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In genomic prediction, single-step method has been demonstrated to outperform

multi-stepmethods. This study investigated the efficiency of genomic prediction for seven

body measurement traits in Yorkshire population and simulated data using single-step

method. For Yorkshire population, in total, 592 individuals were genotyped with Illumina

PorcineSNP80 marker panel. We compared the prediction accuracy obtained from a

traditional pedigree-based method (BLUP), a genomic BLUP (GBLUP) and a single-step

genomic BLUP (ssGBLUP) through 20 replicates of 5-fold cross-validation (CV). In

addition, we also compared the performance of two-trait ssGBLUP and single-trait

ssGBLUP for the traits with different gradients of genetic correlation. Our results indicated

the GBLUP method generally provided lower accuracies of prediction than BLUP

and ssGBLUP methods, and the average standard deviation of unbiasedness was as

large as 0.278. For single-step methods, the accuracies of ssGBLUP for seven body

measurement traits ranged from 0.543 to 0.785, and the unbiasedness of ssGBLUP

ranged from 0.834 to 1.026, respectively. ssGBLUP generally generated 1% on average

higher prediction accuracy than traditional BLUP, the improvement of ssGBLUP and the

performance of GBLUP was lower than expected mainly due to the small number of

genotyped animals, it was further demonstrated by our simulation study. We simulated

two traits with heritabilities 0.1, 0.3, and with high genetic correlation 0.7, our results also

showed that the prediction accuracies were low for GBLUP compared with other three

methods with different genotyped reference population sizes and the accuracies were

improved with increasing the genotyped reference population size. However, the increase

was small for ssGBLUP compared with BLUP when the genotyped reference population

size was <500. Our results also demonstrated that the accuracies of genomic prediction

can be further improved by implementing two-trait ssGBLUP model, the maximum

gain on accuracy was 2 and 2.6% for trait of chest width compared to single-trait

ssGBLUP and traditional BLUP, while the gain was decreased with the weakness of

genetic correlation. Two-trait ssGBLUP even performed worse than single trait analysis

in the scenario of low genetic correlation.
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INTRODUCTION

The purpose of animal breeding is to genetically improve the
performance of a population, which is usually achieved by
selecting the best animals among the current generation to
be served as parents of the next generation. In pig breeding,
the main objective traits are growth and reproduction traits,
such as days to 100 kg, backfat thickness and total number of
piglets born. Body measurement traits are usually not concerned
because of the difficulty of phenotypic data collection and its
economic importance. However, the genetic evaluation of body
measurement traits is becoming more important recently. The
estimation of live weight by body measurements have been
applied to different animal species (Enevoldsen and Kristensen,
1997; Thiruvenkadan, 2005). And the accuracy of weight
prediction using body length and heart girth for pigs from
different age categories had been reported by Mutua et al.
(2011).

Since the historic work of Meuwissen et al. (2001), combining
genome data with corresponding statistical models has been
successfully applied to genome selection. The key issue of
genomic selection is to predict individual genomic breeding
values (GEBV) using genome-wide marker information. Many
statistical methods have been developed to predict GEBV, which
are basically different in the assumption of distribution of SNP
effects. The linear BLUP models (at either the SNP level or
the individual animal level) assume that effects of all SNP are
normally distributed with same variance (Meuwissen et al., 2001;
VanRaden, 2008). On the other hand, the Bayesian Alphabet
methods (e.g., BayesA, BayesB, and BayesCpi) (Meuwissen et al.,
2001; Habier et al., 2011) allow each SNP effect to have its own
variance. Many studies have reported that Bayesian methods
performed similar to genomic BLUP (GBLUP) model in real
data (Hayes et al., 2009a) and GBLUP is also simpler and lower
computation-demanding than the Bayesian Alphabet methods.

Generally, genomic prediction utilizes information of
genotyped animals. In practice, however, only a subset of
individuals can be genotyped. Furthermore, in order to make
use of phenotype information of non-genotyped individuals,
a single-step GBLUP (ssGBLUP) has been developed by
constructing H matrix using marker genotypes and pedigree
jointly instead of G matrix or pedigree-based relationship matrix
alone (Legarra et al., 2009; Christensen and Lund, 2010). Field
data of cattle, pigs and chickens indicated that single-step
method leads to higher accuracy and much simpler than multi-
step genomic selection methods (Aguilar et al., 2011; Chen et al.,
2011; Forni et al., 2011; Christensen et al., 2012; Simeone et al.,
2012; Li et al., 2014; Song et al., 2017).

Genomic selection usually handles a single trait only.
However, many traits are genetically correlated. As in traditional
genetic evaluation, a multi-trait model is expected to increase
the accuracy of the GEBV by making use of information from
genetically correlated traits which will be more profound for
traits with low heritability or with a small number of phenotypic
records (Jia and Jannink, 2012; Guo et al., 2014). Many studies
report multi-trait model for genetically correlated traits could
lead to more accurate predictions than single trait genomic

prediction (Calus and Veerkamp, 2011; Jia and Jannink, 2012;
Guo et al., 2014; Wang et al., 2017).

