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CircRNAs (circular RNAs) are a class of RNAs generated from circularization with
multiple novel functions. Recent studies have revealed the aberrant expression and
aberrant functions of circRNAs in various tumors; thus, circRNAs have been recognized
as promising cancer biomarkers. However, the underlying mechanisms behind their
aberrant expression and functions remain unclear. In this review, we discuss at length the
cancer-specific deregulation of circRNAs and the potential underlying aberrant events in
circRNA biogenesis, localization and removal in cancer cells.
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BACKGROUND

CircRNAs are a type of RNA in eukaryotes that are spared from exonucleolytic degradation by
RNase R given their circular structures and subsequent lack of accessibility of RNase to 3′ and 5′

ends. In 1976, circRNAs were first discovered in a viroid, and they were considered insignificant
byproducts for a long period of time (Sanger et al., 1976). Until the last decade, rapid advances
in RNA-sequencing have promoted investigations into circular RNAs. CircRNAs can be generally
divided into five categories: exonic circRNAs (ecircRNA), circular RNAs from introns (ciRNAs),
exon-intron circRNAs (EIciRNA), intergenic circRNAs, and antisense circRNAs (Memczak et al.,
2013; Qian et al., 2018). EcircRNAs containing exclusively exon(s) represent the major class,
accounting for approximately 85% of all types of circRNAs (Qian et al., 2018). CiRNAs are
generated from intron lariats depending on two specific RNA motifs at specific sites, but so far
ciRNAs haven’t been revealed to be involved in cancer (Zhang et al., 2013). EIciRNAs consist of
both exons and introns that typically localize and function in the nucleus (Li Z. et al., 2015). Two
additional circRNAs, namely intergenic circRNAs and antisense circRNAs are not common and are
not fully understood to date (Qian et al., 2018). Different types of circRNAs are generated from
pre-mRNAs (precursor mRNAs) via different mechanisms (Chen and Yang, 2015; Zhang Y. et al.,
2016), such as exon skipping, intron pairing and RNA-binding proteins, that combine to drive the
head-to-tail junctions to join together as previously reviewed (Dragomir and Calin, 2018).

In this review, we focus on the new advances in the abnormal expression and functions of
circRNAs in cancers, which may account for tumorigenesis and progression. An increasing number

Abbreviations: circRNA, circular RNA; Mbl, muscleblind; m6A, N6-methyladenosine; QKI, quaking.
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of studies have emerged to reveal how circRNAs alter the behavior
of tumor cells, but there are no reports on the mechanisms
responsible for their abnormal expression. Based on recent
findings on circRNAs, we discuss possible mechanisms behind
the deregulation of circRNA in cancers to provide insights into
the etiology, diagnosis and therapy of cancers.

ABERRANT EXPRESSION AND
FUNCTIONS OF CIRCRNAS IN CANCER

In normal tissues, the expression of circRNA exhibits the
following characteristics: (1) Conservation of circRNA
expression. A study comparing expression patterns of circRNAs
among species suggested ancient and conserved features of
circRNA expression. The expression of circRNA isoforms is
likely to be derived from orthologous genes, and the functional
sequence elements of circRNAs are conserved in subsets (Wang
P.L. et al., 2014; Barrett and Salzman, 2016; Dong and Ma,
2017). (2) The complexity of circRNA expression (Li X. et al.,
2018). A previous study concluded that during evolution, the
circRNA expression pattern becomes increasingly complex
as the distribution of orientation-opposite complementary
sequences in their flanking introns becomes increasingly diverse
(Dong and Ma, 2017). From the perspective of individual genes,
various circRNAs can be generated from one sequence (Gao
et al., 2016). (3) Cell/tissue-specific expression (Zhang Y. et al.,
2016). CircRNAs are extraordinarily abundant and diverse in
the brain compared with other tissues, and their expression
in brain tissue is increased several fold compared with their
linear isoforms (Rybak-Wolf et al., 2015). Host genes coding
synaptic proteins may serve as a source of abundant circRNA.
Recent work in human hematopoietic cells reveals a circular
RNA cell-type specific expression pattern (Nicolet et al., 2018).
(4) Stage-specific expression. Dynamic expression of certain
circRNAs has been observed in some specific developmental
stages, such as human pre-implantation embryos (Dang et al.,
2016), human fetal development (Szabo et al., 2015), and aging
(Westholm et al., 2014). During the differentiation of cells, such
as neural cells and myoblasts, abrupt fluctuation of circRNA
expression has been reported (Salzman et al., 2013).

