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With the advances in high-throughput technologies, millions of somatic mutations have

been reported in the past decade. Identifying driver genes with oncogenic mutations from

these data is a critical and challenging problem. Many computational methods have been

proposed to predict driver genes. Among them,machine learning-basedmethods usually

train a classifier with representations that concatenate various types of features extracted

from different kinds of data. Although successful, simply concatenating different types of

features may not be the best way to fuse these data. We notice that a few types of data

characterize the similarities of genes, to better integrate themwith other data and improve

the accuracy of driver gene prediction, in this study, a deep learning-based method

(deepDriver) is proposed by performing convolution on mutation-based features of genes

and their neighbors in the similarity networks. The method allows the convolutional neural

network to learn information within mutation data and similarity networks simultaneously,

which enhances the prediction of driver genes. deepDriver achieves AUC scores of

0.984 and 0.976 on breast cancer and colorectal cancer, which are superior to the

competing algorithms. Further evaluations of the top 10 predictions also demonstrate

that deepDriver is valuable for predicting new driver genes.

Keywords: deep learning, convolutional neural networks, driver gene prediction, cancer mutations, gene similarity

network

1. INTRODUCTION

Cancer is driven by various types of mutations, such as single nucleotide variants (SNVs), insertions
or deletions (Indels) and structural variants. Identifying driver genes whose mutations cause cancer
could help us decipher the mechanism of cancer, which is beneficial to the development of novel
drugs and therapies.

With the advances in next-generation sequencing technologies, massive amounts of cancer
genomic data have been published, which elevate the identification of driver genes. Currently,
many computational methods have been proposed. Based on their rationale, existing methods
can be divided into several types. A typical kind of methods is those based on the mutation
frequency. These methods find “significantly mutated genes” (SMG) whose mutation rates are
significantly higher than the background mutation rate and judge them as driver genes. For

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00013
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00013&domain=pdf&date_stamp=2019-01-29
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:faw341@mail.usask.ca
https://doi.org/10.3389/fgene.2019.00013
https://www.frontiersin.org/articles/10.3389/fgene.2019.00013/full
http://loop.frontiersin.org/people/632832/overview
http://loop.frontiersin.org/people/674493/overview
http://loop.frontiersin.org/people/567625/overview
http://loop.frontiersin.org/people/59633/overview


Luo et al. deepDriver for Cancer Driver Genes

instance, OncodriveCLUST finds positions with mutation rates
higher than the background mutation rate and predicts driver
genes from clusters generated based on these seed positions
(Tamborero et al., 2013). MutsigCV identifies SMGs by building
a patient-specific background mutation model with gene
expression data and DNA replication time data (Lawrence
et al., 2014). However, due to the heterogeneity of tumors,
constructing a reliable background mutation model is difficult
(Cheng et al., 2015), which limits the performance of frequency-
based methods. Another type of methods predicts driver genes
by network analysis. For example, DawnRank predicts driver
genes by ranking the genes in a gene interaction network (GIN)
with PageRank algorithm (Hou andMa, 2014). SCS uses network
control strategy to find driver mutations that can drive the
regulation network from the normal state to disease states (Guo
et al., 2018). Considering that GINs are downloaded from online
databases, such as BioGrid (Chatr-Aryamontri et al., 2017) and
HPRD (Keshava Prasad et al., 2008), which contain many false
positives, network-based methods need more accurate GIN to
improve their prediction accuracy.