The objective of this study was to: (1) estimate genetic
parameters of seven body measurement traits; (2) assess the
accuracy of genomic selection using single-step strategy in the
scenario of small genotyped animals; (3) improve the accuracy
of genomic prediction using two-trait ssGBLUP with different
gradients of genetic correlation; (4) investigate the impact of
different genotyped reference population sizes on the accuracy
of genomic prediction using simulated data.

MATERIALS AND METHODS

Ethics Statement
The whole procedure for collecting pig blood samples was
carried out in strict accordance with the protocol approved by
the Animal Care and Use Committee of China Agricultural
University (Permit Number: DK996).

Simulated Data
The multiple-trait genomic simulation software GPOPSIM
(Zhang et al., 2015) was used to simulate the genomic data
and phenotypic data. Trait A (h2 = 0.1) and trait B (h2 =

0.3) with high genetic correlation of 0.7 were simulated, the
population included 30,000 individuals with 10 generations. We
simulated 18 chromosomes with a total length of 18 Morgan,
each chromosome included 2,834 markers which were evenly
distributed, a total of 51,012 markers and 306 QTLs, and the
mutation rates of markers and QTLs were 1.25 × 10−3 and 2.5
× 10−3, respectively. Mimicking the pig breeding, phenotypic
values were generated by adding simulated phenotypes and
fixed effect values, and the fixed effects include sex-generation
which were generated through uniform distribution from 0 to
1. We randomly selected 1,000 individuals from generation 10
as validation population, genotyped reference populations of
different sizes of 50, 100, 300, 500, 1,000, 2,000, and 3,000 were
randomly sampled from generation 8, 30,519 animals were traced
back to construct pedigree relationship matrix.

Body Measurement Traits Data of Yorkshire
Population and Phenotypes
The data from an elite Chinese pig breeding farm which are
descendant of American Yorkshire populations. The information
was shown in Table 1, phenotypic records of body measurement
traits included body length (BL), body height (BH), chest width
(CW), rump width (RW), chest girth (CG), tube girth (TG),
and abdominal girth (AG). The conventional estimated breeding
value (EBV) were calculated based on a 7-trait animal model for
the body measurement traits. The fixed effects include herd-year-
season-sex. The random effects include additive genetic effect of
each individual and random residual. Furthermore, body weight
was taken into account as covariate, 7,020 animals were traced
back to construct pedigree relationship matrix.

Genotype Data
Genomic DNAwas extracted from blood sample using TIANamp
Blood DNA Kit DP348 (Tiangen, Beijing, China). Genotyping
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TABLE 1 | Descriptive statistics of seven body measurement traits and two

simulated traits.

Traita N-obsb Birth year Average SD

BL 5,573 2013–2016 108.88 6.18

BH 5,573 2013–2016 62.87 2.92

CW 5,572 2013–2016 29.75 2.30

RW 5,573 2013–2016 31.64 2.13

CG 5,573 2013–2016 104.58 5.75

TG 5,573 2013–2016 17.98 1.03

AG 4,898 2013–2016 113.52 6.30

Trait A 30,000 – 2.25 3.13

Trait B 30,000 – 1.65 2.51

aBL, body length; BH, body height; CW, chest width; RW, rump width; CG, chest girth;

TG, tube girth; AG, abdominal girth; Trait A and Trait B were simulated traits with genetic

correlation of 0.7.
bN-obs, number of observations.

was performed using a PorcineSNP80 BeadChip (Illumina, San
Diego, CA, USA) which includes 68,528 SNPs across the entire
pig genome. In total, 592 pigs with body measurement traits
records were genotyped.

Missing genotypes of SNPs with known chromosomal
positions were imputed by Beagle (Browning and Browning,
2009), and those with unknown position or on the X
chromosomal were discarded from the study. SNPs loci with
minor allele frequency < 0.05, call frequency score < 0.90
and Hardy-Weinberg equilibrium with a P-value < 10−7 were
excluded, in addition, the individuals with reliability of EBV
<0.35 for 7 bodymeasurement traits were removed. After quality
control, all genotyped individuals remained and 55,759 SNPs
were finally used.

Statistical Models
Four methods, a traditional BLUP method with pedigree–
based relationship matrix, a GBLUP method based on genomic
relationship matrix, a single-trait single step GBLUP (ssGBLUP)
and two-trait ssGBLUP methods with combined relationship
matrix constructed from marker and pedigree information, were
used to predict breeding values.

BLUP
The traditional animal model with a pedigree-based relationship
matrix was applied to predict breeding values for each trait
separately. The model was defined as:

y=Xb+γW+Zg+e,

for real data of pig, where y is the vector of phenotypic values, b is
the vector of fixed effects including herd-year-season-sex,X is the
incidence matrix associating b with y,W is the covariate of body
weight, γ is the regression coefficient, g is the vector of additive
genetic effects, following a normal distribution of N(0, Aσg

2),
in which A is the matrix of additive genetic relationships, σg

2 is
the variance of additive genetic effect. Z is the incidence matrix
associating g with y; e is the vector of random residuals with
distribution of N(0, Iσ e

2), in which I is the identity and σe
2

is the residual variance. For simulated data, the model is the
same as real data except b is the vector of fixed effects including
sex-generation and no covariate.

