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The disorder distribution of protein in the compartment or organelle leads to many

human diseases, including neurodegenerative diseases such as Alzheimer’s disease. The

prediction of protein subcellular localization play important roles in the understanding

of the mechanism of protein function, pathogenes and disease therapy. This paper

proposes a novel subcellular localization method by integrating the Convolutional Neural

Network (CNN) and eXtreme Gradient Boosting (XGBoost), where CNN acts as a feature

extractor to automatically obtain features from the original sequence information and a

XGBoost classifier as a recognizer to identify the protein subcellular localization based

on the output of the CNN. Experiments are implemented on three protein datasets. The

results prove that the CNN-XGBoost method performs better than the general protein

subcellular localization methods.

Keywords: protein subcellular localization, deep learning (DL), Conventional Neural Network (CNN), XGBoost,

machine learning

1. INTRODUCTION

The study of neurodegenerative diseases, specifically the Alzheimer’s disease(AD) has gained great
attention and been addressed widely (Cai et al., 2013; Hu et al., 2017a,b,c). The abnormalities and
disorder distribution the compartment or organelle of tau protein and the beta-amyloid protein
have been considered to contribute to the pathogenesis of AD. Protein subcellular localization
prediction is an essential task in bioinformatics and plays import roles in the further understanding
of the relationship among protein locations, their function exhibition, and nosogenesis (Liu et al.,
2015; Cheng et al., 2016a, 2018a). Related predictive tools typically use the amino acid sequence
information of the protein itself as input to output predicted protein cell sublocalization. It provides
information on protein function and gene annotation to aid in the identification of drug targets.
The two commonly usedmethods are: (1) homology-basedmethod and (2) machine learning based
method (Wu and Krishnan, 2011; Wu et al., 2014; Zeng et al., 2014; Cheng et al., 2017).

The homology-based method highly depends on the homology of protein sequences, and
therefore performs worse for low protein sequence similarity (Wei et al., 2016; Cheng et al., 2018b).
The machine learning based methods usually extract some features from the amino acid sequence
of the protein (Cheng et al., 2016b; Hu et al., 2018), convert the sequence into a numerical vector,
and then use amachine learningmodel to predict. For example, themost widely usedWoLF PSORT
software for eukaryotic proteins, characterized by the amino acid composition of the protein,
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gives the cellular sublocalization of the 32 proteins most similar
to the input protein using the k-nearest neighbor algorithm
(Horton et al., 2007). There also exist similar methods like
BaCelLo (Pierleoni et al., 2006), YLoc (Briesemeister et al., 2010),
iLoc-Hum (Chou et al., 2012), and Hum-mPLoc 3.0 (Zhou et al.,
2016).

We believe that existing forecasting methods also have
some room for improvement. First, the extracted sequence
characteristics may not fully reflect the properties of
the protein associated with the training task. Second,
the current predictions only use information about the
protein itself, without considering the interaction between
proteins.

In recent years, deep learning has been proven to be a
very powerful method by researchers in many fields (LeCun
et al., 2015; Xu et al., 2017), like computer vision and natural
language processing (Krizhevsky et al., 2012; Mikolov et al., 2013;
Sutskever et al., 2014). CNN is an efficient deep learning method
due to it can learn high-level features with neural networks.
Recently, it also has attracted attentions from researchers and
practitioners in bioinformatics. A prediction tool “DeepLoc”
(Almagro Armenteros et al., 2017) based on deep learning was
proposed with the end-to-end sequence-based model integrated
recurrent neural networks (RNNs) with long short-term
memory(LSTM) cells, attention models and convolutional neural
networks(CNNs), and achieved a better accuracy compared with
the traditional machine learning methods. However, the model
structure is of high complication, sequentially has too many
hyper-parameters to train. Moreover, the proteins in the dataset
they constructed have been found to be highly homologous and
therefore might provide an overly optimistic model evaluation
(Gudenas, 2018). In addition, DeepLoc considers only one
possible label for each protein, whereas the protein subcellular
location belongs to a multi-label multi-class problem in
general.

