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Primary mitochondrial diseases form one of the most common and severe groups of
genetic disease, with a birth prevalence of at least 1 in 5000. These disorders are multi-
genic and multi-phenotypic (even within the same gene defect) and span the entire
age range from prenatal to late adult onset. Mitochondrial disease typically affects
one or multiple high-energy demanding organs, and is frequently fatal in early life.
Unfortunately, to date there are no known curative therapies, mostly owing to the rarity
and heterogeneity of individual mitochondrial diseases, leading to diagnostic odysseys
and difficulties in clinical trial design. This review aims to discuss recent advances and
challenges of systems approaches for the study of primary mitochondrial diseases.
Although there has been an explosion in the generation of omics data, few studies
have progressed toward the integration of multiple levels of omics. It is evident that the
integration of different types of data to create a more complete representation of biology
remains challenging, perhaps due to the scarcity of available integrative tools and the
complexity inherent in their use. In addition, “bottom-up” systems approaches have
been adopted for use in the iterative cycle of systems biology: from data generation
to model prediction and validation. Primary mitochondrial diseases, owing to their
complex nature, will most likely benefit from a multidisciplinary approach encompassing
clinical, molecular and computational studies integrated together by systems biology to
elucidate underlying pathomechanisms for better diagnostics and therapeutic discovery.
Just as next generation sequencing has rapidly increased diagnostic rates from
approximately 5% up to 60% over two decades, more recent advancing technologies
are encouraging; the generation of multi-omics, the integration of multiple types of data,
and the ability to predict perturbations will, ultimately, be translated into improved patient
care.

Keywords: integrative omics, genome scale models, constraint based modelling, network biology, mitochondrial
disease, diagnostics, biomarkers, novel therapy development

INTRODUCTION

Mitochondria are double membraned sub-cellular structures that perform multiple cellular and
metabolic functions including the production of reducing equivalents through the tricarboxylic
acid (TCA) cycle and fatty acid β-oxidation, maintenance of calcium homeostasis, nutrient
signalling through mTOR, AMPK and other pathways, and the production of reactive oxygen and
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nitrogen species (Rahman and Rahman, 2018). The best studied
and most well-known function of mitochondria, however, is the
production of energy in the form of ATP through the process of
oxidative phosphorylation (OXPHOS). The pumping of protons
through four enzyme complexes (complexes I–IV) results in
an electrochemical gradient across the inner mitochondrial
membrane which in turn generates a chemiosmotic force that
is utilised by the fifth complex, the F1F0-ATP-synthase, to
phosphorylate ADP to ATP (Hatefi, 1985). OXPHOS requires
the coordinated effort of greater than 400 proteins (Pagliarini
et al., 2008) including the subunits and assembly factors
of the five multi-subunit enzyme complexes, mobile electron
carriers, and protein and nucleotide transporters. Whilst most
OXPHOS proteins and the majority of the ∼1500 mitochondrial
proteins (Calvo et al., 2016) are encoded in the nuclear
genome, mitochondria also have endogenous mitochondrial
DNA (mtDNA) as a result of an endosymbiotic event nearly 2
billion years ago (Gray et al., 1999). The mitochondrial genome is
a small circular genome present in multiple copies, encoding 13
protein-coding genes, all of which are OXPHOS subunits, as well
as 24 tRNA and rRNA genes to enable their translation (Anderson
et al., 1981).