GBLUP
GBLUP (VanRaden, 2008) model was used to predict GEBV of all
genotyped individuals.

yc=1u+Za+e,

where yc is the vector of corrected phenotypic values which were
computed as the EBV plus estimated residual for each individual
for simulated and real data, u is the overall mean, 1 is a vector
of 1, a is the vector of genomic breeding values, following a
normal distribution of N(0, Gσa

2), in which σa
2 is the variance

of addictive genetic effect and G is the marker-based genomic
relationship matrix (VanRaden, 2008). e is the vector of random
errors, following a normal distribution of N(0, Iσe

2), in which σe
2

is the residual variance.

Single-Trait ssGBLUP
The ssGBLUP model using information of both genotyped and
non-genotyped phenotype information, and using both marker
and pedigree information for genetic evaluations. The single-trait
ssGBLUP has the samemodel as BLUP, except vector g is assumed
to follow a normal distribution N(0, Hσg

2). Following Legarra
et al. (2009), Christensen and Lund (2010), and Aguilar et al.
(2011), theH was defined as:

H=

[

A11+A12A22
−1(Gw−A22)A22

−1A′
12 A12A22

−1Gw

GwA22
−1A′

12 Gw

]

,

in which A11, A12, and A22 were the sub-matrices of A (the
pedigree-based relationship matrix), and subscripts 1 and 2
refer to non-genotyped and genotyped animals, respectively.
Compared with the H matrix, the inverse of H was simple which
used to solve the mixed model equations, the inverse of H was:

H−1
=

[

G−1
w −A−1

22 0

0 0

]

+A−1.

To avoid singularity problems, Gw = 0.95Ga+0.05A22 (Aguilar
et al., 2010; Lourenco et al., 2014), Ga is an adjusted G, in
order to avoid the differences in scale and location between the
coefficients of G and pedigree relationship matrix (A22), the G

matrix was adjusted according to Christensen et al. (2012),

Ga = Gβ + α,

where α and β are adjustment factors derived from the following
equations:

Avg.diag (G) β + α = Avg.diag (A22) and

Avg.offdiag (G) β + α = Avg.offdiag(A22),

in which Avg.diag is the average of the diagonal elements, and
Avg.offdiag is the average of the off-diagonal elements.
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Two-Trait ssGBLUP
The two-trait model was defined as:

[

y1
y2

]

=

[

X1 0

0 X2

] [

b1
b2

]

+

[

γ1
γ2

] [

W1

W2

]

+

[

Z1 0

0 Z2

] [

g1
g2

]

+

[

e1
e2

]

,

where

[

y1
y2

]

is the vector of observation values of trait I and II,

b1 and b2 are the vector of fixed effects of herd-year-season-sex
for real data and sex-generation for simulated data of trait I and
II, X1 and X2 are the incidence matrix associating b1 and b2

with y1 and y2,

[

W1

W2

]

is the vector of covariate of body weight

of trait I and II for real data and no covariate for simulated
data, γ1 and γ2 are the regression coefficient associating W1 and

W2,

[

g1
g2

]

is the vector of additive genetic effects of the two

traits, following a normal distribution of N (0, H⊗M) , where

M =

[

σ 2
g1 σ 2

g12

σ 2
g12 σ 2

g2

]

is the variance and covariance matrix of the

genomic breeding values of the two traits, Z1 and Z2 are the

incidence matrix associating g1 and g2 with y1 and y2,

[

e1
e2

]

is the

vector of random errors with distribution of N(0, I⊗R), where I

is the identitymatrix and R=

[

σ 2
e1 σ 2

e12

σ 2
e12 σ 2

e2

]

is the residual variance

and covariance matrix of the two traits.

Evaluation of the Accuracy of Genomic
Prediction
In this study, the accuracy and unbiasedness of prediction were
obtained through 5-fold cross-validation (CV) for real data.
The genotyped individuals were randomly partitioned into five
nearly equal sized subpopulations. Of the five subpopulations, a
single subpopulation was retained as the validation population
and the remaining four subpopulations were used as reference
population. The cross-validation process was then repeated five
times, with each of the five subpopulations used exactly once
as the validation population. For all scenarios, the 5-fold CV
was replicated 20 times, resulting in 20 averaged accuracies
of genomic prediction. The two-trait ssGBLUP with CV was
also implemented to predict GEBV for the traits with different
gradients of genetic correlation. For BLUP, GBLUP and ssGBLUP,
the validation set was same in each replicate of 5-fold CV.

