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Gene expression regulation is a complex process involving the interplay between

transcription factors and chromatin states. Significant progress has been made toward

understanding the impact of chromatin states on gene expression. Nevertheless, the

mechanism of transcription factors binding combinatorially in different chromatin states

to enable selective regulation of gene expression remains an interesting research area.

We introduce a nonparametric Bayesian clustering method for inhomogeneous Poisson

processes to detect heterogeneous binding patterns of multiple proteins including

transcription factors to form regulatory modules in different chromatin states. We

applied this approach on ChIP-seq data for mouse neural stem cells containing 21

proteins and observed different groups or modules of proteins clustered within different

chromatin states. These chromatin-state-specific regulatory modules were found to have

significant influence on gene expression. We also observed different motif preferences

for certain TFs between different chromatin states. Our results reveal a degree of

interdependency between chromatin states and combinatorial binding of proteins in the

complex transcriptional regulatory process. The software package is available on Github

at - https://github.com/BSharmi/DPM-LGCP.

Keywords: transcription factor, regulatory network, Poisson process, chromatin states, neural stem cell

1. INTRODUCTION

Transcription factors (TFs) and other proteins that bind to specific DNA sequences play key roles
in the regulation of gene expression. Binding locations of a protein of interest can be determined
with chromatin immunoprecipitation followed by sequencing (ChIP-seq). This produces millions
of short reads covering the protein-DNA binding sites across the genome. Several computational
tools have been developed to identify these binding locations from ChIP-seq data. Widely used
among these is MACS2 (Feng et al., 2012) which can identify transcription factor binding regions
or “peaks.” Recently, efforts have been devoted to integrate multiple ChIP-seq datasets to uncover
protein-protein interactions. SignalSpider (Wong et al., 2015) uses Gaussian mixture model to
reveal regions co-regulated by multiple TFs. Sharmin et al. identified cell-type specific TF binding
events (Sharmin et al., 2016) using ensemble model. Cha and Zhou developed a method based on
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inhomogeneous Poisson processes and Ripley’s K-function that
detects pairwise TF clustering and ordering patterns (Cha and
Zhou, 2014).

Recent studies have also revealed new insights into the
interplay between proteins, specifically TFs and histone marks
that define chromatin states. Most TFs bind to open chromatin
regions that are highly accessible and nucleosome-depleted.
Such chromatin regions are often enriched with specific
histone modifications in promoters and enhancers, such as
H3K4me1 and H3K27ac marks. It has been found that histone-
modification-dependent TF binding is protein family specific
(Sugathan and Waxman, 2013; Liu et al., 2015, 2016; Xin
and Rohs, 2018). In addition, a small number of TFs act as
pioneers with the ability to reach inaccessible chromatin regions
and shape the chromatin landscape to facilitate the binding
of other TFs. ChIP-seq data from histone modifications have
been used to partition the genome into different chromatin
states using semi-automated genome annotation (SAGA) tools
(Libbrecht et al., 2015). Early examples of the SAGA tools
are HMMSeg (Day et al., 2007) and ChromHMM (Ernst
and Kellis, 2012). Since then more sophisticated chromatin
segmentation tools, Segway (Hoffman et al., 2012) and diHMM
(Marco et al., 2017), were developed providing refined genome-
wide map of the chromatin states. ChromHMM and diHMM
use hidden Markov models while Segway applies a dynamic
Bayesian network to segment the genome and identify distinct
chromatin states. Segway and ChromHMM perform genome
segmentation and classification at a single length scale while
diHMM segments the genome at multiple length scales (narrow
or broad corresponding to nucleosome-level states and domain-
level states, respectively). We studied protein bindings through
ChIP-seq data among different chromatin states in mice
neural stem cells (detailed description of datasets provided
in Supplementary Document Section 3.1). Our results showed
several known co-binding rules such as NFIC-bHLH-SOX in
UpstreamEnhancer state and Poised Enhancer state (Mateo et al.,
2015) and JMJD3-SMAD3 in all chromatin states (Estarás et al.,
2012). We also showed that the regulatory effects of the predicted
modules on proximal genes vary across chromatin states. Also,
for certain classes of DNA binding proteins, the de-novo binding
sequences compiled from ChIP-seq peaks were dependent on the
chromatin states.