Both genomic and mtDNA mutations can lead to primary
mitochondrial disorders which represent one of the most
common (prevalence of 1:5000) and debilitating inherited
metabolic diseases (Gorman et al., 2015), often resulting in
early mortality. To date, more than 350 genes have been
causally linked to mitochondrial disease (Rahman and Rahman,
2018). The genetic landscape of mitochondrial disorders is not
only complicated by the involvement of multiple genomes,
but also by the co-existence of mutant and wild-type mtDNA
molecules in different cells and tissues, a phenomenon known
as heteroplasmy (Stewart and Chinnery, 2015). Furthermore,
patients often present with multi-systemic disease, especially
affecting organs with high bioenergetic demands such as the
brain (Rahman, 2015; Pitceathly, 2016; Hikmat et al., 2017),
heart (Götz et al., 2011; Enns, 2017), muscle (DiMauro et al.,
1985; Holt et al., 1988; Pfeffer and Chinnery, 2013) and liver
(McKiernan et al., 2016). A number of mitochondrial gene
defects can be associated with defined clinical syndromes, such
as mitochondrial encephalopathy lactic acidosis and stroke-
like episodes (MELAS), which is usually associated with a
specific mutation in the mitochondrial leucine tRNA (El-Hattab
et al., 2015), or Leigh syndrome, an encephalomyelopathy
characterised by bilateral basal ganglia lesions, which can be
caused by defects of more than 89 different mitochondrial
and nuclear genes (Leigh, 1951; Rahman et al., 2017). Most
mitochondrial diseases, however, do not fit into a classical
syndromic presentation and can affect nearly any organ or system
in the body in any combination (Munnich et al., 1992). Moreover,
mutations in the same gene can lead to contrasting clinical
presentations between patients, even within a single family.
While OXPHOS dysfunction certainly contributes to disease
pathophysiology, especially in patients with isolated or combined
OXPHOS complex deficiencies, it is evident that a multitude of
impaired mitochondrial functions contribute to disease. These
include imbalanced mitochondrial dynamics (Janer et al., 2016),

aberrant mitochondrial lipid homeostasis (Wortmann et al.,
2012), deficiencies of vitamin and cofactor metabolism (Duncan
et al., 2009), and altered redox ratios (Khan et al., 2014; Titov
et al., 2016). Many aspects of mitochondrial dysfunction also
contribute to the pathophysiology of cancer (Warburg et al.,
1927; Vyas et al., 2016), neurodegenerative disorders (Lin and
Beal, 2006; Grunewald et al., 2018), and organismal ageing
(Bratic and Larsson, 2013). The genetic, pathophysiological,
and clinical heterogeneity observed in mitochondrial disorders
have resulted in diagnostic odysseys and a lack of curative
therapies for affected patients, contributing to an overall poor
prognosis.

An improvement in diagnostic and therapeutic outcomes
requires an enhanced understanding of mitochondrial function
and pathophysiology. In recent years, systems biology, or the use
of computational and mathematical methods to model complex
biological systems, has emerged as a valuable tool to analyse
and characterise complex cellular and organellar relationships in
health and disease states. Biological networks can be created using
experimental “omics” datasets (e.g., genomics, transcriptomics,
proteomics, metabolomics, and epigenomics) (Topol, 2014) as
scaffolds to construct models (Baumgart et al., 2016; Lienhard
et al., 2017; Ali et al., 2018). This approach enables identification
of novel pathomechanisms, but can also be used to identify novel
biomarkers and therapeutic targets for mitochondrial disease
(Suomalainen et al., 2011). Conversely, the modelling of biological
systems can be achieved by constructing GEnome-scale Metabolic
models (GEMs) from pre-existing database and literature inputs
rather than using novel experimental data (O’Brien et al., 2015;
Brunk et al., 2018). The latter approach aims to fully encompass all
interactions within a system. These models can then be subjected
to manipulations and provide another means for predictive
modelling. In the context of mitochondrial disorders, this
approach can be exploited to observe the functional consequences
of aberrant genetic changes or to identify novel therapeutic points
of intervention which could facilitate targeted novel drug design or
orphan drug repurposing. Additionally, the combination of top-
down and bottom-up approaches have proved to be powerful tools
to effectively integrate experimental data with the compendium of
literature to gain a holistic understanding of a complex biological
system (Sun et al., 2018). In practice, model reconstructions begin
from whichever level is most rich with data, and build up or
down to other levels as required (Noble, 2002), see Figure 1.
Network-based approaches therefore are powerful tools to study
mitochondrial function (and dysfunction) as they facilitate the
visualisation and manipulation of multitudinous interactions
between genes, transcripts, proteins, and metabolites. This enables
the elucidation of integrative mitochondrial functions and can
expedite the discovery of novel interactions which otherwise
may have been missed using traditional experimental techniques.
These approaches will ultimately have beneficial implications
for developing novel diagnostic and therapeutic strategies for
mitochondrial disease, refer to Box 1 for key terms. This review
will discuss the recent advances that systems approaches have
contributed to an overall understanding of mitochondrial biology
and pathophysiology, as well as the limitations of these approaches
and some of the remaining challenges in the field.
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BOX 1 | Glossary of key terms.
Biological network: a graphical representation of interacting moieties typically depicted as nodes (circles) and edges (lines).

