyses. Next, similarly to the k nearest neighbors (kNN) method,
for each point of a validation dataset, FloWPS takes into account only the proximal
points of the training dataset. Thus, for every point of a validation dataset, the training
dataset is adjusted to form a floating window. FloWPS performance was tested on
ten gene expression datasets for 992 cancer patients either responding or not on the
different types of chemotherapy. We experimentally confirmed by leave-one-out cross-
validation that FloWPS enables to significantly increase quality of a classifier built based
on the classical SVM in most of the applications, particularly for polynomial kernels.

Keywords: bioinformatics, machine learning, oncology, gene expression, support vector machines, personalized
medicine

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; ASCT, allogeneic stem cell
transplantation; AUC, area under curve; FDR, false discovery rate; FloWPS, floating window projective separator; FP, false
positive; FN, false negative; GEO, gene expression omnibus; GSE, GEO series; HER2, human epidermal growth factor
receptor 2; kNN, k nearest neighbors; MCC, Matthews correlation coefficient; mRNA, messenger ribonucleic acid; NGS, next-
generation sequencing; PC, principal component; PCA, principal component analysis; ROC, receiver operating characteristic;
SVM, support vector machine; TN, true negative; TP, true positive; VTD, velcade, thalidomide and dexamethasone.
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INTRODUCTION

Support vector machine is one of the most popular machine
learning methods in biomedical sciences with constantly growing
impact and more than 11,000 citations in the PubMed-indexed
literature1, of those ∼2,300 are only for the 2017 and first
6 months of 2018. This method has been successfully applied
for a wide variety of biomedical applications like searching
Dicer RNase cleavage sites on pre-miRNA (Ahmed et al., 2013),
prediction of miRNA guide strands (Ahmed et al., 2009a),
identification of poly(A) signals in genomic DNA (Ahmed et al.,
2009b), finding conformational B-cell epitopes in antigens by
nucleotide sequence (Ansari and Raghava, 2010). More recent
developments include drug design according to physicochemical
properties (Yosipof et al., 2018), learning on transcriptomic
profiles for age recognition (Mamoshina et al., 2018), predictions
of drug toxicities and other side effects (Zhang et al., 2018).

The performance quality of the classifiers based on these
methods may reach the value of 0.80 or higher for the metrics
such as ROC AUC2 and/or accuracy rate, e.g., for problems of
age recognition (Mamoshina et al., 2018) and drug compound
selection (Yosipof et al., 2018). However, although generally
clearly helpful, the SVM approach frequently demonstrates
insufficient performance in several applications for separating
groups of the patients with different clinical outcomes (Mulligan
et al., 2007; Ray and Zhang, 2009; Babaoglu et al., 2010;
Kim et al., 2018). These failures were most likely caused by
insufficient number of preceding clinical cases, which provokes
overtraining of all machine learning algorithms. Particularly,
the rareness of training points in the feature space leads to
frequent extrapolations, and SVM method is known to be highly
vulnerable to such conditions (Arimoto et al., 2005; Balabin and
Lomakina, 2011; Balabin and Smirnov, 2012; Betrie et al., 2013).

In order to increase the performance of SVM for
distinguishing between clinically relevant features, such as
degrees of response to cancer therapies, we propose here a new
method termed FloWPS for data trimming that generalizes
the SVM technique by precluding extrapolation in the feature
space. FloWPS acts by selecting for further analysis only those
features that lay within the intervals of data projections from the
training dataset. This approach can avoid extrapolations in favor
of interpolations and thus increases a prediction quality of the
output data. FloWPS combines somehow two methods, SVM and
kNN (Altman, 1992), where kNN plays a particular role to extract
informative features. The idea to combine feature extraction
methods with SVM is well known (Tan and Gilbert, 2003;
Kourou et al., 2015; Tan, 2016; Liu et al., 2017; Tarek et al., 2017).
The approach proposed in this paper, however, is in principle a

1This is the result of a PubMed query https://www.ncbi.nlm.nih.gov/pubmed/
?term=support+vector+machine_
2The ROC (receiver–operator curve) is a widely-used graphical plot that illustrates
the diagnostic ability of a binary classifier system as its discrimination threshold
is varied. The ROC is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. The area under the ROC
curve, called ROC AUC, or simply AUC, is routinely employed for assessment of
any classifier’s quality.

novelty, at least because its selection capacity is focused on every
single point available for prediction.