In this work, we propose a new framework for protein
subcellular localization prediction by combining CNN and
XGBoost. As an outstanding classifier and feature extractor,
CNNs have achieved great success, especially in the field of
image recognization. For the protein sequence, CNNs have ability
to detect short motifs in the input sequence irrespectively of
where they occur and automatically extract features from the
original protein sequences. Inspired by this advantage, we also
exploit CNN as the feature extractor but a new classifier XGBoost
to replace the traditional classifiers connected like the soft-
max classifier, since they can not well understand the extracted
feature by CNN. XGBoost is an efficient implementation of
gradient boosted decision trees (GBDT) due to its block structure
to support the parallelization of tree construction. In GBDT,
gradient boosting refers to a kind of ensemble technique
creating new models to predict the residuals or errors of prior
models and making the final decision by the summing up
the predictions from all models. Meantime, gradient descent
algorithm is also exploited to minimize the loss when adding new
models.

The main contribution of our work includes the following
aspects:

• We propose a new CNN-XGBoost model for prediction of
the protein subcellular localization. The high-level features of
protein sequence can be learned by a CNN that can be used
by XGBoost classifier for prediction the localization of the
subcellular of proteins.

• The experiments conducted on four real datasets consisting
of protein sequences show that the proposed method achieves
competitive performance.

2. METHODS

In this paper, we propose a novel protein subcellular localization
method by integrating the CNN and the XGBoost as a new
model for possible application in the pathogenes verification
of Alzheimer’s disease. The general concept of CNN-XGBoost
model is to add an XGboost after the feature layer of a
CNN and replace the output layer of the CNN. Our CNN-
XGBoost model can automatically extract featutue from the
protein sequences and provides more precise localization results.
Figure 1 illustrates the whole structure of the CNN-XGBoost
model for protein subcellular localization.

2.1. Convolutional Neural Network
In the field of image analysis, the mask (or filter, or kernel) is
an important construct. A convolution is an operation involving
an initial image and the mask. The operation is equivalent to
flipping the mask both vertically and horizontally and then
visually placing it over each pixel in turn. The output is the sum
over a pixel-wise product of the mask and the sub-image. Masks
are usually symmetric, so flipping is unnecessary. Recall from
signal processing, the convolution between two f and g is given
by the following equation.

(f ∗ g)(t) ,

∫ +∞

−∞

f (τ )g(t − τ )dτ (1)

In image processing, a convolution between an image I and kernel
K of size d × d centered at a given pixel (x, y) is defined as,

(I ∗ K)(x, y) =

d∑
i=1

d∑
j=1

I(x+ i− d/2, y+ j− d/2)× K(i, j) (2)

Convolutional neural networks are a family of neural network
architectures having at least one convolutional layer. LeNet is the
original CNN network architecture bearing the name of Yann
Lecun. Its architecture can be written as,

H1 = σ (X ∗ K(1)) (first convolutional layer)

P1 = maxpool(H1) (first pooling layer)

H2 = σ (P1 ∗ K
(2)) (second convolutional layer)

P2 = maxpool(H2) (second pooling layer)

F1 = σ (W(1)P2 + b(1)) (first fully-connected layer)

F2 = σ (W(2)F1 + b(2)) (second fully-connected layer)

f(X) = softmax(W(3)F2 + b(3)) (output layer)
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FIGURE 1 | The framework of the CNN-XGBoost based protein subcellular location predictor.

In this architecture, convolutional layer is the cornerstone of
the CNN, which is a hidden layer where a square grid of
weights is convolved with the input, just like an image mask.
The output of the convolutional layer is akin to a convolved
image. Next, the non-linear activation function, ReLu (REctified
Linear Unit), is applied to zero-out any negative values. To reduce
the dimension of the feature extracted from the convolutional
layer, there is a pooling layer emulating downsampling. In
general, each group of four values or pixels is replaced by
the maximum (sometimes the mean) of the four, leaving a
single most intense pixel. This pooling method is known as
max pooling. This sequence of CONV->RELU->POOL layers
may be repeated multiple times to create a deep architecture.
Finally, a few fully-connected layers round off the architecture.
Though it seems far more sophisticated than a MLP, it can
be shown that a CNN can be represented as a classical fully-
connected neural network. For example, a convolutional layer
can be represented as a sparse fully-connected layer. Various
techniques have been developed for training these vast models,

for example momentum optimizers, weight initialization, batch
normalization, and dropout.

Convolutional Neural Networks are the current state-of-
the-art in many computer vision tasks. In addition to image
classification, their great success has attracted wide attention in
many fields. It has been found that using a pre-trained CNN as
a general-purpose feature extractor for a simple linear model can
yield significant improvements over even the most meticulously
hand-crafted feature engineering.