Constraint-based modelling (CBM): a modelling approach that computes mathematical relationships imposed by a set of constraints.

Flux balance analysis (FBA): a constraint-based modelling method that uses linear programming to maximise the objective function, and computes the set of fluxes
through the network while satisfying all defined constraints.

Flux variability analysis (FVA): a constraint-based modelling method that computes the minimum and maximum range of each reaction flux through a metabolic
network while satisfying all defined constraints.

GEnome-scale Metabolic model (GEM): a mathematical, structured network of chemical reactions to represent the metabolism of a living organism based on its
genome and the literature. A GEM can be structured based on defined model constraints which, if known, can include their stoichiometry, thermodynamics,
enzymatic capacity, localisation, and functional annotation of gene-protein-reaction association, and other known constraints.

Interactome: a set of all known interactions involved in a particular system studied.

Mitochondrial protein functional (MPF) network: a network modality generated considering protein functions and their subsequent network position.

Network position: a numerical score for nodes within a network ranging from 0 to 1 in order of most central (0) to most peripheral (1) node, corresponding to
contribution of that node to network functionality.

Node: an interacting molecule (gene, protein, etc.) in a biological network.

Objective function: a function (or a target reaction/flux) that is desired to be maximised or minimised.

Protein–protein interaction network (PPIN): common network representation in systems biology of all known proteins within a particular system, and all their
interactions.

Solution space: a set of all possible values (or solutions) of an optimisation problem that satisfy the problem’s constraints.

Systems biology: an interdisciplinary science which uses mathematical and computational methods, by in silico simulations, to aid the understanding of complex
biology by elucidating emergent properties once the system is studied as a whole, rather than in parts.

Transcriptome-metabolome-wide association study (TMWAS): an association study between two layers of omics data, transcriptomic and metabolomic data.

FIGURE 1 | An overview of systems approaches applied for mitochondrial research. To simplify systems-based approaches, they can be categorised into two main
approaches, top-down and bottom-up. The top-down workflow can simplistically be described as samples that have been collected, processed by high throughput
methods, and analysed by bioinformatics, e.g., protein network analysis, to gain a better understanding of function. On the other side of the spectrum, the
bottom-up workflow can be described as identifying molecular data, formatting this information into a genome scale metabolic model (GEM), and utilising
constraint-based modelling (CBM) to predict solutions and gain a better understanding of mechanisms. However, in practice the researcher must use whatever data
is sufficiently available at any level of organisation, and build up/down/across to other levels, known as middle-out. Together, these systems approaches can aid in
mitochondrial research by providing further insight into mitochondrial diseases, therapeutic approaches, and ultimately improving patient health care.
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ADVANCES IN SYSTEMS
MITOCHONDRIAL BIOLOGY

The advent of multi-omics techniques in mitochondrial biology
has given rise to a vast amount of large, complex datasets
(Rahman and Rahman, 2018). A large number of these datasets
can be found online, including UniProt (The UniProt, 2017),
Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al.,
2016), the Human Protein Atlas (Thul et al., 2017), and
mitochondrial databases including MitoCarta (Calvo et al.,
2016) and MitoMiner (Smith and Robinson, 2016), in addition
to many other mitochondrion-specific databases as listed
in Table 1. However, the enormity of these data creates
considerable challenges in drawing meaningful conclusions.
The development of sophisticated bioinformatics pipelines has
enabled the management and analysis of large complex datasets
and facilitated meaningful biological interpretation (Luscombe
et al., 2001). Although bioinformatics can provide additional
insight by re-analysing experimental data, it is limited in its
ability to predict behaviour of complex systems. More recently,
predictive computational biology has become a fundamental
part of systems approaches. It provides a natural continuation
within experimental biology to elucidate complex, synergistic,
interactive behaviours that underpin emergent properties from a
biological system studied as a whole (Kitano, 2002; Pagliarini and
Rutter, 2013). For application purposes, several complementary
tools can be used in systems approaches, e.g., multiple dataset
analyses, omics integration tools, GEMs and constraint-based
modelling (CBM), to incorporate and reconcile the increasingly
available independent, diverse datasets.