We tested FloWPS on ten published gene expression datasets
for totally 992 cancer patients treated with different types of
chemotherapy with known clinical outcomes. In all the cases,
the classifiers built using FloWPS outperformed standard SVM
classifiers.

RESULTS

Data Sources and Feature Selection
In this study, we investigated gene expression features associated
with the responses to chemotherapy. The gene expression profiles
were extracted from the datasets summarized in Table 1. The
clinical outcome information was related to response on different
chemotherapy regimens, linked with high throughput gene
expression profiles for the individual patients.

Each patient was primarily labeled as either responder or
non-responder to a treatment. For all the datasets taken from
the GEO repository, we used the response criteria formulated
in the respective original papers first publishing these data.
Namely, for two breast cancer datasets, GSE25066 (Hatzis et al.,
2011; Itoh et al., 2014) and GSE41998 (Horak et al., 2013), we
considered partial responders as responders. For the first multiple
myeloma dataset, GSE9782 (Mulligan et al., 2007), we took the
(non)responder classification used by the authors, where patents
with complete and partial response were annotated as responders,
and with no change and progressive disease – as non-responders.
For three other multiple myeloma datasets, GSE39753 (Chauhan
et al., 2012), GSE68871 (Terragna et al., 2016), and GSE55145
(Amin et al., 2014), we considered complete, near-complete and
very good partial responders as responders, whereas partial, minor
and worse responders – as non-responders. For the datasets of
pediatric Wilms kidney tumor, ALL and AML, extracted from the
TARGET gene expression repository of National Cancer Institute
(Goldman et al., 2015), the cases was classified according the dis-
tribution of the event-free survival time, which appeared to have
two modes with different slopes (Supplementary Figure S1).

To preclude any possible bias that may affect the performance
of machine-learning classifiers due to unequal representation
of samples in two different classes (clinical responders and
non-responders), numbers of responding and non-responding
cases were equalized within each dataset. Equalization was done
by taking the full smaller subset of those for the two classes
(responders/non-responders), and then by random selection of
samples from the bigger subset. Thus, each resulting dataset
contained equal numbers of cases classified as responders and
non-responders.

To engineer a plausible feature space, where the SVM can be
applied efficiently, we proposed to select from tens of thousands
of individual gene expression features only few of them, which
produce a good separation of clinical responders from non-
responders. To do so, for every dataset under investigation we
selected its particular top 30 genes, whose expression levels taken
one by one had the highest ROC AUC values for distinguishing
responder and non-responder profiles. We made a number of
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TABLE 1 | Clinically annotated gene expression datasets.

Reference Dataset ID Disease type Treatment type Experimental
platform

Number of samples Number of core
marker genes

Hatzis et al., 2011;
Itoh et al., 2014

GSE25066 Breast cancer with different
hormonal and HER2 status

Neoadjuvant taxane +
anthracycline

Affymetrix Human
Genome U133 Array

235 (118 responders,
117 non-responders)

20

Horak et al., 2013 GSE41998 Breast cancer with different
hormonal and HER2 status

Neoadjuvant doxorubicin +
cyclophosphamide,
followed by paclitaxel

Affymetrix Human
Genome U133 Array

68 (34 responders,
34 non-responders)

11

Mulligan et al., 2007 GSE9782 Multiple myeloma Bortezomib Affymetrix Human
Genome U133 Array

169 (85 responders,
84 non-responders)

18

Chauhan et al., 2012 GSE39754 Multiple myeloma Vincristine + adriamycin +
dexamethasone followed
by ASCT