The aberrant expression of circRNAs is prevalent in a large
number of diseases, especially tumors (Haque and Harries, 2017;
Lei et al., 2018; E et al., 2018). As a result, circRNAs have been
proposed as biomarkers of diagnosis, prognosis or therapy in
specific cancers (Meng et al., 2017; Qian et al., 2018; Wang D.
et al., 2018; Yang and Wang, 2018; Zhou J. et al., 2018) based
on the convenience of detecting circRNA in the blood plasma
of patients. The abnormal expression of circRNAs in cancer is
usually accompanied by abnormal functions (Bachmayr-Heyda
et al., 2015; Patop and Kadener, 2018).

Abnormal
circRNA/lncRNA/miRNA/mRNA Loop
A circRNA called Cdr1as was first discovered as a “miRNA
sponge” in human and mouse brains in 2013 (Hansen et al.,
2013). CircRNAs, as competitive endogenous RNAs (ceRNAs)

with linear mRNAs binding to miRNAs, enhance the expression
of target genes (Thomson and Dinger, 2016) and affect
the biological behaviors of multiple tumors. For example,
the hsa_circ_0007534/miR-761/ZIC5 axis promotes glioma by
promoting glial cell proliferation and migration (Li G.F. et al.,
2018), and circ-ANAPC7/miR-181 may participate in acute
myeloid leukemia pathogenesis (Chen H. et al., 2018). Other
examples of circRNAs functioning as miRNA sponges in cancer
processes, such as proliferation, migration, and angiogenesis, are
presented in Figure 1 (Mignacca et al., 2016; Liu et al., 2017;
Zhong Z. et al., 2017; Dai et al., 2018; Wang H. et al., 2018).
In addition, lncRNA (long non-coding RNA), circRNA and mi-
RNA interact with each other in a complicated manner, and
they combine as RNA networks in cells (Kleaveland et al., 2018).
The circRNA/lncRNA/miRNA/mRNA loop is involved in cancer
such as bladder cancer (Li M. et al., 2018) due to the complex
associations among circRNAs, lncRNAs, miRNA, mRNA and
cancer (Nan et al., 2017; Kleaveland et al., 2018).

Aberrant Transcriptional Regulation or
Aberrant RNA Splicing
The patterns of circRNAs in transcriptional regulation in the
nucleus may have similarities with some lncRNAs in cancer
(Eidem et al., 2016; Schmitt and Chang, 2017). However, the
regulatory roles of lncRNAs in transcription are considerably
more varied as they accumulate and act in both cis and trans,
whereas circRNAs accumulate and act in cis (Chen L.L., 2016).
The methods for transcriptional regulation include interaction
with Pol II or other associated enzymes (Zhang et al., 2013;
Li Z. et al., 2015) and RNA:DNA hybrid formation (Conn
et al., 2017). For example, EIcircRNAs such as circEIF3J and
circPAIP2 promote the transcription of the host genes through
interplay with U1 snRNP, Pol II, and the promoters in HeLa cells
and HEK293 cells (Li Z. et al., 2015). However, whether these
functions exist in other cancer cells remains unknown. Another
study in Arabidopsis found that the SEP3 exon 6 circRNA binds
to DNA as a R-loop, inhibiting transcription (Conn et al., 2017).
Besides these function, circRNAs are involved in RNA splicing via
competition with pre-mRNA splicing or as novel small nuclear
RNAs (snRNAs) in splicing (Qin et al., 2018). For example, the
circularization of circMbl from the second exon of the splicing
factor muscleblind competes with canonical pre-mRNA splicing
(Ashwal-Fluss et al., 2014). As a downregulated biomarker in
non-small cell lung cancer, circ-UBR5 binds QKI, NOVA1, and
U1 snRNA in the nucleus (Qin et al., 2018).