For real data, the accuracy of genomic prediction was
evaluated as r(EBV, PBV) for BLUP and ssGBLUP methods
and r(yc, PBV) for GBLUP method, the correlation between
predicted breeding values (PBV) and EBV or yc in the validation
population. In addition, b(EBV or yc, PBV), the regression of EBV
or yc on PBVwas also calculated to assess the possible inflation or
unbiasedness of predictions. It should be noted here that EBV and
yc were calculated based on a 7-trait animal model as described
before, while PBV was calculated for validation population by
traditional single-trait BLUP, GBLUP, or ssGBLUP assuming the
phenotypic values of validation population were missing. For
simulated data, the true breeding values (TBV) of all individuals

were available, r(TBV, PBV) and b(TBV, PBV) in the validation
population were used to assess the accuracy and unbiasedness.

RESULTS

Descriptive Statistics and Estimates of
Genetic Parameters
Number of records, birth year of animals, the descriptive
statistics, estimated heritabilities and genetic correlations of the 7
body measurement traits and two simulated traits were presented
in Tables 1, 2. The average of body measurement traits ranged
from 17.98 to 113.52, and the standard deviation (SD) was
between 1.03 and 6.30, and the average (SD) of Trait A and Trait
B were 2.25 (3.13) and 1.65 (2.51), respectively. The heritabilities
of the 7 bodymeasurement traits ranged from 0.27 to 0.50. Across
the 7 analyzed traits, the estimated heritability of BL was the
highest of 0.5 and CG was the lowest of 0.27. The standard errors
(SE) of estimated heritability for all traits were 0.04. The genetic
and phenotypic correlations between traits were also show in
Table 2. CW and RW have the highest genetic correlation of 0.84
with SE of 0.03, CG and AG have the second highest genetic
correlation of 0.75 with SE of 0.06, some traits had negative or
positive medium or low genetic correlation (−0.28–0.25), e.g.,
BL and RW with −0.28, CW and CG with 0.25. There were also
very low genetic correlations among 7 body measurement traits,
e.g., BL and BH with−0.01, CW and TG with 0.01. The standard
error for genetic and phenotypic correlation ranged from 0.06 to
0.11 and 0.01 to 0.02, respectively. In addition, genetic correlation
estimates were generally higher than the phenotypic correlations
and the values of genetic correlation and phenotypic correlation
had consistency, the traits with high genetic correlation had also
high phenotypic correlation.

Accuracy and Unbiasedness Using
Single-Step Strategy and GBLUP Methods
on Yorkshire Data
Table 3 presented the accuracy and unbiasedness of genomic
prediction from 20 replicates of 5-fold cross validation on the
7 body measurement traits by applying single-step strategy.
In a fold of each 5-fold CV, about 100 genotyped individuals
were randomly selected as validation populations, the other

TABLE 2 | Heritabilities (diagonal, bold), genetic correlations (above diagonal), and

phenotypic correlations (below diagonal) for seven body measurement traits.

Traita BL BH CW RW CG TG AG

BL 0.50 −0.01 0.02 −0.28 0.04 0.20 −0.11

BH 0.10 0.30 −0.22 −0.21 0.18 −0.11 0.06

CW 0.05 −0.08 0.40 0.84 0.25 0.01 0.15

RW −0.04 −0.08 0.74 0.44 0.13 −0.03 0.20

CG 0.06 0.09 0.18 0.12 0.27 0.19 0.75

TG 0.12 0.05 0.06 0.04 0.16 0.37 0.20

AG 0.01 0.02 0.16 0.13 0.63 0.14 0.30

aBL, body length; BH, body height; CW, chest width; RW, rump width; CG, chest girth;

TG, tube girth; AG, abdominal girth.
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individuals (about 400) were genotyped reference population for
genome prediction, and all non-genotyped animals were added
to the analysis for BLUP and ssGBLUP methods. In all scenarios,
because of the small size of reference population, GBLUPmethod
generally yielded lower prediction accuracies than BLUP and
ssGBLUP methods, the accuracies ranged from 0.32 for BL and
CG to 0.504 for RW, the average unbiasedness of prediction
was 1.033, however the average SD of unbiasedness was large as
0.278. For ssGBLUP, the average accuracy and unbiasedness of
prediction were 0.693 and 0.941, respectively, and the highest
accuracy was 0.785 for CG, however the lowest accuracy was
0.543 for BL. The regression coefficients of prediction were also
shown in Table 3 which ranged from 0.834 for BL to 1.026 for
CG. In 20 replications of 5-fold CV, the SD of prediction accuracy
for 7 body measurement traits were all under 0.08, indicating the
accuracy in different folds was similar, while the SD of regression
coefficients were 0.148 averagely, implying the unbiasedness in
different folds changed dramatically.

The accuracy and unbiasedness of traditional BLUP with the
same reference and validation population as ssGBLUP was also
demonstrated in Table 3. Generally, ssGBLUP provided higher
accuracies of predictions than traditional BLUP in all 7 body
measurement traits, while the improvement was only 1% on
average. The highest increase was 0.013 for AG and the least
increase was 0.006 for RW. On the other hand, traditional BLUP
generated comparable bias of prediction with ssGBLUP in most
traits, the largest difference was for trait of CW, the regression
coefficient from BLUP and ssGBLUP was 0.946 and 0.895,
respectively. Although the prediction accuracies of ssGBLUP
were higher than traditional BLUP, the scope of increase was
small, which could be due to small number of genotyped animals.