2. MATERIALS AND METHODS

In this paper we propose a two-step process (Figure 1) to
investigate how chromatin configurations may affect the binding
affinity of proteins. In the first step, uniquely aligned BAM
files containing genomic regions of histone marks and TFs
are used along with the diHMM software to segment the
genome and identify distinct chromatin states (illustrated by
chromatin state examples X and Y). In the second step,
using the identified chromatin states from the previous step
and protein binding regions obtained from ChIP-seq (data
used in this study were obtained from ChIP-Atlas; http://
chip-atlas.org), a nonparametric Bayesian clustering method

DPM-LGCP is applied to identify transcriptional regulatory
modules within each chromatin state. In downstream analyses,
proximal (± 2 kb from transcription start site genes are used to
compare the Transcripts Per KilobaseMillion or TPM expression
level when regulated by individual proteins to that when
regulated combinatorially by the predicted regulatory modules
in step 2. Finally, using de-novo motif enrichment analysis, the
binding sequences of the proteins are compared across different
chromatin states to study the effect of histone marks and co-
factors on motif preferences. Details of the datasets used in the
study can be found in Supplementary Table S2.

2.1. Chromatin State Identification Through
Genome Segmentation
diHMM (Marco et al., 2017) is a tool based on hidden Markov
model that models the presence or absence of a histone mark
to a high degree of accuracy. It segments and annotates the
genome into different chromatin states at multiple length scales
by modeling the genome wide distribution of histone marks. By
default, diHMM has two scales of classification: (a) nucleosome
level, with finer resolution chromatin state windows of around
200 base-pair (bp) length and (b) domain level, formed by
stitching together similar nucleosome-level windows and having
broader chromatin state windows extending over 100kbp-long
regions. The domain-level states identified by diHMM are able
to recapitulate known patterns in the chromatin literature and
capture functional differences among diverse regulatory elements
(Marco et al., 2017). The first step in identifying chromatin states
is to binarize uniquely aligned BAM files. This is implemented in
ChromHMM (Ernst and Kellis, 2012), a predecessor of diHMM.
The diHMM software provides several nucleosome- and domain-
level statistics including nucleosome-level emissions, combined
nucleosome-level fold enrichments for each domain, fractional
genome coverage of each nucleosome- and domain-level state,
and nucleosome and domain state lengths. These statistics,
together with the relative distance information of nucleosome-
and domain-level states from transcription start site (TSS) and
the enrichment of nucleosome-level states in genomic regions,
were jointly analyzed to annotate each state to a biologically
relevant functional category (details provided in RESULTS
section).

2.2. Protein Binding Intensity Estimation
Using Dirichlet Process Mixture of Log
Gaussian Cox Processes (DPM-LGCP)
Binding regions of the proteins were obtained using MACS2
acting as inputs to our proposed clustering algorithm. Treating
the center of each region as a binary binding event, we
modeled binding events of each protein along the genome by an
inhomogeneous Poisson process (IP). We chose this modeling
strategy for the following reasons: (i) the event of each binding
site falling into a minuscule interval is a rare event, independent
of the events in other non-overlapping intervals, and (ii) the
non-uniform distribution of the peaks at different genomic
locations can be well characterized by the intensity function of
the inhomogeneous Poisson process. For a protein with n binding
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FIGURE 1 | A two-step process to identify chromatin-state-specific transcriptional regulatory modules. In the first step, uniquely aligned bam files of histone marks are

used along with the diHMM software to segment the genome and identify distinct chromatin states (illustrated by State X and State Y). In the second step, using the

identified chromatin states from the previous step and ChIP-seq peak files for different TFs, the proposed Bayesian clustering method is applied to identify

transcriptional regulatory modules within each chromatin state. In downstream analyses, proximal (± 2 kb from TSS) genes are used to compare the TPM expression

level when regulated by individual TFs to that when regulated combinatorially by the predicted regulatory modules in step 2. Finally, using de-novo motif enrichment

analysis, the binding sequences of the TFs are compared across different chromatin stats to study the effect of histone marks and co-factors on TF binding sequences.