As the increasing number of experimentally validated driver
genes, researchers start to use machine learning algorithms to
predict new driver genes. These methods usually train a classifier
with features characterizing the functional impact of mutations.
For instance, CHASM trains a random forest classifier with
86 predictive features (Wong et al., 2011). CanDrA trains an
SVM with 95 features obtained from 10 functional impact-based
algorithms, such as SIFT (Kumar et al., 2009) and CHASM. Since
the number of driver genes is much smaller than that of passenger
genes, selecting gold-standard driver genes (positive data) and
a set of high-quality nonfunctional passenger genes (negative
data) is difficult for machine learning-based methods. However,
with reasonable downsampling, these methods can also achieve
better performance than other types of algorithms. Tokheim
et al. propose a random forest algorithm (known as 20/20+) and
compare it with seven classical driver gene prediction algorithms
[ActiveDriver (Reimand and Bader, 2013), MuSiC (Dees et al.,
2012), MutsigCV (Lawrence et al., 2014), OncodriveCLUST
(Tamborero et al., 2013), OncodriveFM (Gonzalez-Perez and
Lopez-Bigas, 2012), OncodriveFML (Mularoni et al., 2016) and
TUSON (Davoli et al., 2013)] in Tokheim et al. (2016). Results
show that 20/20+ performs best among the eight algorithms,
which demonstrate that machine learning models are able to
predict driver genes given the limited known driver-disease
associations.

At present, most machine learning-based methods use
random forest and SVM as the classifier. To improve the
prediction accuracy, various kinds of features extracted from
different types of data are used to train the classifier. Despite
the increase of the dimensionality, simply concatenating all these
features may not be the best approach to integrate different types
of data. Considering that several types of data can be used to
characterize the similarities of genes, if we construct similarity
networks with these data and combine themwith other predictive
features, the prediction accuracy of the algorithms should be
improved compared to that obtained from a simple feature
concatenation. Thus, in this study, a deep learning-based method

is proposed to predict driver genes by combining similarity
networks with features that characterize the functional impact
of mutations (deepDriver). Specifically, candidate driver genes
are predicted by a convolutional neural network (CNN) trained
with mutation-based feature matrix constructed based on the
topological structure of a similarity network. The algorithm
leverages the similarity of gene expression patterns and the
functional impact of mutations simultaneously, which can better
fuse these two types of data and improve the prediction accuracy.
To our knowledge, this is the first time that CNN is combined
with similarity network to predict driver genes.

In the rest of the paper, section 2 describes the materials and
methods used in the study. Section 3 analyzes the results of the
evaluation. Section 4 draws some conclusions.

2. MATERIALS AND METHODS

2.1. General Model
CNN is successful in many areas, such as image classification
and speech recognition. The key component of a CNN
is the convolutional (CONV) layer, which helps the
model to learn local and global structures from the
input data. In an image classification problem, these
structures include edges, curves, corners, etc. While
in a driver gene prediction problem, traditional input
data contain distinct features that characterize different
properties of genes, which cannot be directly applied to
CNN.

We notice that pixels in a small region share the same filters
because they have similar grayscale. In a gene similarity network
(GSN), genes and their neighbors also have similar properties.
If we reconstruct the traditional input data with GSN so that
features of similar genes are close to each other, CNN can then be
applied to these reconstructed data. Instead of edges and curves
learned from the images, topological structures of the similarity
networks are learned by CNN with this strategy. In addition, the
strategy allows CNN to learn the similarities of genes and the
properties of the original input data simultaneously, which can
improve the accuracy of driver gene prediction.

Figure 1 depicts a schematic example of a 1-dimensional
CNN, which is used in our study. The model consists of five
kinds of layers: Input layer, CONV layers, pooling layers, Fully-
Connected (FC) layers, and Output layer. Given a feature matrix

φi ∈ R2k×nf constructed by the feature vectors of gi and its k
neighbors where nf is the dimension of the feature vectors of gi,
the output of a CONV layer corresponds to the input φi and the
filter wj is calculated as follows

A(i, j) = f (wjφi + bj) (1)

where bj denotes the bias corresponding to wj, f is an activation
function which is ReLU in this study. wjφi is still the dot product
of wj and φi except that the calculation is restricted to be local
spatially. Each CONV layer is followed by a pooling layer, and
the CONV-POOL pattern is repeated for several times. The
final structure of the model used for driver gene prediction is
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FIGURE 1 | Schematic 1-D CNN. In this study, each CONV layer is followed

by a pooling layer and the CONV-POOL pattern is repeated for several times.

The final structure of the model is determined by grid search.

determined by grid search, and the results are discussed in section
3.2. The construction of φi is discussed in the next section.