The Comparison of Two-Trait Model With
Single-Trait Model on Yorkshire Data
In order to evaluate the efficiency of multi-trait model on the
improvement of genomic prediction, two-trait ssGBLUP model
was compared with single-trait ssGBLUP model. Meanwhile,
genetic correlations of three different gradients (high, medium
and low) were taken in account in two-trait ssGBLUP to evaluate
the impact of genetic correlations on the genomic prediction
e.g., high, medium and low genetic correlations of CW with
RW (0.84), CG (0.25) and TG (0.01), and three gradients
genetic correlations of 0.75 (CG), 0.20 (RW) and 0.06 (BH)
with AG. Compared to single-trait model, as shown in Table 4,
the accuracies of genomic prediction for CW from two-trait
ssGBLUP were increased from 0.684 (Table 3) to 0.703 and
0.697 in the scenarios of high and medium correlations but
slightly decreased to 0.676 in low genetic correlation. The gain
on accuracy was 2% in situation with high genetic correlation,
1.3% in medium genetic correlation. In addition, the standard
deviation of the accuracy in 20 replicates of 5-fold cross
validation was all decreased to 0.045, 0.051, and 0.056 from 0.079.
On the other hand, the bias of genomic prediction using two-
trait model was decreased as well, the regression coefficients
were 0.970, 0.953, and 0.959 in high, medium and low genetic
correlations, while it was 0.895 in single-trait model. Moreover,

the standard deviation of the regression coefficients was also
decreased to 0.081, 0.105, and 0.079 from 0.165.

Similarly, the superiority of two-trait model was also
demonstrated on AG. However, only tiny improvement on
accuracy was obtained, the accuracies of genomic prediction
in three gradient genetic correlations were nearly same and
only slightly higher than the those in single-trait model.
Likewise, there was no improvement on unbiasedness of genomic
prediction from two-trait model as the regression coefficients
with 1.002 from single-trait model was already very close to 1.0.

Table 4 and Figure 1 further indicated the outperformance
of two-trait ssGBLUP model. As similar as its performance on
trait of CW and AG, in the scenarios of high (0.84) and medium
(0.25) genetic correlations for RW and CGwith CW, the gains on
accuracy were 1.5 and 0.1%, respectively. Likewise, in low genetic
correlation (0.01) for TG, the prediction accuracy was slightly
decreased from 0.743 to 0.736. In addition, the standard deviation
of the accuracy in 20 replicates of 5-fold cross validation was
decreased to 0.036 and 0.019 from 0.058 and 0.021 for RW
and CG, but no difference for TG. The prediction bias of two-
trait model was decreased as well, the regression coefficients
were 1.009, 1.022, and 0.989 in high, medium and low genetic
correlations, lower than the corresponding 0.971, 1.026, and
0.986 in single-trait model. In addition, the standard deviation
of the regression coefficients was also decreased to 0.103, 0.166,
and 0.085 from 0.136, 0.169, and 0.086.

The same trend was shown in Figure 1 for high, medium
and low genetic correlations of AG with CG (0.75), RW (0.20)
and BH (0.06), the improvement in the accuracy of two-trait
ssGBLUP over single-trait ssGBLUP was consistently increased
with the increase of the genetic correlation from medium to
high. Moreover, the accuracy was also decreased in low genetic
correlation for BH. Similarly, for RW, it had high correlation
(0.84) with CW and medium correlation (0.20) with AG, the
gain on its accuracy was 1.5 and 0.3% in these two situations,
respectively. The bias of genomic prediction using two-trait
model was decreased as well, the regression coefficients were
1.009 and 0.982 in high andmedium genetic correlations, while it
was 0.971 in single-trait model. The same trend was also for CG
which was high correlated with AG (0.75) andmedium correlated
with CW (0.25) as shown in Table 4 and Figure 1.

Accuracy and Unbiasedness With Different
Genotyped Reference Population Sizes on
Simulated Data
As shown in Figure 2, the same validation population was
predicted through different genotyped reference population sizes
using BLUP, GBLUP, ssGBLUP, and two-trait ssGBLUP methods.
The accuracies of prediction were low for GBLUP compared
with other three methods in all scenarios , while the accuracy
of genomic prediction from GBLUP was rapidly increased with
increasing the reference population size, especially when the
reference population size was enlarged over 500. The accuracy
of traditional BLUP with the same reference and validation
population as ssGBLUP was also shown in Figure 2. Generally,
ssGBLUP provided higher accuracies of predictions than
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TABLE 3 | The numbers of genotyped animals and the accuracy and unbiasedness of prediction for different traits in 20 replicates of 5-fold cross-validation.