site locations, wemap these locations to points in a closed interval
D on the real line, denoted by S = {s1, . . . , sn}. Following the
inhomogeneous Poisson process model setting, the likelihood of
observing S can be written as Simpson et al. (2016)

f (S|λ(s)) = exp

{

|D| −

∫

D
λ(s)ds

} n
∏

j=1

λ(sj), (1)

where |D| is the interval length and λ(s), s ∈ D is the intensity
function. The Poisson process likelihood (1) provides the basis
for nonparametric clustering of proteins based on their binding
patterns, resulting in identification of modules of co-binding
proteins that share similar regulatory functions. For a given
ChIP-seq dataset of N proteins coming from K clusters (with K
unknown), we assume that proteins in the same cluster share a
common intensity function, distinct from those in other clusters.

Under this assumption, we implement a Dirichlet process
mixture of log Gaussian Cox process (DPM-LGCP) model that
employs a Dirichlet process (DP) prior to the latent log intensity
functions to facilitate clustering of the intensity functions. Let Si
denote the binding site locations of the ith protein, the DPM-
LGCP model can be described as follows:

Si|λi(s) ∼ IP(λi(s)), s ∈ D, i = 1, ...,N,

log(λi(s)) = zi(s), zi(s) ∼ G,

G ∼ DP(m,G0), G0 = GP(0,Cθ ),

(2)

where G is a random distribution with a DP prior. The DP
prior is characterized by two parameters m and G0, where m is
the precision parameter, and G0 is the base measure. The base
measure G0 is assumed to be a Gaussian process with mean 0 and
covariance kernel Cθ (, ), and θ contains parameters that control
the shape of the covariance kernel. The introduction of this DP
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prior to the latent log intensity functions naturally facilitates
clustering of the N point processes based on their intensity
functions. With this model, neither the number of clusters nor
ad-hoc distance measure between two point processes needs to
be specified.

To overcome the difficulty of calculating the marginal
likelihood of the point process Si, we employed an approximate
but efficient posterior inference using the Integrated Nested
Laplace Approximations (INLA) package (Rue et al., 2009;
Simpson et al., 2016).

The INLA approximation of the LGCP transforms the
continuous covariance kernel of zi(s) into a discrete precision
matrix of the B-spline basis coefficients on a regular grid,
which enables very fast covariance computation (Rue and
Held, 2005). Finally, posterior inference on the assignment
of proteins into clusters is performed through a Markov
chain Monte Carlo (MCMC) algorithm using Neal’s Gibbs
sampler (Neal, 2000) (detailed description provided in the
Supplementary Document).

3. RESULTS

3.1. Genome Segmentation and Chromatin
State Identification
As described in the methods section, diHMM segments a
genome into distinct chromatin states and outputs the states
as regions within two bed files labeled by nucleosome and
domain indexes (e.g., N1, N2..., and D1, D2... respectively).
For the nucleosome level states, annotation of the chromatin
states to functionally relevant categories was performed by
using information from the emission probabilities of the
nucleosome states (Figure 2A), fractional genome coverage
(Figure 2B), relative enrichment in different genomic regions
(Supplementary Figure S3), and distribution of nucleosome
states around TSS (Supplementary Figure S4A). Similarly, by
comparing the nucleosome-level fold enrichments in each
domain level state and the distribution of the domain level
states around TSS (Supplementary Figure S4B), the domain-
level states were further grouped into different broader
functional categories as shown in Figure 2C. Details of functional
annotation of the nucleosome and domain-level states are
presented in Section 3 of the Supplementary Document.