Affymetrix Human
Exon 1.0 ST Array

124 (62 responders,
62 non-responders)

16

Terragna et al., 2016 GSE68871 Multiple myeloma Bortezomib-thalidomide-
dexamethasone (VTD)

Affymetrix Human
Genome U133 Plus

98 (49 responders,
49 non-responders)

12

Amin et al., 2014 GSE55145 Multiple myeloma Bortezomib followed by
ASCT

Affymetrix Human
Exon 1.0 ST Array

56 (28 responders,
28 non-responders)

14

Goldman et al., 2015;
Walz et al., 2015

TARGET-50 Childhood kidney Wilms
tumor

Vincristine sulfate +
non-target drugs +
conventional surgery +
radiation therapy

Illumina HiSeq 2000 72 (36 responders,
36 non-responders)

14

Goldman et al., 2015;
Tricoli et al., 2016

TARGET-10 Childhood B acute
lymphoblastic leukemia

Vincristine sulfate +
non-target drugs

Illumina HiSeq 2000 60 (30 responders,
30 non-responders)

14

Goldman et al., 2015 TARGET-20 Childhood acute myeloid
leukemia

Non-target drugs
including busulfan and
cyclophosphamide

Illumina HiSeq 2000 46 (23 responders,
23 non-responders)

10

Goldman et al., 2015 TARGET-20 Childhood acute myeloid
leukemia

Non-target drugs
excluding busulfan and
cyclophosphamide

Illumina HiSeq 2000 124 (62 responders,
62 non-responders)

16

top informative features equal to 30 because the usual number
of samples in considered datasets was not lower than 50 (a direct
heuristic number for degree of freedom). These 30 top marker
genes, and response statuses (100 for a responder, 0 for a non-
responder) for all selected patients from all datasets are listed on
Supplementary Table S1.

To produce more robust feature selection, for each dataset
having, say, N samples, the leave-one-out procedure has been
performed. Each individual sample was removed from the
investigation one at a time, so N subdatasets each having N-1
individuals were generated. For each subdataset, the ROC AUC
test was performed between responders and non-responders for
each gene. The genes were next sorted according to their ROC
AUC, and top 30 were selected for each subdataset. The final list
of such core informative genes was generated as an intersection
between top 30 selected genes for all N subdatasets. For every
dataset under investigation, these final core sets are listed in
Supplementary Table S2; the number of core marker genes is also
shown on Table 1.

Data Trimming for Application in SVM
We developed a first of its class data trimming3 tool termed
FloWPS that has a potential to improve the performance of
machine learning methods. Since extrapolation is a widely
recognized Achilles heel of SVM (Arimoto et al., 2005; Balabin

3Data trimming is the process of removing or excluding extreme values, or outliers,
from a dataset (Turkiewicz, 2017).

and Lomakina, 2011; Balabin and Smirnov, 2012; Betrie et al.,
2013), FloWPS avoids it by using the rectangular projections
along all irrelevant expression features that cause extrapolation
during the SVM-based predictions for every validation point.

In this section we describe and investigate our data trimming
procedure (FloWPS) as a preprocessing for SVM application.

Since the number of samples in most of the datasets used here
was relatively low, we tested our classifier using the leave-one-
out cross-validation method, which introduces lesser errors than
the standard five-bin cross-validation scheme generally applied
for bigger datasets. According to the leave-one-out approach, for
each sample i = 1, N serves as a validation case whose response to
the treatment had to be predicted, whereas all remaining samples,
j = 1,. . .(i−1),(i+1),. . .,N, collectively acts as a training dataset,
and this procedure is repeated for all the samples. For machine
leaning without data trimming, in a predefined feature space
F = (f 1,. . ., fs ) every sample i, given for the test, is assigned by
a classifier, constructed to (N-1) samples used for training.

According to the current data trimming approach, instead
a fixed space F for all N testing samples, we propose using
an individual space Fi, which contains individually adapted
training data (of N-1 samples) for the testing sample i. It can be
implemented using the following heuristics (Figure 1).