Multi-Omics Approaches to
Understanding Mitochondrial Function
Omics as a Tool in Mitochondrial Research
Systems biology can be used to answer several outstanding
(patho)physiological mitochondrial questions including the
basic biology of mitochondrial pathways, the pathophysiology
underpinning primary mitochondrial disease; and also in
models of neoplasms and ageing. Utilising global non-biassed
datasets acquired from high-throughput assays or “omics”
datasets is one method of enhancing our understanding of
complex biological systems. The majority of these types of
studies have focussed linearly on one type of analysis and
make inferences [reviewed in (Rahman and Rahman, 2018)].
Significant advances have been made in revealing novel
aspects of mitochondrial structure and function such as the
mitochondrial phosphorylation targets of AMPK (Toyama et al.,
2016) or the elucidation of the step-wise assembly of eukaryotic
mitochondrial complex I (Stroud et al., 2016). Furthermore,
omics-based analyses have been instrumental in understanding
disease mechanisms beyond OXPHOS dysfunction/energy
deficit which often is insufficient in explaining the clinical
phenotypes observed in patients (Thompson Legault et al.,
2015; Esterhuizen et al., 2018; Rahman and Rahman, 2018).
A notable example is the alteration of one-carbon metabolism
in mtDNA maintenance defects in mouse of models of adult and

paediatric mitochondrial disease (Nikkanen et al., 2016; Khan
et al., 2017).

Integrative Genomics
More than a decade ago, the availability of genome-scale data
from Saccharomyces cerevisiae enabled yeast biologists to begin
to integrate large-scale functional genomics data to identify
candidate mitochondrial disease genes (Steinmetz et al., 2002;
Prokisch et al., 2004; Aiyar et al., 2008). At around the same
time, the Mootha group at Harvard integrated data from
diverse genome-scale data sets using a Bayesian mathematical
model, to predict the probability of a mitochondrial function
for a specific candidate protein (Calvo et al., 2006). The
resulting compendium, named ‘Maestro’, used 8 data sets
to compute the likelihood of mitochondrial localisation of
33860 proteins listed in the Ensembl human genome database:
presence of an N-terminal mitochondrial import sequence,
as predicted by the TargetP programme; presence of protein
domains suggesting mitochondrial function, as predicted by the
MitoPred programme; cis-regulatory motifs containing binding
sites for any of 3 transcription factors (Errα, Gapba, and
NRF1) located within 2 kb upstream of the gene; homology
to one or more of 749 mitochondrial proteins encoded by the
S. cerevisiae genome; ancestral bacterial homology to proteins
in Rickettsia prowazekii, thought to be the closest bacterial
progenitor of mitochondria; co-expression with genes known
to encode mitochondrial proteins; tandem mass spectrometry
survey of the mouse mitochondrial proteome; transcriptional
activation during a cellular model of mitochondrial biogenesis, in
which mitochondrial proliferation was stimulated by exposure to
the mitochondrial transcriptional co-activator PGC1-α. Maestro
correctly predicted 71% of known mitochondrial proteins when
it was first devised. More recent iterations of this compendium,
known as MitoCarta and MitoCarta 2.0 (Pagliarini et al., 2008;
Calvo et al., 2016), are even more comprehensive and have
underpinned the mitochondrial genomic diagnostic revolution
(Rahman and Rahman, 2018). It is anticipated that new
data and techniques will facilitate development of a complete
mitochondrial proteome catalogue in the fullness of time,
including tissue-specific databases that might explain tissue-
specific manifestations of particular mitochondrial gene defects.

Combining Multi-Omic Datasets
Multi-omics studies are emerging as valuable tools to gain a
dynamic understanding of the mitochondrion. Integrative omics
approaches as opposed to single-omics based techniques are
beneficial as they increase the certainty of a biological finding if
it can be validated by concordant multiple omics signatures
(genomic, transcriptomic, and proteomic). Frequently,
transcriptomic and proteomic signatures do not correlate; thus
making endpoint phenotypic inferences based on untargeted
transcriptome analyses with no prior associations can be
inaccurate or misleading (Wu et al., 2014). This can partially be
explained by the fact that high-throughput discovery techniques
largely focus on endpoint measurements (transcript/protein
level) and cannot accurately account for transcriptional and
translational control events which may alter protein expression
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TABLE 1 | Human Mitochondrial Databases.