3.2. Chromatin State Preference of
Individual Protein Binding and Gene
Expression Regulation
To analyze the distribution of protein-DNA binding sites in each
chromatin state, we integrated ChIP-seq data with the chromatin
state map of mouse neural stem cells (NSCs) (Figure 3A). For
most proteins, the binding events occur in open chromatin
regions, although some pioneer transcription factors have the
ability to bind directly to condensed chromatin and recruit
co-factors (Cuesta et al., 2007; Zaret and Carroll, 2011; Soufi
et al., 2015). We observed, in both active and repressed states,
enrichment of pioneer TFs as well as other proteins (that
might have been recruited by the former). BMI1, which is

known to bind to regions marked by both H3K27me3 and
H3K4me3 (Bhattacharya et al., 2015), was found to be highly
enriched in the Bivalent Promoter and Poised Enhancer states
(Figure 3A). In addition, most TFs were found to be enriched in
the Super Enhancer states except for RAD21, BMI1, SMCHD1,
and NUP153. A similar observation was made by the authors in
Mateo et al. (2015) where they showed that OLIG2, NFI family,
SOX2, SOX9, TCF3, FOXO3, ASCL1, SOX21, and MAX were
associated with active enhancer regions.

Next, to study the regulatory effect of histone marks on
proximal genes, we compared the expression levels of genes
(Transcripts Per Kilobase Million or TPM) with promoters
located in different chromatin states. We observed that proximal
genes in the Broad Promoter state had a higher median
expression than proximal genes in the Polycomb Repressed or
Low Coverage states (Figure 3B). To understand the influence
of chromatin states on transcriptional regulation, we further
grouped genes in each state based on the presence of binding sites
of different proteins surrounding their TSSs. We observed that,
for most proteins, the median expression of the genes in active
states was higher than those in repressed states (Figures 3C,D
and Supplementary Figure S8). Also, fewer proteins had binding
sites in repressed states as compared to active states (In
Figure 3C, there are 16 proteins whereas in Figure 3D, there are
14 proteins). Additional gene expression analysis for individual
proteins is shown in Supplementary Figure S8.

3.3. Chromatin State and Preferential
Clustering of Proteins
The distributions of ChIP-seq peaks across distinct chromatin
states indicate that functionally relevant proteins may have
similar binding patterns (Supplementary Figure S2). We
determined the co-occupancy of proteins in a specific chromatin
state through a nonparametric Bayesian clustering approach
that identifies the combinatorial binding patterns of proteins
(detailed description available in Supplementary Document).
Each state at the domain level had multiple windows over
different chromosomes across the genome. We observed that
most windows are with very few peaks although the average
domain-level window length ranged from 3.8 kb to over 450
kb. This prevented prediction of modules within a single
domain window. To ensure that the unique properties of the
domain-level states were preserved during clustering, we merged
all windows of a single domain-level state (e.g., D1) across the
entire genome and mapped the genome positions to a common
interval [0, 50] on an imaginary real line. Adopting this approach
for all domain level states eliminated the problem that different
domains may have different sizes. Next, for each domain level
state, the proposed algorithm used these mapped binding
locations, computed individual binding intensity of each protein
and clustered proteins having similar intensity patterns together
to construct transcriptional regulatory modules. This process
was repeated for each domain level state.

To visualize the predicted regulatory modules in different
chromatin states, we have shown the estimated binding
intensities of the proteins and the corresponding clusters in
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FIGURE 2 | (A) Nucleosome level emission matrix generated by diHMM. Functional annotations of the nucleosome level states are shown in the color bar on the left.

Scale varies linearly between 0 and 1. (B) Fractional genome coverage for nucleosome and domain level states. Scale varies logarithmically between 10−4 and 1. (C)

Combined nucleosome-domain fold change obtained by diHMM. Functional annotation of the states are shown in the color bar on the left. Scale varies logarithmically

between 0.5 and 50.