2.2. Network-Based Convolution
The convolution is performed by combining mutation-based
features with gene similarity networks. Many approaches can
be used to calculate the similarities of genes. In this study, to
characterize the relationships between genes in the disease states,
Pearson correlation coefficient (PCC) defined by the following
equation is used to calculate the similarities.

r(gi, gj) =

∑v
q=1(eiq − ēi)(ejq − ēj)

√

∑v
q=1(eiq − ēi)2

√

∑v
q=1(ejq − ēj)2

(2)

where ei = (ei1, ei2, . . . , eiv) denotes the expression values of gi in
v tumor samples, and ēi is the mean of ei. An undirected network
N is constructed by k-nearest neighbors (kNN) algorithm (Cover

and Hart, 1967) in which every gene is connected to genes that
have the k largest PCC scores with itself.

After obtaining N, the construction of φi used in the
convolution is depicted by Figure 2. Assuming we have obtained
a feature vector xi for each gene gi, and gs1, gs2, . . . , gsk are the k
nearest neighbors of gi in N, where pcc(gi, gs1) > pcc(gi, gs2) >

· · · > pcc(gi, gsk). Feature matrix φi ∈ R2k×nf is built as depicted
by the figure. In φi, features of similar genes are close to each
other so that they can share the same filters in the CONV layer.

2.3. Mutation-Based Features
For each gene of a specific disease, 12 features are extracted
from the mutation datasets. Table 1 lists the names and
descriptions of these features. Among them, the first eight ones
measure the fraction of a specific type of mutation among
all the mutations. The tenth and eleventh feature measure
the rate of missense mutations and non-silent mutations to
silent mutations, respectively. The last two features measure
the positional clustering of different types of mutations and are
calculated as follows

Ei =
−

∑

i pj log2 pj

log2m
(3)

For the normalized missense entropy, m is the total number of
missense mutations of gi, and pj = κj/m where κj is the number
of missense mutations in the j-th codon. For the normalized
mutation entropy,m is the total number of all types of mutations
of gi. Different mutations are binned together based on their
types, except for that missense mutations are binned based on
their codon positions, different silent mutations are divided into
their own bins. Inactivating mutations (nonsense, translation
start site, nonstop, splice site) are grouped into a single bin.

These 12 features have been used inmanymachining learning-
based methods (Vogelstein et al., 2013; Tokheim et al., 2016). To
demonstrate the superiority of our model, we did not use any
other features proposed by specific methods. In addition, during
the implementation of the competing methods (SVM, 20/20+),
only these 12 features are used to train their models.

2.4. Data Sources
In this study, deepDriver was evaluated on three types of cancer:
breast invasive carcinoma (BRCA), colon adenocarcinoma
(COAD) and lung adenocarcinoma (LUAD). The mutation data
and gene expression data of these three diseases were downloaded
from the NCI Genomic Data Commons (GDC) (Grossman et al.,
2016). For the mutation data, quality control was applied by
filtering out hypermutated samples (> 1, 000 intragenic somatic
variants) (Vogelstein et al., 2013). In total, 228,046, 168,746, and
287,667 somatic variants were obtained for BRCA, COAD, and
LUAD, respectively. For gene expression, datasets of 1,102 BRCA,
478 COAD and 551 LUAD primary tumor samples measured
by RNA-Seq were downloaded. We chose the data normalized
by FPKM and converted the values to TPM by the method
proposed in Pachter (2011). Three steps were then performed
to remove the genes that are barely expressed in tumor samples.
First, TPM values <1 were considered unreliable and replaced
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FIGURE 2 | Construction of φi . Given the feature vectors of gi and its k nearest neighbors gs1,gs2, . . . , gsk , a feature matrix φi is constructed by arranging the 2k

vectors into a 2k × nf matrix, which is then used in the convolution.

TABLE 1 | Twelve features extracted from mutation data.