The protein subcellular localization problem can be viewed as
a multi-label multi-class classification task. Unlike the ordinary
deep learning methods for multi-classification problems, in our
method, we need to change the loss function. The most intuitive
way is to extend the cross-entropy loss. The cross-entropy loss
function is defined by

min
2

−
1

n

n∑
i=1

L∑
j=1

yi,jlog(p̂ij) = −
1

n

n∑
i=1

∑
j∈y+i

1

|y+i |
log(p̂ij) (3)
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FIGURE 2 | The accuracy comparison on the Hum-mPloc 3.0 data set.

where 2 denotes the parameters of CNN model, y+i is a set that
contains the relevant localization of protein i and p̂ij is the result
for protein i on localization j, through a softmax activation:

p̂ij =
exp(fj(xi))∑L

j
′
=1

exp(fj′ (xi))
(4)

Instead of using the cross-entropy loss function, the binary cross-
entropy loss (BCE) over sigmoid activation has shown better
performance when applied into multi-label task. The binary
cross-entropy loss is

min
2

−
1

n

n∑
i=1

L∑
j=1

[yi,jlog(σ (fij))+ (1− yij)log(1− σ (fij))] (5)

where σ (x) = 1
1+e−x

2.2. Tree Boosting and XGBoost
Tree boosting is a learning method to enhance the classification
ability of weak classifiers by iteratively adding new decision trees
to the ensembles of decision trees. LetD = {(xi, yi)}(|D| = n, xi ∈
R
m, yi ∈ R

n) denotes a dataset with n classes andm feature. Then
the prediction of a tree boosting for a (xi, yi) is given by

ŷi = gA(xi) =

M∑
j=1

gj(xi) (6)

where gj(xi) = wq(xi) is the prediction of the j-th decision tree
with leaf weights wq on a datapoint xi, and M is the number of
members in the ensemble.

It is well-known that the decision tree tends to overfit when
the decision tree is fully grown. Thus, the set prediction function

of decision trees gj can be learned by minimizing the objective
function

C(x, gA) =

N∑
i=1

l(yi, ŷi)+

M∑
j=1

�(gj) (7)

where li(yi, ŷi) is a term which measures the goodness of the
prediction ŷi and the object yi. �(gj) is a regularization term that
does not depend on the data.

XGBoost implements a parallel tree boosting in a fast and
accurate way. In XGBoost, the regularization function is chosen
to be

�(g) = γT +
λ

2

T∑
l=1

w2
l (8)

with γ and λ regularization parameters that must be chosen
appropriately. Notice this regularization penalizes both large
weights on the leaves (similar to L2-regularization) and has large
partitions.

As mentioned above, the tree boosting iteratively enlarges
the ensemble of decision trees, then the prediction of the t-th
iteration can be defined as

ŷ
(t)
i =

t∑
j=1

gj(xi) = ŷ
(t−1)
i + gt(xi) (9)

The objective function (7) at step t can be modified as

Ct =

N∑
i=1

l(yi, ŷ
(t−1)
i + gt(xt))+ �(gt) (10)
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Apply a Taylor expansion on the objective function (10) to second
order and then the final objective function at step t can be
approximated as

Ct ≈Ct−1 + 1Ct (11)

=Ct−1 + bil(yi, ŷ
(t−1)
i )gt(xi)+

1

2
aigt(xi)

2 + �(gt) (12)

where

ai =∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) (13)

bi =∂2
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) (14)

Let j : Ij = {i : qt(xi) = j} denotes the set of point xi mapped to
leaf, Bj =

∑
i∈Ij

bi and Aj =
∑

i∈Ij
ai. Then we can rewrite the

1Ct as

1Ct =

T∑
j=1

[Bjwj +
1

2
(Aj + λj)w

2
j ]+ λT (15)

To find the optimal weightwj of leaf j for a fixed tree structure,
q(x) can be obtained by applying the following equation

w
opt
j = −

Bj

Aj + λ
(16)

plugging back into 1Ct gives

1C
opt
t = −

1

2

K∑
j=1

B2j

Aj + λ
+ γT (17)

It is clear that 1C
opt
t measures the in-sample performance of gt

and we should find the decision tree that minimizes this value.
However, in practice, this is impossible to enumerate all possible

trees over the data and find the tree which can minimize 1C
opt
t .

Instead, an approximate greedy algorithm runs to optimize one
level of the tree at a time by trying to find optimal splits of the

data, leading to a tree with a local minimum of 1C
opt
t , which is

then added to the ensemble.
For the multi-label multi-class classification problem, we

utilize XGBoost as classifiers and adopt the binary relevance
strategy (Boutell et al., 2004) to constructm binary classifiers.