Figures 4A,B and in Supplementary Figures S6, S7. We took a
closer look at the clustering results in two contrasting states—
Broad Promoter (Figure 4A) and Poised Enhancer (Figure 4B),
and found noticeable differences in the binding intensity shape of
both individual proteins and the predicted clusters between the
two states. In addition, the set of co-factors for different proteins
varied between the two states. BMI1 is known to bind to repressed
and poised states (Bhattacharya et al., 2015) and was predicted as
a single-protein cluster in the Poised Enhancer (Figure 4B) and
Bivalent Promoter states (Supplementary Figure S6). In other
states such as Broad Promoter, Super Enhancer, and Upstream
Enhancer, BMI1 was predicted with RNF2, RAD21, or SMCHD1
(Supplementary Figures S6, S7). It is worth noting that both

BMI1 and RNF2 are components of the Polycomb group
multi-protein, whereas SMCHD1, a non-canonical member of
the SMC super-family, is also known to be associated with
transcriptional repression (Chen et al., 2015) and polycomb
recruitment mechanisms (Gendrel et al., 2012). The proposed
approach was able to cluster several other functionally relevant
proteins that shared similar binding patterns, for example,
JMJD3-SMAD3 (Figure 4) in most chromatin states (in Estarás
et al., 2012, the authors found that JMJD3 is recruited to
gene promoters by SMAD3 in neural stem cells and is
essential to activate TGF-β -responsive genes), FOXO3-NFIC-
SOX-TCF3 (Supplementary Figure S6) in Upstream Enhancer
states (in Mateo et al., 2015), the authors showed interactions
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FIGURE 3 | (A) Enrichment (in log scale) of TF peaks in different chromatin states showing binding preference of individual TFs. (B) Comparison of average TPM

expression (in log scale) of proximal genes (± 2 kb from TSS) in different domain level chromatin states. Genes were mapped to the nucleosome-level states for the

corresponding domain-level states. (C) Comparison of average TPM expression (in log scale) of proximal genes (± 2 kb from TSS) mapped to individual TFs in the

Broad Promoter state and in (D) the Poised Enhancer state.

among NFI family, TCF3, SOX2, SOX9, and FOXO3. We
have shown additional predicted protein-protein interactions in
Supplementary Table S1.

To assess the strength of association between two co-
binding proteins, we calculated a pairwise protein co-binding
probability matrix from the posterior samples of the MCMC
procedure Figures 4C,D). Each value in Figures 4C,D indicates
the frequency of observing the corresponding two proteins in
the same cluster out of the total 200 MCMC iterations. A
high protein co-binding probability (indicated by darker color)
provides stronger evidence of the existence of the protein pair
in a cluster. We further performed a three-fold assessment
on the robustness of the clustering algorithm explained in
Supplementary Document Section 5.

We next examined the expression levels of proximal genes
(Transcripts Per Kilobase Million or TPM) regulated by the
predicted clusters in each state to understand transcriptional
regulation by combinatorial binding of proteins in different
chromatin states. We observed that the median expression level
of the genes regulated by distinct clusters are close to each other
in the Broad Promoter state (Figure 4E). On the contrary, the
median expression level of the proximal genes combinatorially
regulated by the FOXO3-RAD21-SMAD4 cluster in Poised
Enhancer was higher than that of the genes combinatorially
regulated by the other cluster (Figure 4F) (Similar behavior
was observed in Bivalent Promoter, Upstream Enhancer and
Boundary states shown in Supplementary Figure S9). These
results show that gene expression could change due to

combinatorial binding of proteins in different chromatin
states.