(1) From the whole predefined feature space F = (f 1,. . ., f s ) we
extract a subset Fi (m), where m is a parameter. A feature fj is kept
in Fi(m) if on its axis there are at least m projections from training
samples, which are larger than fj (i), and, at the same time, at least
m, which are smaller than fj (i). The procedure for extraction of
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FIGURE 1 | Data trimming pipeline. (A) selection of relevant features in FloWPS according to the m-condition. A violet dot shows the position of a validation point.
Turquoise dots stand for the points from the training dataset. The features (here: f1 and f2) are considered relevant when they satisfy the criterion that at least m
flanking training points must be present on both sides relative to the validation point along the feature-specific axis. In the figure, it is exemplified that m-condition is
satisfied for f1 feature when m = 0 only, and for the f2, when m ≤ 5. (B) After selection of the relevant features, only k nearest neighbors in the training sets are
selected to construct the SVM model. On the figure, k = 4, although k starting from 20 was used in our calculations, to build SVM model.

a subset Fi(m) is illustrated in Figure 1A for a two-dimensional
space F = (f 1, f 2). A violet point stands for the validation sample
in the feature space. Turquoise dots represent scattering of the
training points. For example, the m-condition for the feature f 2
is satisfied when m = 0,1,2,3,4,5 (projection of the training set
on f 2 axis has five points both below and above the validation
point), whereas for the feature f 1 it is satisfied only for m = 0
(projection of the validation point on axis f 1 lies outside of the
cloud of training points).

(2) In Fi (m) we keep for training only k closest samples (from
given (N-1) samples); k is also a parameter (Figure 1B; note that
although for the sake of simplicity k = 4 in the picture, in the
computational trials we varied k from 20 to N-1).

Hence, for every individual i = 1, N, and m and k parameter
values, the predicted classification values are obtained [i.e.,
predictions Pi (m,k), i = 1, N]. Considering known response status
for each sample i, it is possible to calculate AUC values for a whole
set of samples as a function over whole range of the parameters m
and k (Figure 2B). Since the predicted classification efficiencies
depend upon the chosen values for m and k, it is possible to
interrogate the AUC values over the full lattice of all possible
(m, k) pairs.

We propose an algorithm of achieving the optimal (m,k)-
settings for a final classifier (Figure 2A). The AUC threshold (θ) is
set to θ = p ·max(AUC), where max(AUC) is the maximal value
of AUC, taken over the set of all possible (m, k) pairs, and the
parameter p equals to a user-defined confidence threshold. To
illustrate performance of this approach, we took two alternative
values of p = 0.95 or 0.90, and then considered all the (m,k)
pair positions on the AUC(m,k) topogram. We next screened
for the positions where AUC exceeded the threshold θ, and the
total combination of these positions was taken as the prediction-
accountable set S (Figure 2B; prediction-accountable positions
are shown in yellow). The final prediction of FloWPS (PF) for a
certain validation case should be calculated by averaging the SVM
predictions, P(m,k), over the whole set of positions belonging
to the prediction-accountable set S, according to the formula:
PF = meanS(P(m,k)).

The usual SVM method, i.e., without FloWPS data trimming,
corresponds to a very right and bottom corner of the AUC(m,k)
topogram (Figure 2B), with the parameter settings m = 0,
k = N− 1. On the example shown in Figure 2B, the classical
SVM, without any doubt, provides essentially lower accuracy
than FloWPS.
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FIGURE 2 | Optimization of data trimming parameters m and k for a given individual. (A) Overall scheme for prediction for an individual sample i = 1, N. All but one
individuals serve as a training dataset. For a training dataset at the fitting step, the AUC for a classifier prediction is calculated and plotted (B) as a function of data
trimming parameters m and k. Positions of this AUC topogram where AUC > p ·max(AUC), p = 0.95, are considered prediction-accountable (highlighted with bright
yellow color) and form the prediction-accountable set S. This AUC topogram, as well as the set S, is individual for every validation point i.