Traita Genotyped animals BLUP GBLUP ssGBLUP

Accuracy Unbiasedness Accuracy Unbiasedness Accuracy Unbiasedness

BL 589 0.531 ± 0.058 0.845 ± 0.154 0.320 ± 0.080 0.983 ± 0.341 0.543 ± 0.057 0.834 ± 0.154

BH 589 0.680 ± 0.053 0.873 ± 0.153 0.336 ± 0.075 1.073 ± 0.345 0.689 ± 0.051 0.875 ± 0.156

CW 589 0.677 ± 0.050 0.946 ± 0.159 0.369 ± 0.074 1.010 ± 0.267 0.684 ± 0.079 0.895 ± 0.165

RW 589 0.649 ± 0.055 0.983 ± 0.146 0.504 ± 0.066 0.991 ± 0.157 0.655 ± 0.058 0.971 ± 0.136

CG 589 0.775 ± 0.019 1.048 ± 0.166 0.320 ± 0.069 0.999 ± 0.237 0.785 ± 0.021 1.026 ± 0.169

TG 589 0.732 ± 0.038 1.000 ± 0.094 0.412 ± 0.079 1.050 ± 0.324 0.743 ± 0.036 0.986 ± 0.086

AG 518 0.743 ± 0.050 1.009 ± 0.166 0.336 ± 0.037 1.125 ± 0.272 0.756 ± 0.048 1.002 ± 0.172

aBL, body length; BH, body height; CW, chest width; RW, rump width; CG, chest girth; TG, tube girth; AG, abdominal girth.

TABLE 4 | The accuracy and unbiasedness of genomic prediction of two-trait ssGBLUP in scenarios of different gradients of genetic correlation in 20 replicates of 5-fold

cross-validation.

Genetic correlationb Trait1a Trait2a

Accuracy Unbiasedness Accuracy Unbiasedness

CW-RW (0.84) 0.703 ± 0.045 0.970 ± 0.081 0.670 ± 0.036 1.009 ± 0.103

CW-CG (0.25) 0.697 ± 0.051 0.953 ± 0.105 0.786 ± 0.019 1.022 ± 0.166

CW-TG (0.01) 0.676 ± 0.056 0.959 ± 0.079 0.736 ± 0.037 0.989 ± 0.085

AG-CG (0.75) 0.760 ± 0.046 1.006 ± 0.088 0.791 ± 0.035 1.026 ± 0.088

AG-RW (0.20) 0.758 ± 0.047 1.002 ± 0.145 0.658 ± 0.062 0.982 ± 0.142

AG-BH (0.06) 0.756 ± 0.044 1.001 ± 0.168 0.688 ± 0.050 0.901 ± 0.158

aTrait1 were the traits on the left side of the horizontal line, Trait2 were the traits on the right side of the horizontal line; CW, chest width; RW, rump width; CG, chest girth; TG, tube girth;

AG, abdominal girth; BH, body height.
bGenetic correlation between traits (in parentheses).

FIGURE 1 | Comparison the accuracy and bias of single-trait ssGBLUP and two-trait ssGBLUP for traits with different genetic correlation (in parentheses). The figure

indicates the tiny improvement on accuracy of genomic prediction using two-trait ssGBLUP with different gradients of genetic correlation. CW, chest width; RW, rump

width; CG, chest girth; TG, tube girth; AG, abdominal girth; BH, body height.
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traditional BLUP in different genotyped reference population
sizes for Trait A and Trait B, however, the increase was tiny
especially in Trait A with low heritability of 0.1 when the
genotyped reference population size was below 500, this was
consistent with the results of real pig data in this study. In all
scenarios, two-trait ssGBLUP produced the highest accuracy for
Trait A and Trait B with high genetic correlation of 0.7, but the
scope of improvement was low for Trait B with heritability of 0.3.

Figure 3 presented the unbiasedness of genomic prediction
with different genotyped reference population sizes in Trait A
and Trait B. Obviously, the regression coefficients of GBLUP
were rapidly increased close to 1.0 with increasing the genotyped
reference population size, and the magnitude of the increase
was even larger for Trait A which with low heritability of
0.1 than Trait B, the regression coefficient was close to 1
when the genotyped reference population reached 3,000 for

Trait A. Furthermore, the biases of genomic prediction for
BLUP were a bit larger compared with ssGBLUP and two-trati
ssGBLUP methods. However, there was no obvious difference
in unbiasedness for Trait B when using BLUP, ssGBLUP and
two-trait ssGBLUP methods which were all very close to 1.

DISCUSSION

In this study, the estimated heritabilities of 7 body measurement
traits were medium to high ranging from 0.27 to 0.50. The
estimates of heritability of body length (BL) and body height
(BH) were consistent with the study by Do et al. (2014) where
the estimated heritabilities of BL and BH ranged from 0.331 to
0.559 at the ages of 70, 145, and 180 days, but the estimates of
heritability of BL in our study was higher than those reported

FIGURE 2 | Accuracies with different genotyped reference population sizes on simulated data. The figure indicates the accuracy was improved with increasing the

genotyped reference population size. However, the increase was small when the genotyped reference population size was <500 for single-step methods. The

heritabilities of Trait A (A) and Trait B (B) were 0.1 and 0.3.