2.3. CNN-XGBoost Model
Figure 1 gives the overall structure of the CNN-XGBoost
model for protein subcellular location prediction. The input
of the model is a one-dimensional vector and constructed
by the position specific scoring matrices (PSSM) and proteins
interaction scoringmatrix which are extracted from STRING and
GO terms semantic similarities. On this basis, a protein can be
expressed as L × 1 vector ( L is the number of sequences in
training set), analog image data equivalent to a protein is a one-
dimensional “image” with 1 channels. So the input is a L × 1
matrix.

After obtaining the proper feature representations by the
trained CNN, compared with the classic CNN, our CNN-
XGBoost model replaces the soft-max layer of CNN with
XGBoost to predict the localization of subcellular of proteins,
which enables features automatically obtained from input and
provides more precise and efficient classification.

3. RESULTS

3.1. Dataset
To verify the performance of our method, we employ three
protein datasets: the Hum-mPloc3.0, the BaCelLo animals, and
the Hoglund. Table 1 gives the details of these datasets. The
train set of Hum-mPloc 3.0 consists of 3,122 proteins and
1,023 proteins own more than one label. The test set of
Hum-mPloc 3.0 consists of 379 proteins, among which 120
proteins belong to multi-label proteins. Each protein in Hum-
mPloc 3.0 is assigned at least one label of 12 subcellular
locations (Centrosome, Cytoplasm, Cytoskeleton, Endoplasmic
reticulum, Endosome, Extracellular, Golgi apparatus, Lysosome,
Mitochondrion, Nucleus, Peroxisome, and Plasma membrane).

For the BaCelLo dataset, there are four subcellular locations:
Cytoplasm, Mitochondrion, Nucleus, and Secreted. The size of
the training set is set to 2,597 and the testing set consists
of 576 proteins. All the proteins of BaCelLo dataset are of a
single label. In the Hoglund dataset, the training set includes
nine subcellular locations (Nucleus, Cytoplasm, Mitochondrion,
Endoplasmic reticulum, Golgi apparatus, Peroxisome, Plasma
membrane, Extracellular space, Lysosome, and Vacuole), and
the test consists of 158 proteins with six subcellular locations
(Endoplasmic reticulum, Golgi apparatus, Peroxisome, Plasma
membrane, Extracellular space, and Lysosome).

3.2. Measurements
A widely-applied method for evaluating a mutli-label multi-class
classifier is to compute the ACC and F1 values. ACC is the average
of ACCxi of all proteins in the testing set, calculated for protein xi
is

ACCxi =
TPxi

TPxi + FPxi + FNxi

(18)

where TP, FP, and FN are true positive, false positive, and false
negative, respectively. The F1 score considers both the harmonic
mean of precision and recall of subcellular location yj, defined as
follows:

precisionyj =

∑
xi∈Pj

TPxi
TPxi+FPxi

|Pj|

recallyj =

∑
xi∈Tj

TPxi
TPxi+FNxi

|Tj|

F1yj =
2× precisionyj × recallyj

recallyj + precisionyj

(19)

where Tj and Pj are the set of proteins for true location yj and
the set of proteins for predicted locations yj respectively.
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TABLE 1 | Dataset Summary.

Hum-mLoc 3.0 BaCelLo Hoglund

Training Testing Training Testing Training Testing

No. Proteins 3,126 379 2,597 576 5,959 158

No. Labels 4,229 541 2,597 576 5,959 158

No.Locations 12 4 6

TABLE 2 | Comparision of CNN-XGBoost on Hum-mPloc 3.0 dataset with other methods.

Location iLoc-Human WegoLoc mLASSO-Hum Hum-mLoc 3.0 PSL-

Recommender

CNN-XGBoost

pre re F1 pre re F1 pre re F1 pre re F1 pre re F1 pre re F1

Centrosome 0 0 0 0.75 0.14 0.23 0.59 0.59 0.59 0.75 0.55 0.63 0.94 0.75 0.83 0.79 0.50 0.61

Cytoplasm 0.5 0.54 0.52 0.69 0.53 0.60 0.93 0.51 0.66 0.76 0.73 0.74 0.79 0.81 0.80 0.85 0.89 0.87

Cytoskeleton 0 0 0 0.32 0.34 0.33 0.9 0.22 0.35 0.8 0.68 0.74 0.93 0.77 0.84 0.89 0.80 0.85