TABLE 2 | Performance of clinical response classifiers for clinically annotated gene expression datasets.

Dataset Top 30 marker genes Core marker genes

SVM FloWPS
p = 0.95

FloWPS
p = 0.90

SVM FloWPS
p = 0.95

FloWPS
p = 0.90

AUC FDR AUC FDR AUC FDR AUC FDR AUC FDR AUC FDR

GSE25066 (Hatzis et al., 2011;
Itoh et al., 2014)

0.70 0.28 0.76 0.10 0.77 0.13 0.73 0.26 0.76 0.25 0.76 0.23

GSE41998 (Horak et al., 2013) 0.79 0.25 0.87 0.14 0.91 0.14 0.87 0.14 0.89 0.15 0.92 0.12

GSE9782 (Mulligan et al., 2007) 0.73 0.28 0.78 0.22 0.76 0.17 0.68 0.33 0.71 0.33 0.72 0.34

GSE39754 (Chauhan et al., 2012) 0.65 0.36 0.68 0.27 0.71 0.34 0.65 0.36 0.68 0.36 0.72 0.35

GSE68871 (Terragna et al., 2016) 0.66 0.35 0.75 0.25 0.74 0.27 0.68 0.33 0.78 0.20 0.77 0.24

GSE55145 (Amin et al., 2014) 0.84 0.19 0.86 0.11 0.90 0.11 0.77 0.24 0.81 0.19 0.82 0.06

TARGET-50 (Goldman et al., 2015;
Walz et al., 2015)

0.64 0.35 0.75 0.13 0.78 0.16 0.72 0.26 0.81 0.08 0.82 0.09

TARGET-10 (Goldman et al., 2015;
Tricoli et al., 2016)

0.85 0.16 0.86 0.14 0.87 0.12 0.87 0.13 0.94 0.07 0.94 0.04

TARGET-20 (Goldman et al., 2015)
with busulfan and cyclophosphamide

0.74 0.26 0.79 0.16 0.79 0.17 0.76 0.23 0.77 0.22 0.83 0.00

TARGET-20 (Goldman et al., 2015)
w/o busulfan and cyclophosphamide

0.73 0.28 0.76 0.30 0.76 0.27 0.74 0.26 0.77 0.13 0.79 0.11

Area-under-curve (AUC) and false discovery rate (FDR) values calculated for each version of a classifier are shown. All calculations were made using leave-one-out
cross-validation approach.

FloWPS Performance for Default SVM
Settings
At first, we investigated performance of FloWPS on ten cancer
gene expression datasets (Table 1) with the default SVM settings
(linear kernel and cost/penalty parameter C = 1). During our
calculations, the FloWPS classifier was first fitted for the training

dataset without a sample (say, i) to be classified. For these all
(N-1) samples AUCi(m,k) was calculated as a function of data
trimming parameters m and k (see Figure 2A). This enabled
finding the prediction-accountable set Si in the AUCi(m,k)
topogram (on Figure 2B, the set was marked with bright yellow).
The m and k values from the set Si were then used for data
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FIGURE 3 | Distribution (violin plots together with each instance showed as a red/green dot) of FloWPS predictions (PF) for patients without (red plots and dots) and
with (green plots and dots) positive clinical response to chemotherapy treatment. For FloWPS, core marker genes and p = 0.90 settings were used. Black horizontal
line shows the discrimination threshold (τ) between responders and non-responders for each classifier. Panels represent different data sources, (A) GSE25066;
(B) GSE41998; (C) GSE9782; (D) GSE39754; (E) GSE68871; (F) GSE55134; (G) TARGET-50; (H) TARGET-10; (I) and (J): TARGET-20 with and without busulfan
and cyclophosphamide, respectively.
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trimming and classifying of a single sample i. In parallel, we
applied the standard SVM algorithm for leave-one-out cross-
validation without data trimming, i.e., m = 0, k = N-1 for
each training sub-dataset. The comparison is shown on Table 2,
Supplementary Table S3, and Figures 3, 4.