FIGURE 3 | Unbiasedness with different genotyped reference population sizes on simulated data. The figure indicates the regression coefficient was improved with

increasing the genotyped reference population size in GBLUP and there was no obvious difference in unbiasedness for Trait B when using BLUP, ssGBLUP, and

two-trait ssGBLUP methods. The heritabilities of Trait A (A) and Trait B (B) were 0.1 and 0.3.
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by Nikkila et al. (2013), where the estimates of heritability of BL
was 0.29 in commercial gilts. Zhou et al. (2016) reported that
heritabilities were 0.34 and 0.25 for BL, 0.05 and 0.25 for BH,
0.30 and 0.27 for CG at ages of 210 and 240 days in Chinese
indigenous Laiwu pig. The difference in heritability estimates
may be due to population structure, environmental factors, etc.

The genetic correlations of 7 body measurement traits ranged
from −0.28 to 0.84, these traits were highly, medium or low
correlated. Usually, the medium or highly correlated traits was
more reasonable for multiple-trait BLUP model, while in the
estimation of breeding values in this study, two or three highly
correlated trait model performed as similar as the 7-trait model
(data not shown). The genetic correlation between CW and
RW was lower than the value of 0.56 reported by Kutwana
et al. (2015). However, research on other livestock, the genetic
correlations between BL and CG were higher in sheep which
were 0.52 and 0.57 (Janssens and Vandepitte, 2004; Jafari et al.,
2014). In cattle, Kolkman et al. (2010) reported that the genetic
correlations between BL and RW was close to 0 which was−0.28
in our study. These results imply that genetic correlations among
different livestock are quite different. In addition, that both
genetic and phenotypic correlation coefficients were of the same
sign and magnitude, Roff (1996) reported that the genetically
and environmentally (residual) correlations are likely to share the
same pattern.

In the single-step strategy, the construction of H matrix
involves several parameters and some of them were shown to
influence the accuracy and bias of prediction (Christensen et al.,
2012; Koivula et al., 2015; Song et al., 2017). In this study, to avoid
singularity problems, w was set to 0.95 in each analysis as other
studies (Aguilar et al., 2010; Lourenco et al., 2014). However, in
Danish Landrace and Yorkshire populations, Guo et al. (2015)
reported the weight value of 0.5 was fit for three traits, and 0.25
was found to be an ideal value for the Danish Duroc population
(Christensen et al., 2012). Generally, the markers may not explain
all genetic variance, the weighting factor w is the proportion of
genetic variance not captured by markers which is population
and trait specific, an optimal weighting factor on A matrix may
best use both markers and pedigree information. In addition, in
ssGBLUP, the scales of A and Gmatrix may differ, the adjustment
factors (β and α) was used to adjust G matrix to be consistent
with scale as A matrix, the commonly used adjustment method
was reported by Christensen et al. (2012) as shown in section
Single-Trait ssGBLUP of Statistical models. It was reported that
the adjusted G resulted in better performance of ssGBLUP than
the original G in which the estimates of β and α were 0.859 and
0.298, respectively (Christensen et al., 2012). Therefore, in this
study, we used adjusted G to make the scale of the G matrix to be
comparable with that of the A matrix.

We investigated the genomic evaluation of bodymeasurement
traits of Yorkshire by applying single-step strategy. In this study,
the accuracies of prediction ranged from 0.543 to 0.785 with
a 5-fold cross-validation, in order to take advantage of all
information, all non-genotyped animals were added to construct
H matrix in ssGBLUP. As both the genomic and pedigree
information was utilized by ssGBLUP, previous studies have
shown that the ssGBLUP method was superior to both the

GBLUP method (Christensen et al., 2012; Gao et al., 2012; Li
et al., 2014; Guo et al., 2015; Song et al., 2017) and traditional
pedigree-based BLUP (Gao et al., 2012; Koivula et al., 2015),
in which only genomic or pedigree information was used. Our
findings are consistent with these reports and further proved
the superiority of single-step strategy, however, compared to
the traditional BLUP, in our study, ssGBLUP only generated
tiny higher accuracies with 1% on average increase in 7 body
measurement traits and simulated data when the number of
genotyped reference animals was small.