Database Content Website Last update

HmtDB Human mitochondrial genome sequences
annotated with population and variability
data

www.hmtdb.uniba.it 2018

Integrated Mitochondrial Protein Index
(IMPI) Q2 2018

A collection of genes that encode proteins
with strong evidence for cellular localisation
within the mammalian mitochondrion.

http://www.mrc-mbu.cam.ac.uk/impi 2018

MitoMap Polymorphisms and mutations in human
mDNA

www.mitomap.org 2018

MitoMiner 4.0 Mitochondrial localisation evidence and
phenotype data for mammals, zebrafish
and yeasts

mitominer.mrc-mbu.cam.ac.uk 2018

Human MitoCarta 2.0 Inventory of nuclear and mtDNA genes
encoding proteins with strong support of
mitochondrial localisation

https://www.broadinstitute.org/files/shared/
metabolism/mitocarta/human.mitocarta2.0.html

2017

MitoBreak mDNA breakpoints http://mitobreak.portugene.com/cgi-bin/
Mitobreak_home.cgi

2017

MitoDB Information regarding the clinical features
seen in mitochondrial diseases.

mitodb.com 2016

MitoAge Calculated mtDNA compositional features
of the entire mitochondrial genome, mtDNA
coding and non-coding regions, codon
usage for each protein-coding gene, and
longevity records for over 900 species from
all taxa of the Kingdom Animalia.

http://www.mitoage.info/ 2016

MitoProteome An object-relational mitochondrial
gene/protein sequence database and
annotation system

www.mitoproteome.org 2016

The EMPOP database The collection, quality control and
searchable presentation of mtDNA
haplotypes from all over the world

https://empop.online/ 2015

MitoGenesisDB Mitochondrial spatio-temporal expression
through global mRNA analyses

http://www.dsimb.inserm.fr/dsimb_tools/
mitgene/biologicalbackground.php

2010

Mitochondrial tRNA database - tRNAdb Mitochondrial tRNA genes http:
//mttrna.bioinf.uni-leipzig.de/mtDataOutput/

2009

Human Mitochondrial Protein Database
(HMPDb)

Mitochondrial and human nuclear encoded
proteins involved in mitochondrial
biogenesis and function.

https://bioinfo.nist.gov/ 2007

Mamit-tRNA Mammalian mitochondrial tRNA genes http://mamit-trna.u-strasbg.fr/ 2007

mtDB Complete mitochondrial genomes since
early 2000

www.mtdb.igp.uu.se 2007

GiiB-JST mtSNP Information related to the functional
differences among mitochondrial SNPs

http://mtsnp.tmig.or.jp/mtsnp/index_e.shtml 2006

A list of databases in English that relate to human mitochondria research, which still appear to be active.

and downstream functional consequences (Fisher-Wellman
et al., 2018). Meaningful functional interpretations can be aided
with specialist assays which can be compatible with omics
techniques to observe real-time phenotypic changes in response
to global transcriptomic/proteomic remodelling. Genome-wide
CRISPR-Cas9 screening is one such technique which has been
used in conjunction with genomics to identify novel genes
involved in OXPHOS (Arroyo et al., 2016). Multi-omics studies
can also be aided by functional phenotyping techniques which
are compatible with high-throughput screens such as a novel
assay suite developed to measure mitochondrial bioenergetics
parameters in real-time (Fisher-Wellman et al., 2018).

Multi-layered omics in recent years has been instrumental
in elucidating the molecular basis of complex mitochondrial

processes including the activation of the mitochondrial unfolded
protein response (Wu et al., 2014), identifying transcription
factor ATF4 as a regulator of mitonuclear stress (Quirós et al.,
2017), the involvement of mitoribosomes and complex IV
subunits in T-cell activation (Tan et al., 2017) and the role
of mitoprotease Oct1p as a novel regulator of Coenzyme Q10
biosynthesis (Veling et al., 2017). Integrated omics are useful
in mitochondrial physiology to discriminate between primary
disease-causing mechanisms and compensatory mechanisms.
This was recently demonstrated by a study conducted by
Mootha and colleagues wherein multi-omic profiling of benign
mitochondria-rich renal tumours showed a selective loss-of-
function of complex I which in turn led to compensatory
glutathione biosynthesis (Gopal et al., 2018). At present, these
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integrated studies have been limited to cell and animal models
(Wu et al., 2014; Kühl et al., 2017; Quirós et al., 2017; Tan
et al., 2017; Veling et al., 2017; Lapointe et al., 2018; Lee et al.,
2018). However, this body of work highlights the power of
systems approaches and integrative omics in elucidating novel
mechanisms and will undoubtedly be invaluable in studies of
mitochondrial disease pathology in relevant patient cohorts and
animal disease models as they become increasingly available.