3.4. Comparison of Results With Other
Clustering Methods
We compared the clustering results of the proposed algorithm
with K-means and CLARANS (Ng and Han, 2002). Instead of
applying these two clustering methods directly on the binding
locations of the proteins, we first estimated individual protein
binding intensities and used these intensity matrices as inputs
for clustering (we assumed each protein was in its own cluster).
For both methods, we first obtained the optimal number of
clusters using the NBclust package (Charrad et al., 2014). From
the results in Table 1, we observe that for both methods, the
number of optimal clusters was 2 for the two chromatin states.
However, the cluster compositions that contain the regulatory
TF modules are very similar to that of the proposed approach.
Furthers comparisons are provided in Supplementary Table S5.

3.5. Protein-DNA Binding Motif
Preferences in Chromatin States
It is known that local epigenetic states affect bindings of proteins
to targets and protein-DNA binding may prevent or facilitate
epigenetic changes on their binding sites (Blattler and Farnham,
2013; Xin and Rohs, 2018). A protein is known to bind to the
DNA with different motifs depending on the presence of its co-
binding partners (Bais et al., 2011). To examine the influence
of chromatin states and co-binding partners on the binding
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FIGURE 4 | (A,B) Estimated cluster binding intensities along with the individual TF binding intensities in the Broad Promoter and Poised Enhancer states, respectively.

In each figure, the estimated binding intensities of the individual TFs are shown in dotted lines and the estimated binding intensities of the clusters are shown in solid

line. TFs in each cluster are shown in the same color as that of the cluster. The X axis represents the genomic locations mapped on the real line between 0 and 50.

The Y axis represents the estimated binding intensities, both for the individual TFs and for the identified clusters. (C,D) Pairwise protein co-binding probabilities

corresponding to (A,B) respectively. (E,F) Comparison of proximal gene expressions (TPM) regulated by the clusters in (a) and (B) respectively. Only those clusters

having (1) multiple TFs and (2) proximal genes for at least two TFs are shown in the figure to explain the combinatorial regulation of gene expressions by multiple TFs.

sequences of a protein, we grouped ChIP-seq peaks for each
protein overlapped with each chromatin state and analyzed the
binding motifs of the protein in an active (Broad Promoter/Super
Enhancer) and a repressed state (Poised Enhancer/Polycomb
Repressed) (Figures 5A,B). We used the MEME suite (Bailey
et al., 2009) to identify de-novo motif sequences and from the
results we selected the motif that matched with the candidate
protein’s consensus motif or was known as a secondary motif.
In both the HOMER (Heinz et al., 2010) or JASPAR (Mathelier
et al., 2016) databases, no reference motif is documented for
BMI1, KDM1A, JMJD3, NPAS3, NUP153, RNF2, RAD21, P300,
and SMCHD1. For the remaining proteins with knownmotifs, we
extracted genomic sequences from two different subsets of peaks
overlapped with two contrasting chromatin states as mentioned
before and determined the de-novomotifs.

Based on the MEME results, a protein’s binding preferences
may be broadly categorized into one of the three types: (1)
de-novo sequences that closely matched the protein’s consensus
motif such as ASCL1 (Figure 5A), MAX, NFIC, FOXO3, and
TFs from the SOX family. (2) De-novo sequences that either did

not match with the consensus/secondary motifs or matched the
consensus motif but were weakly enriched. It has been observed
that the ATF/CREB motifs (“TGAYRTCA”) are often enriched in
genes targeted by β-catenin/TCF/LEF (Lien et al., 2014; Taniue
et al., 2016). For TCF3, we observed highly enriched de-novo
sequences resembling its consensus motif in the repressed state
(Figure 5B). However, in the active state we observed that the
“TGACGTCA” pattern was highly enriched. This could imply
that TCF3might have been recruited by other co-factors resulting
in indirect binding in that particular state. For OLIG2, both active
and repressed chromatin states contained de-novo sequences
resembling its consensus motif. However, these sequences were
highly enriched in the repressed state and weakly enriched
in the active state. The fact that the E-value of the de-novo
sequences of OLIG2 was not significant in the active state might
suggest indirect binding in the state, probably being governed by
other factors. (3) De-novo sequences resembling the secondary
motifs such the SMAD family. For SMAD4, we observed that
sequences with ‘GCCGC’ pattern were highly enriched in both
active and repressed chromatin states, as reported previously
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in Hu et al. (2013) where the authors found that SMAD4
can bind to both methylated and un-methylated motifs of
distinct sequences. Similarly, for SMAD3, we observed highly
enriched sequences rich in “GC” content in both chromatin

TABLE 1 | Comparison of clustering results with other methods.