No. Name Description

1 Silent fraction Fraction of silent mutations

2 Nonsense fraction Fraction of nonsense mutations

3 Splice site fraction Fraction of splice site mutations

4 Missense fraction Fraction of missense mutations

5 Recurrent missense fraction Fraction of recurrent missense

mutations

6 Frameshift indel fraction Fraction of frameshift indel

mutations

7 Inframe indel fraction Fraction of inframe indel

mutations

8 Lost start and stop fraction Fraction of lost start and stop

mutations

9 Missense to silent Ratio of missense to silent

mutations

10 Non-silent to silent Ratio of non-silent to silent

mutations

11 Normalized missense

position entropy

See section 2.3

12 Normalized mutation

entropy

See section 2.3

by 0. Second, log2(TPM + 1) was applied to all TPM values.
Third, genes expressed in < 10% of all tumor samples were
removed.

Gene ids were standardized to the gene names provided by
HUGO Gene Nomenclature Committee (downloaded Aug 1,
2018) (Yates et al., 2016). Only genes that have both mutation and
expression data are kept. Finally, 13,777 genes for BRCA, 11,282
genes for COAD, and 13,731 genes for LUAD passed the quality
control.

The driver genes were collected from two sources—the Cancer
Gene Census category (CGC) (Forbes et al., 2016) and the genes
published in Bailey et al. (2018). Genes in CGC were divided into
two tiers, and we used genes in Tier 1 as driver genes because
strong evidence has proved their oncogenic role in cancer genesis.
It is of note that both oncogene and tumor suppressor gene (TSG)
are regarded as driver gene in this study. In total, 37 driver genes
for BRCA, 42 driver genes for COAD and 12 driver genes for
LUADwere collected fromCGC. The Bailey et al.’s dataset (Bailey
et al., 2018) contains 299 driver genes associated with 33 types of
cancer. In total, 29 driver genes for BRCA, 20 driver genes for
COAD and 20 driver genes for LUAD were collected.

To validate the performance of the algorithm, the structure
of the model was first determined by the grid search using the
driver genes of BRCA and COAD collected from CGC. Then, the
optimal model was directly applied to LUAD without fine-tuning
the hyperparameters. Similarly, when the model was trained with
the driver genes published in Bailey et al. (2018), the optimal
hyperparameters were used without fine-tuning.

2.5. Evaluation Metrics
The algorithm was evaluated in two steps. In the first step,
deepDriver was compared with 20/20+ and SVM in terms of
the AUC (area under the receiver operating characteristic (ROC)
curve) scores obtained from 10-fold cross-validation. ROC curve
plots the false positive rate (FPR) against the true positive rate
(TPR) at different thresholds. FPR and TPR are defined as follows

FPR =
FP

FP + TN

TPR =
TP

TP + FN

(4)

where TP, FP, TN, and FN are the numbers of true positives, false
positives, true negatives, and false negatives, respectively. In this
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study, a true positive is a driver gene predicted as a driver gene,
a false positive is a passenger gene predicted as driver gene, a
true negative is a passenger gene predicted as a passenger gene,

FIGURE 3 | ROC curves of the three algorithms obtained on the dataset of

BRCA. The red, green, and magenta lines depict the ROC curves of

deepDriver, 20/20+ and SVM, respectively. The AUC value of deepDriver is

0.984, which is at least 15.1% higher than that of the other two algorithms.

and a false negative is a driver gene predicted as a passenger
gene. Algorithm with the highest AUC score performs the
best.

FIGURE 5 | ROC curves of the three algorithms obtained on the dataset of

LUAD. The red, green, and magenta lines depict the ROC curves of

deepDriver, 20/20+ and SVM, respectively. The AUC value of deepDriver is

0.998, which is at least 24.9% higher than that of the other two algorithms.