Interactome Models
Another approach, which has become central to systems biology,
has been to build ‘interactome’ networks based on known
protein–protein interactions. Early examples of these protein-
protein interaction networks (PPINs) include ‘MitoInteractome’
and InterMitoBase (Reja et al., 2009; Gu et al., 2011).
MitoInteractome used homology-based interaction modelling
across 74 species to produce a database of 6,549 protein
sequences (Reja et al., 2009), whilst InterMitoBase mined
a range of resources to create a compendium of 5,883
protein–protein interactions between 2,813 proteins (Gu et al.,
2011). Another interactome model, the Mitochondrial Protein
Functional (MPF) network, built on the observation that the
spatial organisation of mitochondrial proteins is linked to
function, and localised mitochondrial proteins known to interact
with other mitochondrial proteins at the centre of the network,
and mitochondrial proteins interacting with non-mitochondrial
proteins at the periphery of the network (Yang et al., 2013).
The MPF network aimed to use network position (scored 0–1,
with more centrally localised proteins scoring closer to 0 and
peripheral proteins closer to 1) to represent submitochondrial
localisation of 1,254 mitochondrial proteins (Yang et al.,
2013). The MPF was validated by finding proteins with core
mitochondrial functions such as OXPHOS and fatty acid
β-oxidation at the centre of the network (e.g., the short/branched
chain acylCoA dehydrogenase ACADSB had a score of 0.062),
whereas proteins linked to mitochondrial biogenesis and
apoptosis were peripherally located (e.g., the mitochondrial
fission factor MFF scored 0.935). Furthermore, network position
was highly correlated with mitochondrial compartment – matrix
and inner mitochondrial membrane proteins had central network
positions, whereas outer mitochondrial membrane proteins were
peripherally located in the network. There also appeared to
be correlations between disease genes within the network. For
example, five genes associated with MELAS had a network
position of 0.01, five genes causing pyruvate dehydrogenase
(PDH) deficiency had an average score of 0.03 (±0.01), and 21
genes associated with Leigh syndrome had an average network
position of 0.10 (±0.09). MELAS, PDH deficiency and Leigh
syndrome are all considered primary mitochondrial disorders.
In contrast Charcot-Marie-Tooth disease type 2, caused by a
defect of axonal mitochondrial transport, had a more peripheral
network position with a score of 0.68 (Yang et al., 2013). The
authors then went on to use the MPF network to try to predict
candidate mitochondrial disease genes, but this approach will
need to be finessed as the MPF becomes more sophisticated by
the addition of further data. Another application of interactome
modelling was the identification of drug targets that could rescue

a cellular model of Parkinson’s disease caused by the MPP+ toxin,
an inhibitor of mitochondrial complex I (Keane et al., 2015).

Other Network Approaches
Molecular networks can also be used to derive gene ontologies,
and this approach was employed to develop the Ingenuity
Pathway Analysis software, that uses algorithms to infer omics
networks based on functional similarity (Calvano et al., 2005).
Disease-specific networks (‘diseasomes’) are increasingly being
developed, including for many cancer types, orphan diseases and
inborn errors of metabolism (Goh et al., 2007; Barabasi et al.,
2011; Zhang et al., 2011). Organ-specific networks are also being
created, such as The Virtual Brain, which simulates primate brain
network dynamics and holds the promise of a neuroinformatics-
based personalised medicine strategy for neurological disorders
(Sanz Leon et al., 2013; Falcon et al., 2016). So far, there do not
appear to be any mitochondrial disease specific networks, but
this is likely to change as multi-omics data sets are generated
from larger patient cohorts affected by primary mitochondrial
diseases (Rahman and Rahman, 2018). Another emerging field
is that of network pharmacology, where molecular networks are
being used to screen drugs for efficacy in silico before wet lab
testing begins, to try to reduce the costs associated with drug
development (Guney et al., 2016).