Aberrant circRNA-Protein Complexes
(circRNPs)
CircRNAs exhibit numerous interactions with a large number of
proteins as an RBP decoy or a protein scaffold in the cytoplasm
(Du et al., 2016; Schneider et al., 2016; Abdelmohsen et al., 2017;
Fang et al., 2018). In breast cancer, circ-Ccnb1 binds H2AX and
wild-type p53 to enable p53 wild-type cell survival. However,
the p53 mutant generates circ-Ccnb1 to form a complex with
H2AX and Bclaf1, ultimately leading to cell death (Fang et al.,
2018). Another well-known circular transcript from forkhead box
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FIGURE 1 | The roles of circRNAs in cancer phenotypes and biological characteristics (proliferation, migration, invasion, and angiogenesis). First, circRNAs may
function as miRNA sponges in cancer cells. cSMARCA5 binds to miR-17-3p and miR-181b-5p to inhibit the proliferation of hepatocellular carcinoma cells, which
can be blocked by DHX9 (Yu et al., 2018). CircRNA000911 binds to miR-449a to promote migration and invasion by targeting Notch1 and nuclear factor-κB (NF-κB)
signaling (Wang H. et al., 2018). CircRNA-MYLK binds to miR-29a and activates VEGFA/VEGFR2 pathway, promoting angiogenesis in bladder cancer (Zhong Z.
et al., 2017). Second, circRNAs may be translated in cancer cells. CircGpr5 encodes a peptide that interacts with Gprc5a and circGpr5 to promote bladder cancer
(Gu et al., 2018). Third, circRNAs can bind to proteins or function as protein decoys in cancer cells. CircAGO2 can bind to HuR to drive cancer progression (Chen Y.
et al., 2018). Fourth, some circRNAs such as circ-Foxo3 can be retro-transcribed and inserted back to the genome to function as competitive RNA to disrupt the
function of miRNAs (Yang et al., 2016).

O3 (circ-Foxo3), which is suppressed in breast cancer and non-
small cell lung cancer, can bind to some transcription factors (Lu,
2017; Pelletier et al., 2017). The Circ-Foxo3-p21-CDK2 ternary
complex inhibits cell cycle progression (Du et al., 2016), and the
interaction among Circ-Foxo3, anti-senescent protein ID-1, the
transcription factor E2F1 increases in cellular senescence (Du
et al., 2017). The binding of circRNAs and proteins associated
with translation may lead to unexpected stalling in translation.
For example, CircPABPN1 inhibits the binding of PABPN1
mRNA and subsequent translation by competitively binding HuR
(Abdelmohsen et al., 2017). Another circRNA derived from the
Argonaute (AGO2) gene has the potential to bind HuR as well
(Chen Y. et al., 2018). This binding subsequently prevents AGO2

from forming the AGO2-miRNA complex and inhibits gene
silencing, which ultimately drives cancer progression (Chen Y.
et al., 2018).

Aberrant Translation
In 2017, circRNAs were first found to be translated under certain
conditions (Pamudurti et al., 2017). CircRNA translations can be
classified as IRES (internal ribosome entry site) dependent and
IRES independent (Tatomer and Wilusz, 2017). IRES-dependent
translations are generally found in circ-ZNF609 (Legnini et al.,
2017), and IRES-independent translations are generally found
in artificial circular RNAs in living HeLa cells (Abe et al.,
2015). The aberrant translation of circRNAs can alter tumor
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malignancy. For example, circ-SHPRH driven by IRES elements
can be translated into a tumor suppressor protein, which is
associated with patient survival time in glioblastoma (Begum
et al., 2018). A circRNA named Circ-FBXW7 can be translated
into functional proteins and inhibit glioma tumorigenesis (Yang
et al., 2018). Additional research in glioblastoma found that
the circular form of the long intergenic non-protein-coding
RNA p53-induced transcript (LINC-PINT) could be translated
into a peptide, which subsequently inhibits the transcriptional
elongation of some oncogenes and thus suppresses the growth
of glioblastoma (Zhang et al., 2018). Furthermore, a circRNA
named circGpr5 encodes a peptide that interacts with Gprc5a and
circGpr5 to promote bladder cancer (Gu et al., 2018).

In addition to disruption of these four functions (that is, as
miRNA sponges, in transcription regulation, in protein binding
and translation into proteins), circRNAs have the potential to
be retro-transcribed and then inserted back into the genome to
function as competitive RNA (Dong et al., 2016). Deregulation
of circ-Foxo3 and the Foxo3 pseudogene have been detected in
tumor growth, and their upregulation has been found to suppress
cancer by activating Foxo3 protein (Yang et al., 2016).

THE ABERRANT REGULATION OF
CIRCRNAS IN CANCER

As demonstrated above, aberrant expression of circRNA, i.e.,
upregulation or downregulation, is prevalent in tumors, which
can ultimately promote tumorigenesis or progression. However,
why do circRNAs exhibit aberrant expression and function
exclusively in cancer cells rather than normal cells? What factors
may contribute to circRNA deregulation in cancers? We review
and explore answers to these questions in the following section,
which is presented in Figure 2.