FIGURE 4 | ROC curves of the three algorithms obtained on the dataset of COAD. The red, green, and magenta lines depict the ROC curves of deepDriver, 20/20+

and SVM, respectively. The AUC value of deepDriver is 0.976, which is at least 25.5% higher than that of the other two algorithms.
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Since the number of passenger genes is much larger than that
of the driver genes, a method is needed to solve the imbalanced
issue. Currently, two types of methods can be used to solve
the imbalanced problem: data level methods and classifier level
methods (Buda et al., 2018). In this study, a data level method,
downsampling, was used to reduce the size of the passenger
genes. Specifically, a subset of passenger genes was randomly
selected from all the passengers so that the numbers of positive
samples (driver genes) and negative samples (passenger genes)
are equal. This approach was run for five times which generated
five sets of data. During the cross-validation, for each set of data,
all the positive and negative samples were randomly split into ten
groups, and the CNNmodel was validated for ten rounds. In each
round, one group of samples were used as the testing data while
the rest nine groups of samples were used as the training data.

Additionally, since passenger genes are barely reported in
existing literature, in this study, genes that have not been reported
as cancer driver genes (unknown genes) were regarded as
passenger genes. This strategy was used because of the following
two reasons. First, the numbers of the selected passenger genes
and the undiscovered driver genes are both much less than that
of the unknown genes. Potential driver genes only have a small
change to be selected as passenger genes (Davoli et al., 2013).
Second, the final results were obtained by taking the average
predictions of the five sets of data. This bagging strategy would
improve the stability and accuracy of the results and reduce the
impact of a potential driver gene selected as a passenger gene.
Finally, the 10-fold cross-validation was run for five times for
each dataset to reduce the influence of random shuffling, and the
average AUC score was used to evaluate the performance of the
algorithms.

In the second step, all the unknown genes were ranked by their
probabilities of being driver genes, and the top 10 predictions
were searched from the existing literature to check whether our
predictions are in concert with existing studies. We also ranked
the unknown genes by SVM, 20/20+ and OncodriveCLUST and

FIGURE 6 | Learning curve for BRCA.

compared their results with those of deepDriver in terms of the
number of genes having been analyzed in existing literature.

2.6. Implementation
The algorithm was implemented using Keras (Chollet, 2015)
with TensorFlow (Abadi et al., 2015) as the backend engine.
We have tested the program on both CPU and GPU versions
of TensorFlow and the model can be efficiently trained with or
without the help of GPU. A reference implementation is available
at GitHub.

3. RESULTS

3.1. Hyperparameters
In this study, the architecture of CNN is determined by the
following hyperparameters.

FIGURE 7 | Learning curve for COAD.

FIGURE 8 | Learning curve for LUAD.
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1. The number of the CONV layers (ncl)
2. The number of the FC layers (nfl)
3. The number of the nodes in the CONV layers (ncn)
4. The number of the nodes in the FC layers (nfn)

These hyperparameters were determined by grid search, with ncl
searched from {1, 2, 3, 4}, nfl searched from {1, 2, 3}, ncn searched
from {12, 24, 48} and nfn searched from {24, 48, 96}. The optimal
values of ncl, nfl, ncn, and nfn are 2, 1, 24, and 48, respectively. In
addition, zero padding was used in the CONV layers except the
first one. The size of the filters, the window size of the pooling
layers and the stride sizes used in the CONV layers and the
pooling layers were all empirically set to 2.

The number of neighbors used by kNN algorithms was also
determined by grid search. We searched k from {3, 5, 7, 9, 11,
13, 15}, and finally, k = 9 and k = 7 were chosen for BRCA
and COAD, respectively. In fact, the AUC scores were all above
0.950 when 7 ≤ k ≤ 15. Based on our previous study, k = 7 is
enough to generate high-quality similarity networks (Luo et al.,
2017). Thus, k = 7 was used when the dataset of LUAD was
analyzed by our deepDriver. Meanwhile, for other types of cancer
not discussed in this study, k = 7 is also recommended when the
similarity network is constructed.

For 20/20+, a random forest of 200 trees was used based on the
suggestions of Tokheim et al. (2016). For SVM, the model was
implemented with a linear kernel and RBF kernel. The penalty
parameter C was searched from {0.1, 0.01, 0.001, 1, 10, 100,
1,000}, and γ was searched from {1/12, 0.001, 0.0001, 0.00001}.
Finally, for BRCA and COAD, SVM performed the best with an
RBF kernel, whenC = 1, γ = 0.0001; for LUAD, SVMperformed
the best with an RBF kernel, when C = 1, 000, γ = 0.00001.