ER 0 0 0 0.73 0.2 0.31 0.74 0.49 0.59 0.83 0.37 0.51 0.9 0.7 0.79 0.97 0.71 0.82

Endosome 0 0 0 0.25 0.07 0.11 0.38 0.2 0.26 0.58 0.47 0.52 0.57 0.37 0.45 0.80 0.27 0.40

Extracellular 0.62 0.62 0.62 0.67 0.77 0.71 0.16 0.69 0.26 0.5 0.46 0.48 0.66 0.71 0.68 0.80 0.62 0.70

Golgi apparatus 0.6 0.3 0.4 0.6 0.15 0.24 0.72 0.65 0.68 0.69 0.45 0.55 0.88 0.61 0.72 0.80 0.60 0.69

Lysosome 0.5 0.13 0.2 0.2 0.13 0.15 0.55 0.75 0.63 0.71 0.63 0.67 1 0.55 0.71 1.00 0.75 0.86

Mitochondrion 0.95 0.33 0.49 0.79 0.73 0.76 0.83 0.88 0.85 0.78 0.75 0.76 0.92 0.88 0.90 0.96 0.80 0.87

Nucleus 0.54 0.7 0.61 0.65 0.64 0.64 0.85 0.7 0.76 0.75 0.71 0.73 0.81 0.92 0.87 0.83 0.91 0.87

Peroxisome 1 0.5 0.67 0.5 1 0.67 0.29 1 0.44 1 1 1 1 1 1 1 1 1

Plasma membrane 0.42 0.33 0.37 0.44 0.53 0.48 0.58 0.56 0.57 0.65 0.44 0.52 0.78 0.74 0.76 0.89 0.75 0.81

ACC-mean 0.41 0.50 0.65 0.63 0.77 0.78

F1-mean 0.32 0.44 0.56 0.65 0.78 0.80

The bold marks the first best result and the underline marks the second best result.

TABLE 3 | Comparison of CNN-XGBoost ACC/F1-mean on other proteins

datasets with other methods.

BaCelLo Hoglund

MultiLoc2-LowRes 0.73/0.76 –

MultiLoc2-HighRes 0.68/0.71 0.57/0.41

BaCelLo 0.64/0.66 –

Hum-mPloc 3.0 0.86/0.84 0.64/0.59

PSL-Recommender 0.94/0.92 0.92/0.90

CNN-XGBoost 0.94/0.94 0.94/0.92

The bold marks the first best result and the underline marks the second best result.

3.3. Results and Discussions
To verify the performance of our approach, some typical protein
subcellular location tools including Hum-mPLoc 3.0 (Zhou et al.,
2016), YLoc+ (Briesemeister et al., 2010), iLoc-Hum (Chou et al.,
2012) , WegoLoc (Chi and Nam, 2012), mLASSO-Hum (Wan
et al., 2015), and PSL-Recommender (Jamali et al., 2018) were
compared to our method. The F1 score and ACC for each
subcellular localization are summarized in Table 2 and Figure 2

for Hum-mploc 3.0 dataset. As seen in Table 2 and Figure 2,
the CNN-XGBoost outperforms the mean value of F1 score
and ACC of all other methods. Also, in 7 out of 12 subcellular
locations, CNN-XGBoost has the best performance among all

the methods while in the other three locations it has the second
best performance. It is only in centrosome and endosome that
CNN-XGBoost shows unsatisfactory results. As seen in Table 3,
the CNN-XGBoost slightly outperforms the second best method
by both mean F1 score and ACC.

In addition, we also evaluated our method on the DeepLoc
dataset, compared to the DeepLoc, our method provides
slightly better prediction with significantly lighter model,
meanwhile, it is known that DeepLoc can not handle multilabel
multiclass problem, whereas our method still shows outstanding
performance.

4. CONCLUSIONS

In order to make balance of the classification performance
and the complexity when training the model for the protein
subcellular location in Alzheimer’s disease, this paper proposes
a prediction framework integrating CNN and XGBoost, taking
advantage of the outstanding ability of feature expression of
CNN, and the good classification performance of XGBoost.
Experiments are implemented on the Hum-mPloc3.0, the
BaCelLo animals, and the Hoglund database, and the results
demonstrate that the new method outperforms the typical
machine learning based tools. Further work will focus on the
verification of our model onmore datasets, especially the datasets
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related to Alzheimer’s disease, and the optimization of the
structure of CNN utilized in the model.
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