Chromatin

state

DPM-LGCP K-means CLARANS

Broad

Promoter

(D5)

(1) ASCL1, JMJD3,

KDM1A, NPAS3,

OLIG2, SMAD3,

SMAD4, TCF3; (2)

BMI1, POU5F1,

RNF2, SMCHD1,

SOX21, NUP153; (3)

FOXO3, MAX, NFIC,

P300, RAD21, SOX2,

SOX9

(1) ASLC1, JMJD3,

KDM1A, NFIC,

NPAS3, OLIG2,

SMAD3, SMAD4,

TCF3; (2) BMI1,

FOXO3, MAX, P300,

POU5F1, RAD21,

RNF2, SMCHD1,

SOX2, SOX21,

SOX9, NUP153

(1) ASCL1, FOXO3,

JMJD3, KDM1A,

NFIC, NPAS3,

OLIG2, RAD21,

SMAD3, SMAD4,

SOX2, SOX9; (2)

BMI1, MAX, P300,

POU5F1, RNF2,

SMCHD1, SOX21,

NUP153

Poised

Enhancer

(D13)

(1) ASCL1, JMJD3,

KDM1A, NFIC,

NPAS3, OLIG2,

P300, SMAD3,

SOX2, TCF3; (2)

BMI1; (3) FOXO3,

POU5F1, RAD21,

RNF2, SMAD4,

SOX21, SOX9, TCF3;

(4) MAX, SMCHD1,

NUP153

(1) ASCL1, JMJD3,

KDM1A, NFIC,

NPAS3, OLIG2,

P300, SMAD3,

SOX2, SOX9, TCF3;

(2) BMI1, FOXO3,

MAX, POU5F1,

RAD21, RNF2,

SMAD4, SMCHD1,

SOX21, NUP153

(1) ASCL1, FOXO3,

JMJD3, KDM1A,

NFIC, NPAS3,

OLIG2, P300,

POU5F1, SMAD3,

SMAD4, SOX2,

SOX9, TCF3; (2)

BMI1, MAX, RAD21,

RNF2, SMCHD1,

SOX21, NUP153

For each method the clusters are preceded by the cluster number within parentheses.

Further comparisons are shown in Supplementary Table S5.

states, which have been reported as secondary SMAD3 motifs,
often associated with known SMAD binding partners in TGF-β
responses (Vidakovic et al., 2015). Interestingly, for POU5F1, we
observed that the E-Box element “CANNTG” was significantly
enriched in both active and repressed chromatin states. In Yin
et al. (2017), the authors had also observed that the E-Box
motif was significantly enriched with a p-value of 1e-6 in a
POU5F1 ChIP-seq experiment of ES cell with Dnmt1, Dnmt3A
and Dnmt3B triple knockout, whereas the consensus POU5F1
motif was weakly enriched with a p-value of 0.1. Detailed results
are provided in Supplementary Table S3.