The aim of network biology is to provide an ‘eagle eye’ view of
the system using in silico simulations, and can be applied to view
multi-omic datasets. The field of biological networks is expanding
exponentially and, going forward, the integration of multiple
omics data sets, including genomic, transcriptomic, proteomic,
metabolomic and phenomic data, will increase the power of
network biology to identify disease mechanisms, biomarkers, and
novel treatments (Stevens et al., 2014; Rahman and Rahman,
2018). Previously few tools were able to integrate more than
two omics data sets. This is because the different topological
features of different omics datasets may render them unable
to identify community structures within networks and observe
network changes in response to perturbations (e.g., treated versus
untreated, or healthy versus diseased) (Uppal et al., 2018). In
addition, the integrative analysis of large omics datasets may
lead to fitting problems (Liang and Kelemen, 2017). Newer
methods such as the Similarity Network Fusion (SNF) are able
to aggregate and analyse multiple data sets on a genomic scale
(Wang et al., 2014). The fused similarity network is composed
of nodes (patients) positioned based on similarity; the greater
the similarities between two nodes (a function of all inputted
data), the closer they are positioned. The resulting network
of clusters of similar patients can then be used to derive
information about the very basic molecules that caused these
patient clusters to form. If these molecules are consistently
present in more than one patient, the SNF can be inferred
to be highlighting pertinent disease-related molecules (Wang
et al., 2014). In addition, several frameworks are emerging
to accommodate the integration of multiple complex omics
datasets to visualise data and evaluate changes under different
physiological conditions and these have been successfully applied
in cancer and immunology (Mo et al., 2013; Argelaguet et al.,
2018; Bakker et al., 2018; Forsberg et al., 2018). Recently the
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xMWAS software has been developed as a new tool to integrate,
visualise and analyse up to four omics datasets, by using a
partial least squares regression algorithm (Uppal et al., 2018). One
application of xMWAS was to analyse mitochondrial mediated
toxicity to the toxins paraquat and maneb, and to demonstrate
that these exert their mitochondrial toxicities by different
molecular mechanisms, as elucidated by global remodelling of
the nuclear transcriptome and metabolome. Clustering analysis
revealed that paraquat toxicity induced increased antioxidant
production, stress response, and mitochondrial biogenesis (Go
et al., 2018). Although the molecular mechanisms of paraquat
toxicity have been well-characterised (Tawara et al., 1996), the
reliable in silico reproducibility of complex pharmacological
phenomena can hopefully be used in future to supplement multi-
omics mitochondrial studies to identify novel biomarkers and
therapeutic targets.

Genome-Scale Metabolic Models
To address the diversity of data that has been accumulating for
more than a decade, datasets have been tailored into genetically
and biochemically consistent formats, mathematically structured
‘knowledge bases,’ such as GEMs (Papin et al., 2003; O’Brien et al.,
2015). A GEM is an organised list of metabolic reactions derived
from all available data of an organism’s metabolism. GEMs can
be reconstructed into a mathematically structured network, a
stoichiometric matrix S = (m × n) where m is the number of
metabolites and n is the number of reactions to perform CBM, see
Figure 2. It is often assumed that the system is at steady state, thus
the net flux is null, Sv = 0, where v is the flux vector. Additional
commonly used constraints are thermodynamic constraints
to allow irreversibility of reactions, enzymatic capacity and
availability of nutrients. These may also be applied so that
GEMs can be analysed by CBM methods to target fluxes of
metabolic reactions specific to phenotypic behaviour (e.g., growth
or energy production) without the need for detailed kinetics,
which are frequently not available. Initially, these models were
used to represent single cell organisms with only relatively few
metabolic reactions to maximise a desired phenotype, or an
objective function, e.g., biomass (Price et al., 2003). However,
metabolic reconstructions have since increased in size and scope,
representing multicellular organisms with much larger genomes,
such as Recon3D, the latest global reconstruction of human
metabolism (Brunk et al., 2018). Some limitations to using GEMs
for CBM methods is that arbitrary rates are typically used to
model metabolic behaviour, and that classic CBM methods tend
to lack the ability to model stochastic, complex behaviours, such
as whole human cell metabolism. This can be due to a number
of limiting factors of CBM, but one major controversy in the
field is the use of a single defined objective function. Historically,
this was used in biotechnology studies of single-cell organisms,
where it was a simpler question to determine a single desired
phenotype, e.g., growth or biomass. However, when modelling
complex organisms where study of more than one phenotype is
desirable, this becomes much less trivial. Although this continues
to be debated, more recent advances in CBM have included
the development of more sophisticated algorithms that allow
modelling of more complex behaviours, as briefly discussed later