3.2. Cross-Validation
Figures 3–5 show the results of the ROC curves and the
corresponding AUC scores of deepDriver, 20/20+ and SVM on
BRCA, COAD and LUAD, respectively. According to the figures,

FIGURE 9 | ROC curves of deepDriver obtained from the second sets of

driver genes.

deepDriver achieved AUC scores of 0.984, 0.976, and 0.998 on
BRCA, COAD, and LUAD, respectively, which were at least 15.1%
higher than those of the two competing algorithms, especially
for COAD and LUAD where the AUC scores of the competing
algorithms were <0.750.

To further demonstrate that the model was not overfitted, the
learning curves were plotted using the datasets of the three types
of cancer. For each type of cancer, 80% of the total samples were
used as training data while the rest 20% samples were left to test
the performance of the model. Figures 6–8 show the results of
the learning curves. The AUC scores obtained from the testing
set improved with the increase of the number of the training
samples, which demonstrates that the model is not overfitted.
In the meantime, the AUC scores obtained with a small amount
of samples also demonstrate that the model is able to produce
meaningful results even if the number of the known driver genes
is <10.

TABLE 2 | Top 10 predictions of deepDriver.

Gene names References

BRCA

PTEN Kechagioglou et al., 2014

HCFC1 Gonzalez-Perez et al., 2013; Rubio-Perez et al., 2015

UTRN Cornen et al., 2014

ZNF517

STAG2 Gonzalez-Perez et al., 2013; Rubio-Perez et al., 2015

ZFP36L1 Loh et al., 2017

ZNF91

VPS13C

DST

FBXW7 Cao et al., 2016

COAD

AMER1

SOX9 Prévostel and Blache, 2017

NRAS Meriggi et al., 2014

MTOR Wang and Zhang, 2014

ATM AlDubayan et al., 2018

ADAMTSL3

ELMO1 Zheng et al., 2017

TG

LAMA3

KMT2A

LUAD

XIST Wang et al., 2017

MALAT1 Li et al., 2018

STK11 Pécuchet et al., 2017

USH1C

HSP90AB2P

BNIP3P1

EEF1A1P9

UBE2MP1

SMAD4 Haeger et al., 2016

HERC2P3
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In addition to the driver genes collected from CGC, our
deepDriver was also validated using the driver genes published
in Bailey et al. (2018). As discussed in section 2.4, the optimal
hyperparameters obtained from the first set of drivers were
directly used to evaluate the model. Figure 9 depicts the
resulted ROC curves. Our deepDriver obtained AUC scores
of 0.985, 0.941, and 0.970 on BRCA, COAD, and LUAD,
respectively.

3.3. De novo Study
To further evaluate the performance of deepDriver, the unknown
genes were ranked by their probabilities of being driver genes
predicted by the model. Similar to the cross-validation, 5 sets of
data were used to train the model and the unknown genes were
ranked by the average probabilities. Meanwhile, we also ranked
the unknown genes using the three competing algorithms and
compared their results with those of deepDriver in terms of the

TABLE 3 | Top 10 predictions of 20/20+.

Gene names References

BRCA

KMT2C Gala et al., 2018

PTEN Kechagioglou et al., 2014

ANKRD12

NF1 Uusitalo et al., 2017

ANKHD1-EIF4EBP3

ARID4B

MCM7

MYO6

MLLT4 Gonzalez-Perez et al., 2013

CEP128

COAD

ATM AlDubayan et al., 2018

SOX9 Prévostel and Blache, 2017

LAMA3

ADAMTSL3

ELMO1 Zheng et al., 2017

OLFM1

BRINP1

ACVR1B

CNOT1

PCDH7

LUAD

LRRIQ1

HECTD4

EPB41L3 Kikuchi et al., 2005

NF1 Redig et al., 2016

CEP350

PRKDC

APC

MYH9

POSTN

FN1

number of genes that have been studied as drivers in existing
literature.