The discrimination threshold (τ), which is shown as a black
horizontal line on Figure 3 (so that any sample with FloWPS
prediction value above τ is classified as a responder, and below
it – as a non-responder), was set to minimize the sum of FP and
FN predictions.

For every dataset, confidence parameter p and scheme
of gene selection, FloWPS classifier demonstrated the ROC
AUC exceeding the corresponding value for the classical SVM
(Table 2). For three datasets out of ten, AUC for classical SVM
was between 0.64 and 0.68. For all these cases, application
of FloWPS with confidence level p = 0.90 enabled obtaining
essentially better AUC values ranging between 0.71 and 0.78.

The comparison of classifier’s quality by another metric,
the FDR4, has demonstrated similar results: FDR was lower
for FloWPS than for classical SVM for almost all the cases
(Table 2, columns without boldface font). Other metrics, such as
sensitivity (Sn), specificity (Sp), accuracy rate (ACC) and MCC5

also strongly tend to be higher for FloWPS than for classical SVM
without data trimming (Supplementary Table S3).

FloWPS Performance at Different
Settings and Comparison With
Alternative Data Reduction Approach
Although the classifier quality tended to be higher for data
trimming than for default SVM settings, the advantages were
different in different cancer datasets. The FloWPS performance,
therefore, was investigated for different SVM kernels (linear vs.
polynomial) and different values for cost/penalty parameters C
(ranged from 0.1 to 1000), Figure 5 and Supplementary Table S4.
These calculations were done for the core marker gene datasets
and FloWPS confidence parameter p = 0.90. The advantage of
FloWPS over SVM is more essential in the conditions vulnerable
to SVM overtraining, e.g., for linear kernel with high values of
the cost/penalty parameter (C = 100 or 1000) or for polynomial
kernel, where SVM may be easily overfitted. Fortunately, FloWPS
precludes such overfitting, thus raising AUC and decreasing FDR.
The same pattern was also seen for the Sn, Sp, ACC and MCC
values (Supplementary Table S4).

Note that FloWPS is not the only possible data
reduction/feature selection method, which may be used for
preprocessing to improve the classifier’s quality. To try a
simple alternative to FloWPS, which is, however, not specific
to individual samples, we did calculations based on PCA mode
rather than original features. The number of PCs taken for
building the SVM model, may act as a parameter, which is
optimized in a manner similar to optimization of m and k for
FloWPS. Namely, a maximum for AUC as a function of PC

4FDR shows the percentage of false positive (FP) predictions among all those
classified as positive, FDR = FP/(FP+ TP), where TP means true positive.
5MCC can be calculated from the confusion matrix,
MCC = TP·TN−FP·FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

FIGURE 4 | Receiver–operator curves (ROC) showing the dependence of
sensitivity (Sn) upon specificity (Sp) for FloWPS-based classifier of treatment
response for datasets with core marker genes. Red dots: confidence
parameter p = 0.95, blue dots: p = 0.90. Panels represent different clinically
annotated datasets, (A) GSE25066; (B) GSE41998; (C) GSE9782;
(D) GSE39754; (E) GSE68871; (F) GSE55134; (G) TARGET-50;
(H) TARGET-10; (I,J) TARGET-20 with and without busulfan and
cyclophosphamide, respectively.
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FIGURE 5 | AUC and FDR for (non)responders classifier as a function of cost/penalty parameter C for classical SVM (without data trimming) and FloWPS for both
linear and polynomial kernels. Calculations were done for core marker gene datasets and confidence parameter p = 0.90. Different panels represent different
datasets, (A) GSE25066; (B) GSE41998; (C) GSE9782; (D) GSE39754; (E) GSE68871; (F) GSE55134; (G) TARGET-50; (H) TARGET-10; (I,J) TARGET-20 with and
without busulfan and cyclophosphamide, respectively. (K) Legend showing FloWPS and SVM modifications.

number is found and then used as the optimal number of PCs for
an SVM-based prediction.