Aberrant Events in circRNAs Biogenesis
In normal cells, the accumulation of nascent circRNAs
contributes considerably to their detection at steady-state levels
(Ashwal-Fluss et al., 2014; Zhang Y. et al., 2016), underlining the
importance of circRNA biogenesis. This section is mainly focused
on the effect of cancer-related genetic alterations, including single
nucleotide variants (SNPs), genomic rearrangements, recurrent
somatic mutations, and copy number alterations (Manguso et al.,
2018), which modulate the expression of circRNAs through
circRNA biogenesis. We discuss aberrant events in circRNA
biogenesis in chronological order, and this section is divided into
five subsections: aberrant cis-elements, aberrant chromosomes
and genomes, aberrant transcription, aberrant spliceosomal
machinery, and aberrant trans-acting factors.

Aberrant Cis-Elements
Cis-elements typically refer to long complementary flanking
introns (repetitive or non-repetitive) in pre-mRNA. Cis-elements
play a predominant role in the regulation of circRNA production,
especially in humans (Ashwal-Fluss et al., 2014). First, as evidence
for the intron-driven hypothesis, a species comparative study
discovered that short interspersed nuclear elements (SINEs),

especially Alu elements, are responsible for robust circRNA
production in humans (Dong and Ma, 2017). Remarkably,
functions of Alu elements may be involved in their roles as
splice acceptors, translation inhibitors and genomic instability
inducers and their association with some genetic disorders
(Daniel et al., 2015; Kim et al., 2016). In addition to inverted
Alu repeat elements (IAREs), miniature intron vectors could
induce back-splicing in human genes (Liang and Wilusz, 2014).
Second, the high production of fusion circRNAs, which also
supports the intron-driven hypothesis. That is because fusion
genes generated from the translocations of chromosomes can
breed juxtaposition and intron pairing of pre-mRNAs, then the
increased intron pairing promotes the production of circRNAs
(Guarnerio et al., 2016; Babin et al., 2018). Third, the length of
flanking introns has been revealed to be positively correlated with
circRNA abundance, which means longer flanking introns drive
the generation of circRNAs (Westholm et al., 2014). Thus, if some
mutations in complementary sequences render them mismatched
and fail to circularize, or if the length of the flanking introns are
shortened, circRNA deregulation may occur.

On the other hand, mutations in certain intronic repeats
are prevalent in cancers such as gastric cancer (Kim et al.,
2013). Intron retention in mature mRNAs is associated with a
number of human diseases, including cancer, as an orchestrated
phenomenon (Wong et al., 2016). Moreover, intron retention
contributes to tumor-suppressor inactivation (Jung and Lee,
2015). In addition, intron retention in the conversion from
EIciRNA to ecircRNA not only alters the steady-state levels of
circRNAs but also changes their localization because the intronic
sequences may function as ribonucleic nuclear retention elements
(Chen L.L., 2016).

Similar to intron mutations, editing enzymes have the
potential to diminish the complementarity of flanking introns
in cancer. For example, ADAR mainly targets Alu elements, and
aberrant ADAR activity has been linked to a variety of cancers
(Wang et al., 2017). In addition to cis-elements, alterations of
proteins such as the ribonucleoprotein named HNRNPC, which
is related to the formation of Alu elements, should be taken into
consideration (Wu et al., 2018).