The lower improvement of ssGBLUP might possibly attribute
from the following reasons. (1) The genotyped reference was
not large enough to improve the genomic predictive ability.
In real data, about 400 genotyped reference animals could
not probably provide more extra information compared to the
pedigree information consisting of 5,000 individuals. Similarly,
it also deduced the lower accuracy of GBLUP than BLUP in
this study. In simulation study, GBLUP also produced lower
accuracy than BLUP even the genotyped reference population
size reached 3,000, it was still very small compared to non-
genotyped individuals of 26,000 utilized by BLUP. Meanwhile,
the improvement was also tiny for ssGBLUP compared to
BLUP when the genotyped reference population size was small.
Lourenco et al. (2014) also reported that GBLUP performed
worse than BLUP and ssGBLUP only generated 3% higher
accuracy than BLUP for fat percentage in all parities in a relatively
small genotyped dairy population; (2) Inappropriate w value may
cause the larger bias of ssGBLUP. In constructing H matrix,
the weighting factor (w) was the proportion of genetic variance
not captured by markers, theoretically, w value depends on the
trait, the same w value was assigned in our study, deducing the
larger bias of genomic prediction of ssGBLUP than BLUP, e.g.,
BL and CW. This indicated that in implementation of single-
step genomic evaluation, it is better to test different w to find
out the optimal parameter for prediction; (3) In our study, the
heritabilities for 7 body measurement traits were high from
0.27 to 0.5, which can obtain sufficient accuracy for traditional
BLUP method, and improvement from genomic prediction was
not large as expected. Other studies also indicated that for
low-heritability traits, a very large number of records will be
required in the reference population to subsequently achieve high
accuracies of GEBV in unphenotyped animals, while for the traits
with medium or high heritabiliries the tiny improvement will be
achieved when added a small reference population (Goddard and
Hayes, 2009; Hayes et al., 2009b), our findings in simulated data
are consistent with these reports.

Genetic correlation between traits has been used to improve
the statistical power to detect QTL controlling traits of interest
(Chesler et al., 2005; Xu et al., 2009). A series of researches of
multiple traits have also been carried out in genomic selection
and showed that multiple-trait model can improve the accuracy
of genomic prediction compared to single-trait model (Calus and
Veerkamp, 2011; Jia and Jannink, 2012; Guo et al., 2014). Our
findings further proved that two-trait ssGBLUP yielded higher
accuracy and lower bias than single-trait ssGBLUP.

Our results also indicated that the performance of two-trait
ssGBLUP was related with the strength of genetic correlation.
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The stronger the genetic correlation is, the higher improvement
on the accuracy of genomic prediction, e.g., in the scenarios of
high and medium genetic correlations, the maximum gain on
accuracy was 2 and 2.6% for trait of CW compared to single-trait
ssGBLUP and traditional BLUP, while the gain was decreased in
the low genetic correlation. The same trend was illustrated on
other body measurement traits, the difference was the scope of
the improvement. e.g., compared to CW, only tiny improvement
on accuracy was obtained for trait of AG in both high and
medium correlations. Generally, in our study, as the heritabilities
for 7 body measurement traits highly ranged from 0.27 to 0.5, the
improvement on accuracy from two-trait genomicmodel was not
as large as on the low-heritability trait. As shown in the results
of simulated data, the Trait A with heritability of 0.1 produced
larger gain on accuracy than Trait B with heritability of 0.3 when
using two-trait ssGBLUP method (Figure 3). This was consistent
with other previous reports (Calus and Veerkamp, 2011; Jia and
Jannink, 2012; Guo et al., 2014).

However, in our study, in low genetic correlation (e.g., 0.01
and 0.06), the accuracies of genomic prediction were lower than
that of separate single trait analysis, which was also reported by
Jia and Jannink (2012) and Wang et al. (2017), The reason may
be that, in this case, sampling from multiple trait model leads
to nonzero estimates of correlation, which then leads to error
information sharing across traits, deducing the lower accuracy of
two-trait model. Therefore, for one trait correlated with several
traits, the largest improvement of the accuracy and unbiasedness
of genomic prediction on this target trait can be obtained by
choosing one trait with highest genetic correlation with the
target trait through two-trait ssGBLUP model. However, only
two-trait model was investigated in this study, multiple-trait
model is worth exploring in the future, however, it should be
noted that much more computational demand will be increased
as more random variance components needed to be estimated,
and the equation is also difficult to converge. Furthermore, the
traditional animal model assumes the linear relationship between
the observations breeding values and the covariates, however, in
practice, the nonlinear relationship is more common. In theory,
the single-step genomic prediction using information from
both genotyped and non-genotyped animals could be extended
to generalized linear model or Bayesian model (Fernando
et al. (2014), while the higher computational demand and the
efficiency of genomic prediction in practice should be taken into
account in the further investigation.

CONCLUSION

In this study, we used different single-step strategies and GBLUP
method to investigate the efficiency of genomic prediction on
body measurement traits in Yorkshire and simulated data. We

compared the prediction accuracy of a traditional pedigree-
based method (BLUP) with the GBLUP and single-step genomic
BLUP (ssGBLUP) through 20 replicates of 5-fold cross-validation
(CV) in pig data. Meanwhile, we investigated the impact
of genotyped reference population size on the accuracy of
genomic prediction through simulation study. In addition, we
also compared the performance of two-trait ssGBLUP and
single-trait ssGBLUP for the traits with different gradients
of genetic correlation. Our results indicated that ssGBLUP
generally generated higher prediction accuracy than traditional
BLUP, the improvement was lower than expected mainly
due to the small number of genotyped animals. Our results
also demonstrated that the accuracies of genomic prediction
can be further improved by implementing two-trait ssGBLUP
model.
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