Thus, we compared the classifier qualities for three methods,
namely classical SVM without data reduction, PCA-assisted SVM
with pre-trained PC number, and FloWPS with the confidence
parameter p = 0.90 (Table 3; note that both classical SVM
and FloWPS calculations were done using gene expression

features rather than PCs). The calculations were done for core
marker gene datasets and cost/penalty SVM parameters C = 1
and 100. For linear kernel, several datasets had comparable
AUC for simple PCA-assisted data reduction and for FloWPS
(Table 3). However, for polynomial kernel FloWPS essentially
outperformed the PCA-assisted data reduction, most likely due
to bigger risk of overtraining for SVM with nonlinear kernels.
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TABLE 3 | AUC of (non)responder classifier for classical SVM without data reduction (SVM), PCA-assisted SVM (PCA) and FloWPS with confidence parameter p = 0.90.

Dataset Linear kernel Polynomial kernel

C = 1 C = 100 C = 1 C = 100

SVM PCA FloWPS SVM PCA FloWPS SVM PCA FloWPS SVM PCA FloWPS

GSE25066 (Hatzis et al., 2011;
Itoh et al., 2014)

0.73 0.77 0.76 0.63 0.77 0.75 0.65 0.67 0.74 0.63 0.66 0.75

GSE41998 (Horak et al., 2013) 0.87 0.84 0.92 0.82 0.88 0.86 0.60 0.62 0.69 0.75 0.74 0.81

GSE9782 (Mulligan et al., 2007) 0.68 0.72 0.72 0.60 0.72 0.72 0.62 0.68 0.73 0.64 0.68 0.76

GSE39754 (Chauhan et al., 2012) 0.69 0.68 0.72 0.56 0.68 0.71 0.66 0.61 0.67 0.65 0.61 0.68

GSE68871 (Terragna et al., 2016) 0.68 0.68 0.77 0.69 0.68 0.76 0.64 0.65 0.72 0.69 0.76 0.74

GSE55145 (Amin et al., 2014) 0.77 0.84 0.82 0.77 0.84 0.85 0.63 0.73 0.77 0.80 0.73 0.83

TARGET-50 (Goldman et al., 2015;
Walz et al., 2015)

0.72 0.75 0.82 0.68 0.76 0.81 0.68 0.64 0.73 0.65 0.72 0.74

TARGET-10 (Goldman et al., 2015;
Tricoli et al., 2016)

0.87 0.85 0.94 0.82 0.83 0.94 0.68 0.65 0.85 0.78 0.83 0.86

TARGET-20 (Goldman et al., 2015)
with busulfan and cyclophosphamide

0.76 0.78 0.83 0.70 0.80 0.82 0.63 0.63 0.77 0.83 0.72 0.82

TARGET-20 (Goldman et al., 2015)
w/o busulfan and cyclophosphamide

0.74 0.81 0.79 0.65 0.79 0.79 0.69 0.68 0.77 0.72 0.69 0.79

FIGURE 6 | (A) Global machine learning methods, such as SVM, may fail to separate classes in datasets without global order. (B) Machine-learning with data
trimming works locally and may separate classes more accurately.

DISCUSSION

It was seen previously that SVM sometimes fails when it is
intended for distinguishing fine biomedical properties such
as disease progression prognosis or assessment of clinical
efficiency of drugs for an individual patient, using high
throughput molecular data, e.g., complete DNA mutation or
gene expression profiles (Ray and Zhang, 2009; Babaoglu
et al., 2010). Particularly, for many biologically relevant
applications, SVM occurred either fully incapable to predict
drug sensitivity (Turki and Wei, 2016), or demonstrated poorer
performance than competing method for machine learning
(Davoudi et al., 2017; Cho et al., 2018; Jeong et al., 2018; Leite
et al., 2018; Sauer et al., 2018; Yosipof et al., 2018). Thus,
the tool for improvement of SVM performance is certainly
needed.