Aberrant Chromosomes and Genomes
Chromosomal and genomic abnormalities such as translocation
have been linked to cancers in many studies. First, circRNAs
derived from fusion-genes are characteristic of tumors, such
as leukemia and non-small cell lung cancer (Guarnerio et al.,
2016; Tan et al., 2018). In leukemia, fusion circRNAs promote
proliferation and cause therapeutic resistance (Guarnerio et al.,
2016). In non-small cell lung cancer, fusion circRNA named
F-circEA from the EML4-ALK fusion gene has recently
been revealed to promote cell migration and invasion (Tan
et al., 2018). The possibility of circularization increases
when the chromosomes harbor translocations, which may
cause the juxtaposition of intron sequences. In other words,
genomic rearrangements generate aberrant cis-elements and
promote back-splicing (Guarnerio et al., 2016). Chromosomal
translocations have the potential to generate cancer-specific
circRNAs, the universality of which was confirmed in the models
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FIGURE 2 | Potential aberrant regulation of circRNA biogenesis, export from the nucleus and removal in cancer cells. The left part of the figure presents how
circRNAs are generated, exported from the nucleus to cytoplasm and removed in cancer cells. First, the parental gene sequences of circRNA in cancer may be
aberrant. Pre-mRNA is transcribed from DNA, and RNA PolII and transcription factors could be deregulated. CircRNAs are generated through co-transcriptional
back-splicing or post-transcriptional back-splicing from pre-mRNA with disordered spliceosomal machinery. EcircRNAs are exported from the nucleus to cytoplasm
in a manner similar to linear mRNA. In the cytoplasm, circRNAs may exhibit aberrant functions in cancer. Finally, circRNAs are degraded or exported from the cell
through exosomes in an abnormal manner. The right part of figure is a conceptual diagram corresponding to the left side of the figure.

of artificial NPM1-ALK fusion genes (Babin et al., 2018). Second,
some circular DNA tumor viruses, such as Epstein–Barr virus
(EBV), robustly generate circRNAs in a manner very similar to
aberrant genomes given that the viral genome is present in the
nucleus of the host cell in an irregular manner (Toptan et al.,
2018).

Aberrant Transcription
Promoter mutations and aberrant expression or enzymatic
activity of RNA PolII can result in transcription suspension
(Liu et al., 2013). To better understand the regulation of
circRNA transcription, further investigations of conflicts over
the order of back-splicing and transcription are required.
Although early analysis concluded that splicing events mostly
occur co-transcriptionally in most cells and tissues (Pandya-
Jones and Black, 2009; Brugiolo et al., 2013), Yang Zhang et al.
recently found that the majority of circularizations occur post-
transcriptionally (Zhang Y. et al., 2016). The necessity of a
functional 3’ end processing signal in back-splicing also supports
the post-transcriptional back-splicing (Chen and Yang, 2015).
In contrast, the co-transcriptionality of pre-mRNA processing

has been confirmed by the fact that splicing and transcription
elongation are mutually dependent (Brzyzek and Swiezewski,
2015). The head-to-tail junction reads in the chromatin-bound
newly synthesized RNA, and the competition between linear
splicing and back-splicing support co-transcriptionality as well
(Ashwal-Fluss et al., 2014); however, we remain skeptical,
and in an alternative study, we have been able to potentially
determine whether this event occurs post-transcriptionally
or co-transcriptionally based on the length of the flanking
intronic repeats: long intronic repeats are more likely to
promote co-transcriptional back-splicing (Kramer et al., 2015).
Co-transcriptional and post-transcriptional splicing facilitates
different methods of regulation. If back-splicing occurs co-
transcriptionally, the efficiency of back-splicing is strongly
influenced by the transcription elongation rate. For example, Pol
II mutants in R749H or E1126G have the capacity to slow down
or speed up transcription and circularization, respectively (Zhang
Y. et al., 2016).

Transcription factors, which are vital players in transcription,
are associated with various tumor-specific genes (Atkins et al.,
2016) and circRNAs. For example, the oncogenic transcription
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factor c-Myc regulates the expression of numerous circRNAs by
binding to the promoter regions of parental genes. These Myc-
regulated circRNAs are important in cell proliferation via the
Ras signaling pathway in cancer (Gou et al., 2017). Moreover,
transcription factors were confirmed as regulators of miRNAs
in tumorigenesis and progression, and circRNAs and miRNA
sponges may also participate in these processes. For example,
the impact of Myc on the circRNAs/miRNAs axis has also been
reported (Gou et al., 2017).

Aberrant Spliceosomal Machinery
Canonical spliceosomal splicing mechanism and back-splicing
mechanism are involved in the biogenesis of circRNA (Quan and
Li, 2018). The back-splicing mechanism is affected by canonical
splicing signals (Starke et al., 2015). Given that aberrant RNA
splicing has been linked to cancer (Scotti and Swanson, 2016), the
spliceosomal machinery may contribute to circRNA deregulation
in cancer. Mutations in splice sites and spliceosome components,
including five small nuclear RNAs (snRNA), affect the steady-
state levels of circular RNAs (Liang et al., 2017).