4. DISCUSSION

Development of the semi-automated genome annotation tools
has enabled genome segmentation and identification of distinct
chromatin states at fine resolutions. In this study, we designed a
two-step process to identify transcriptional regulatory modules
within distinct chromatin states. First, we segmented the genome
using the diHMM software. Second, we designed a novel
nonparametric Bayesian clustering algorithm to identify clusters
of co-binding proteins on the segmented genome. Existing
work have adopted distance thresholds and empirical tests to
define pairwise co-bound regions and context-dependent co-
regulators (Ji et al., 2006; Chen et al., 2008; Orlov et al., 2009;
Lee and Zhou, 2013). The statistically principled approach we
proposed models protein-DNA binding site locations through
inhomogeneous Poisson processes. It also employs a Dirichlet
process prior to the random distribution of the latent log-
intensity functions to facilitate clustering of the binding patterns.
Such a nonparametric Bayesian clustering procedure is based on

FIGURE 5 | Effect of chromatin states and co-binding partner on binding motifs. (A) De-novo motifs obtained using MEME for ASCL1 are similar to the consensus

motif in both Broad Promoter and Polycomb Repressed states although the co-factors of ASCL1 are different in the two states. (B) De-novo motifs obtained using

MEME for TCF3 show differences in motifs between the two states with different co-factors. The motifs in active state resemble the β-catenin/TCF/LEF motif whereas

the motifs in repressed state resemble the E-Box consensus motif.
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joint likelihood rather than pairwise protein-protein relationship
and is flexible in capturing the intricate protein-DNA binding
patterns in ChIP-seq data. This approach does not require pre-
specified parameters such as window size, distance threshold, and
number of clusters, and hence achieves improved robustness.

We applied the approach on ChIP-seq data for neural stem
cells obtained fromChIP-Atlas, an integrated and comprehensive
database rapidly gaining importance in cell replacement therapy.
Despite the methodological advantages, this approach may have
limitations in practical use. First, ChIP-seq can produce millions
of short reads, which may result in varying strengths of signal
intensities along the genome. In the current study, we did
not consider the peak-height for different proteins but treated
the center of each peak as a binary binding event along the
genome. The overlook of the signal intensity effects may impact
the modeling of protein binding patterns. Another possible
limitation of our approach lies in handling the three dimensional
structural information of the histone marks. This restricted our
downstream gene expression analysis to gene promoters present
in the Enhancer states. While not in scope of the current study,
including such information may improve the accuracy of the
model and enable the prediction of long distance Enhancer
activity.

Nevertheless, we were able to establish several interesting
findings. It has been known that protein-DNA binding sites
are not randomly distributed but rather clustered together at
enhancer or promoter regions. Hence, some specific proteins
may team up to have a significant epigenetic impact on
gene expression. In our study, transcriptional regulatory
modules identified in different chromatin states revealed
several known protein-protein interactions in neural stem
cells, for example, SOX family and NF1 in the Enhancer
states (Webb et al., 2013), MAX-FOXO3-OLIG2 in Upstream
Enhancer (Mateo et al., 2015), and JMJD3-SMAD3 in most
chromatin states (Estarás et al., 2012). These results suggest
chromatin-state-specific protein-protein co-occupancy. In
addition, diverse gene expression levels were observed through
combinatorial regulation by the predicted transcriptional
regulatory modules in different states. The uncovered links
between gene expression and protein binding patterns on a
genome-wide scale will enhance our understanding on how

chromatin-state-specific regulatory network is assembled to
coordinate tissue differentiation and cell specification.

An important issue in transcription regulation is to
understand the binding specificity and affinity of a protein.
A TF may have several thousands of DNA binding sites along
the genome, which collectively can be represented as a motif—a
consensus sequence demonstrating the nucleotide preferences at
each position of the binding site. In this study, we observed that
chromatin state can have an impact on the binding preferences
of transcription factors and their co-activators (Jolma et al.,
2015). For example, the de-novo sequences predicted for the
some proteins resembled the consensus PWM across distinct
chromatin states whereas for certain proteins such as SMAD
family the sequences resembled secondary motifs in specific
chromatin states. Further, we also noticed that the prediction
of binding preferences might help the identification of indirect
protein bindings when the de-novo sequences do not match the
consensus PWM (Yin et al., 2017). In conclusion, we expect
that our work will help understand the causality of chromatin
state and combinatorial protein-DNA binding in regulating gene
expression in neural stem cells.
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