Table 2 shows the top 10 predicted driver genes of deepDriver.
Six out of the 10 genes have been studied in existing literature
or databases as potential driver genes of BRCA. The ninth
gene “DST” was found to have the potential to drive ductal
carcinoma in situ to breast cancer (Lee et al., 2012). Five
out of the 10 genes have been studied as driver genes
of COAD in the existing literature. Meanwhile, among the
rest 5 genes, “AMER1” and “ADAMTSL3” were found to
be frequently mutated in COAD (Koo et al., 2007; Sanz-
Pamplona et al., 2015). “LAMA3” were predicted as biomarkers
which could be used to diagnose COAD in the early stage
(Choi et al., 2015). “KMT2A” belongs to the KMT2 family
which is related to COAD (Rao and Dou, 2015). Four out
of 10 genes have been studied as driver genes of LUAD.
The tenth gene “HERC2P3” contains a microsatellite locus

TABLE 4 | Top 10 predictions of SVM.

Gene names References

BRCA

VPS13C

UTRN Cornen et al., 2014

HCFC1 Gonzalez-Perez et al., 2013; Rubio-Perez et al., 2015

MLLT4 Gonzalez-Perez et al., 2013

ZNF91

STAG2 Gonzalez-Perez et al., 2013; Rubio-Perez et al., 2015

FBXW7 Cao et al., 2016

MALAT1

NRK

BAZ2B

COAD

ATM AlDubayan et al., 2018

NRAS Meriggi et al., 2014

MTOR Wang and Zhang, 2014

SOX9 Prévostel and Blache, 2017

ADAMTSL3

ELMO1 Zheng et al., 2017

AMER1

KMT2B

FBN2

KMT2A

LUAD

XIST Wang et al., 2017

MALAT1 Li et al., 2018

USH1C

SNRPN

STK11 Pécuchet et al., 2017

SMAD4 Haeger et al., 2016

POLA1

MAGEE1

BRAF

CTNNB1
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TABLE 5 | Top 10 predictions of OncodriveCLUST.

Gene names References

BRCA

ACTN4 Honda, 2015

AFF2

ATP2B3

AVPR1B

CASR

CMYA5

DIS3L

EPB41L2

FBXW8

KCND3

COAD

AKAP12 He et al., 2018

C3orf20

COL1A2 Yu et al., 2018

DOK1 Friedrich et al., 2016

FNDC1

MSRB3

NCOA2 Yu et al., 2016

NPHS1

NRAP

PCDHB13

that can precisely discriminate LUAD samples and non-
tumor samples (Velmurugan et al., 2017). As for three
competing algorithms, Tables 3–5 show their prediction results.
In summary, deepDriver performed better than the three
competing algorithms in predicting new cancer drivers. Its
prediction results were in concert with existing studies which

further reveal the value of deepDriver in predicting cancer driver
genes.

4. CONCLUSION

In this study, we proposed an algorithm to predict cancer
driver genes with CNN. The method combined CNN
with similarity networks so that the functional impact of
mutations and similarities of gene expression can be learned
simultaneously, which improve the accuracy of driver gene
prediction. Experiments performed on BRCA, COAD, and
LUAD then showed that deepDriver was superior to the
competing algorithms in terms of both cross-validation and de
novo prediction.

In the future, similarity networks calculated by different
strategies and predictive features extracted by other algorithms
can both be used to improve the prediction accuracy. Meanwhile,
the algorithm can be applied to the pancancer dataset to predict
generic cancer driver genes. Since the total number of cancer
driver genes is much higher than that of a specific type of cancer,
candidate driver genes can also be further classified into TSG and
oncogene on the pancancer dataset.
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NOMENCLATURE

Resource Identification Initiative
Genomic Data Commons Data Portal (GDC Data Portal),
RRID:SCR_014514

COSMIC-Catalog Of Somatic Mutations In Cancer,
RRID:SCR_002260

HGNC, RRID:SCR_002827
tensorflow, RRID:SCR_016345
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