First, recurrent mutations in spliceosomal genes, such as
SF3B1, SRSF2 and U2AF1, are responsible for mis-splicing and
vulnerabilities in cancer (Chabot and Shkreta, 2016; Dvinge
et al., 2016). Second, splicing factors (hnRNPs, SR proteins)
increase Laccase2 circular RNA levels in conjunction with
intronic repeats (Kramer et al., 2015). The frequent deregulation
of SR/hnRNP proteins induces apoptotic gene dysfunction in
cancers (Kedzierska and Piekielko-Witkowska, 2017). Third,
dozens of splicing factor genes are differentially expressed in
cancer (Sveen et al., 2016). Alternative RNA splicing events,
which are diverse in the biogenesis of circRNA, also characterize
cancer (Tremblay et al., 2016; Zhang X.O. et al., 2016).

Aberrant Trans-Acting Factors
Trans-acting factors are also important triggers of back-splicing
in addition to cis-acting factors. To date, Mbl and QKI are the
most typical trans-acting factors as revealed in current studies.
Mbl binds to the flanking introns of circMbl in Drosophila
and human (Ashwal-Fluss et al., 2014). QKI, which is regulated
during the human epithelial-mesenchymal transition (EMT),
binds to circRNAs in a manner quite similar to Mbl (Conn
et al., 2015). Methylation of the QKI promoter, which reduces
QKI expression, may be critical in colorectal cancer (Darbelli
and Richard, 2016; Iwata et al., 2017). In addition, QKI
also inhibits aberrant splicing QKI (Zong F.Y. et al., 2014),
and these actions may collectively result in aberrant circRNA
expression.

Some enzymes, such as RNA helicase, are vital players
in regulating circRNA in cancer. The RNA helicase DHX9
is overexpressed in lung cancer (Cao et al., 2017), and its
downregulation reduces the number of cancer cells (Lee et al.,
2016). DHX9 reduces the expression of circRNAs, such as
cSMARCA5, by directly binding to Alu elements and regulating
circRNA-producing genes, RNA processing and translation (Yu
et al., 2018). In addition, DHX9 interacts with the editing enzyme
ADAR given that co-depletion of ADAR and DHX9 increases
circular RNA production (Aktas et al., 2017).

Other proteins with the potential to function as trans-
acting factors in circRNA biogenesis include the immune factors
NF90/NF110 (Li et al., 2017). These proteins increase circRNA
expression in a manner similar to chromosome translocations
(juxtaposing and intron pairing) and serve as components of
circRNPs in the antiviral immune response in HeLa cells (Li et al.,
2017).

Aberrant Epigenetic Regulation
Advanced sequencing has revealed that greater than 50% of
cancers exhibit mutations involved in chromatin organization
(Kleppe et al., 2018).

There are two hypothetical mechanisms behind epigenetic
aberrations involved in circRNA deregulation. First, chromatin
remodeling factors and post-translational modifications of
histones impact the transcription rate, which may subsequently
affect the production of circRNAs (Zhang Y. et al., 2016).
Second, chromatin remodeling is likely to affect diverse
alternative splicing events involved in the biogenesis of circRNAs
(Chen and Yang, 2015). For example, promoter CpG island
hypermethylation-associated silencing of some genes, such as
TUSC3 (tumor suppressor candidate 3) and POMT1 (protein
O-mannosyltransferase 1), reduce circRNA production in cancer
(Ferreira et al., 2018).

In addition to DNA methylation and histone modifications,
post-transcriptional modifications of circRNAs are associated
with circRNA deregulation. The three most abundant
epitranscriptomic marks of RNA are pseudouridine (9),
N6-methyladenosine (m6A) and 5-methylcytosine (m5C). These
marks tend to determine the fates of long noncoding RNAs.
RNA modifications promote colorectal cancer by upregulating
oncogenes or downregulating tumor suppressor genes (Porcellini
et al., 2018). Cancer-related long noncoding RNAs, such as
MALAT1, exhibit multiple post-transcriptional modifications;
however, no aberrant modification in circRNA has been
discovered (Jacob et al., 2017). Among these RNA modifications,
m6A is the most common modification (Dominissini et al.,
2012). Of note, m6A is rich in circRNA and drives translation
initiation (Molinie et al., 2016; Nan et al., 2017; Yang et al., 2017).