In this study, we investigated ten sets of gene expression
data for cancer patients treated with different anti-cancer

drugs with known clinical outcomes, where the original
dimension of samples (patients) is many hundreds times
larger than the numbers of patients. So, the first problem
in such applications was to extract an appropriate number
of features, in which space one could achieve a classifier-
predictor with a high level of quality. There are many
authors focused to resolve the preprocessing problem (Tan
and Gilbert, 2003; Kourou et al., 2015; Tan, 2016; Liu
et al., 2017; Tarek et al., 2017). Some feature selection
methods, like the DWFS wrapping tool (Soufan et al.,
2015), use sophisticatedly designed approaches such as genetic
algorithms to improve the classifier quality. In this paper
we proposed one more, FloWPS, which is very different
from all known. Its critical characteristic is that for every
single new sample, which class has to be predicted, the
method extracted its individual sub-space and, more, in that
subspace takes for training data an appropriate subset of
samples.

Frontiers in Genetics | www.frontiersin.org 9 January 2019 | Volume 9 | Article 717

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00717 January 14, 2019 Time: 16:17 # 10

Tkachev et al. A Data Trimming Tool for SVM

FloWPS data trimming method simultaneously combines
the advantages of both global (like SVM) and local (like
kNN) (Altman, 1992) methods of machine learning, and
successfully acts even when purely local and global approaches
fail. The failure of SVM, which we have observed at least
for 3 out of 10 datasets in the current study (Table 2),
means that there is no strict distant order in the placement
of responder and non-responder points in the space of
gene expression features. Yet, the lack of distant order does
not necessary mean the absence of local order (Figure 6).
The latter may be detected using local methods such as
kNN, which has been confirmed by our FloWPS (Table 2
and Figures 3, 5). The FloWPS advantages are better seen
for SVM with polynomial than for linear kernel due to
higher risk of overtraining on such models (Figure 5 and
Table 3).

We hypothesize that FloWPS and data trimming may be
also helpful for improving other learning methods based on
multi-omics data, including nowadays-flourishing deep learning
approaches (Bengio et al., 2013; LeCun et al., 2015; Schmidhuber,
2015).

MATERIALS AND METHODS

Preprocessing of Gene Expression Data
For the datasets investigated using the Affymetrix microarray
hybridization platforms, gene expression data were taken from
the series matrices deposited in the GEO public repository and
then quantile-normalized (Bolstad et al., 2003) using the R
package preprocessCore (Bolstad, 2018). All pediatric datasets
taken from the TARGET database (Goldman et al., 2015)
contained results of NGS mRNA profiling at Illumina HiSeq 2000
platforms; they were normalized using R package DESeq2 (Love
et al., 2014).

SVM Calculations
All the SVM calculations with linear and polynomial kernels
were performed using the Python package sklearn (Pedregosa
et al., 2012) that employs the C++ library ‘libsvm’ (Chang and
Lin, 2011). The penalty parameter C varied from 0.1 to 1000
for different calculations. Other SVM parameters had the default
settings for the sklearn package.

Plot Preparations
AUC(m,k) topograms, like Figure 2B, were plotted using
mathplotlib Python library (Hunter, 2007). Violin plots for
FloWPS predictions (see Figure 3) for responders and non-
responders were plotted using the ggplot2 R package (Wilkinson,
2011).

AVAILABILITY OF DATA AND MATERIALS

The datasets analyzed during the current study are available in
the GEO repository,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41998
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782
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ftp://caftpd.nci.nih.gov/pub/OCG-DCC/TARGET/ALL/mRNA-
seq/

The Python module that performs data trimming according
to the FloWPS method for different values of parameters m and
k, as well as the R code that makes FloWPS predictions using
the results obtained with the Python module, and a README
manual how to use these codes, were deposited on Gitlab and are
available by the link: https://gitlab.com/oncobox/flowps.
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