Aberrant Regulation in circRNA Export
From Nucleus
Upon formation in the nucleus, ecircRNAs tend to be transported
to the cytoplasm via a mechanism similar to linear RNA
export, and the nuclear pore complex is an important player
(Hautbergue, 2017). A methyl-guanosine cap and poly(A) tail
are the determinants for RNA exportation from the nucleus
(Tuck and Tollervey, 2013). The precise mechanism by which
circRNAs without free ends are exported from the nuclear pore
complex remains unknown. However, recent studies have found
that the length of mature circRNAs plays an important role in
determining whether the circRNA is exported or retained, which
contradicts the retained intron restriction hypothesis (Huang
et al., 2018; Wan and Hopper, 2018). By knocking out the genes
associated with RNA exportation, UAP56 and URH49 have been
identified to control the location of circRNAs in HeLa cells. In
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detail, UAP56 is responsible for the export of long circRNAs,
whereas URH49 is responsible for the short circRNAs (Huang
et al., 2018; Wan and Hopper, 2018). However, this research
is based on artificial circular RNAs in HeLa cells, and the
mechanism by which natural circRNAs with known functions
are exported from the nucleus requires further exploration.
Although studies on circRNA export are limited, different cellular
localizations of non-coding RNAs have been linked to numerous
diseases (Tuck and Tollervey, 2013). It is hypothesized that
dysfunctions in the “transporting” or “sorting” mechanisms
of circRNAs may contribute to aberrant circRNA expression
in tumors (Chen and Shan, 2015). RNA binding proteins as
protein cargos may be involved in circRNA migration. Given
that lncRNA subcellular fates are determined by nuclear retention
signals and the long non-coding ribonucleoproteins complex
(Chen L.L., 2016), some disorders in location signals and protein
traps might account for circRNA deregulation in cancer. In
addition, epigenetic features, such as chromosome structure,
could affect the localizations of lncRNAs because high-order
chromosomes that form a loop may exhibit increased possibilities
for nuclear retention of lncRNAs (Tuck and Tollervey, 2013).

Aberrant circRNA Removal by Cleavage
and Exosomes
Degradation of circRNAs in the cytoplasm remains largely
uncharacterized, but there is evidence for their existence.
For instance, AGO2/miR-671-mediated cleavage of CiRS-7
autoregulates CiRS-7 as confirmed in HEK293 and HeLa cells
(Hansen et al., 2011). Thus, the anomalous expression of miR-671
and AGO2, the major components of the RNA-induced silencing
complex (RISC), influence the amount of CiRS-7.

Packaging and export of circRNAs by extracellular vesicles
or microvesicle release seems common in mammalian
cells (Lasda and Parker, 2016) given that circRNAs have
been noted in exosomes and blood plasma (Li Y. et al.,
2015). Accordingly, alterations of proteins associated with
the packaging of extracellular vesicles or microvesicles
and their protein compositions could cause deregulation.
Additionally, extracellular vesicles could influence the tumor
microenvironment by communicating with other cells (Wu et al.,
2017), and significantly impact the immune response in tumor
cells. Aberrant extracellular vesicles have been recognized as
emerging therapeutic targets for cancer (Wu et al., 2017).

CONCLUSION

CircRNAs that are aberrantly expressed in cancers exhibit
abnormal roles as miRNA sponges, protein decoys, transcription

regulators, or regulators of translation into proteins. The
potential mechanisms involved in deregulation were outlined,
including in their biogenesis from parental genes, export from
the nucleus to the cytoplasm and removal from the cell.

The underlying mechanisms are potentially considerably
more complicated than that described above, as they may
exhibit multiple interactions. For instance, intron retention that
contributes to the aberrant cis-elements may result from the
dysfunctions of spliceosomal machinery, such as splice site
mutations (Ge and Porse, 2014).

As a cancer cell is viewed as the outcome of alterations in
genetics, epigenetics and epitranscriptomics (Porcellini et al.,
2018), the deregulation of circRNAs may be associated with
these factors as well as other uncharacterized components.
The deregulation mechanism of circRNAs is a new field that
requires further exploration. In the future, more deregulated
circRNAs will be discovered in human diseases, especially
cancer, and circRNAs may display more functions. The profound
understanding of the deregulation of circRNA mechanisms
may provide more possibilities for better diagnosis, prognosis,
and treatment of cancer. To date, the potential advantages of
circRNAs as biomarkers for tumors have been highlighted given
their abundance, stability and tissue-specific expression (Qian
et al., 2018). Specific circRNAs can be detected in the blood
plasma of patients to track the progression of the corresponding
cancer. A better understanding of the mechanisms involved will
serve as a significant breakthrough in this area.
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