in this review. Additionally, the majority of genome scale models
are based on metabolism rather than signalling, although this area
is also progressing (Hyduke and Palsson, 2010; Münzner et al.,
2017).

Mitochondrial GEMs and CBMs
One predecessor of one of the first GEMs to study the functional
mitochondrion using CBM was published in 2001 (Ramakrishna
et al., 2001). This metabolic model included 46 metabolic
reactions in two subcellular compartments, the mitochondrial
matrix and cytosol with key shuttles, and included the glycolytic
pathway, TCA cycle and OXPHOS. This model was simulated
by a CBM method, termed flux balance analysis [FBA (Orth
et al., 2010)]. In practise, FBA calculates a steady-state flux
distribution, while maximising or minimising a desired reaction
flux tagged as the “objective function.” This analysis gives
an output of the optimal result for the objective function in
question, within the biological solution space. As an initial
cheque, FBA was used to predict energy metabolism (i.e.,
maximised ATP production) from the utilisation of various
substrates (glucose, lactate, and palmitic acid) (Ramakrishna
et al., 2001). The model predictions agreed with expected ATP
yields from each substrate, and confirmed that glucose was
the preferred energy substrate, determined by the maximum
ATP production per mole of oxygen consumed. FBA was also
performed independently to predict functional consequences
of genetic knockouts (disabling individual metabolic reactions).
Examples of genetic knockout simulations in the TCA cycle
enzymes leading up to alpha-ketoglutarate, resulted in a lower
rate of ATP production and an accumulation of oxaloacetate.
Meanwhile, gene knockouts in the later stages of the TCA cycle
from alpha-ketoglutarate dehydrogenase (mAKGD) to malate
dehydrogenase also resulted in a lower rate of ATP production,
but with an accumulation of alpha-ketoglutarate (Ramakrishna
et al., 2001). This has encouraged confidence in the prediction
results, since they correspond with the clinical observation of
increased urinary excretion of alpha-ketoglutarate in patients
with mAKGD, succinate dehydrogenase (SDH), and fumarase
deficiencies (Rustin et al., 1997).

The first mitochondrial GEM was later generated by
incorporating human cardiac mitochondrial proteomic and
biochemical data, increasing the model to 189 reactions with
230 metabolites and 29 exchange reactions (Vo et al., 2004).
In addition to the Ramakrishna model (Ramakrishna et al.,
2001), pathways represented in the Vo model include fatty acid
β-oxidation, phospholipid biosynthesis, urea cycle, and reactive
oxygen species (ROS) detoxification. Initially, the biological
solution space is created by constraints, including laws of
thermodynamics to impose directionality, and can be further
reduced with the addition of more constraints, e.g., enzymatic
capacity based on experimental conditions or perturbations.
Again, as a proof of principle study to build a GEM, CBM was
used to characterise the model using FBA with three objective
functions tested: ATP hydrolysis, phospholipid biosynthesis, and
protohaem production (Vo et al., 2004). This study also utilised
a different CBM, flux variability analysis (FVA) (Mahadevan
and Schilling, 2003). FVA determines the maximum upper and
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FIGURE 2 | Schematic representation of the utilisation of genome scale metabolic models (GEMs) for constraint-based modelling (CBM). Mitochondrial metabolic
pathways can be represented as a list of stoichiometric formulas and converted into a large stoichiometric matrix (S). In this format, the model does not have any
constraints, thus the solution space may even include biologically irrelevant solutions. Constraints are then applied to utilise constraint-based modelling (CBM); such
as (i) mass balance so that energy is conserved and the net flux is zero; (ii) flux bounds so that each flux (v) has a lower (an) and upper (bn) flux rate, and others such
as directionality and nutrient availability. This creates a constrained solution space that represents predictable solutions that are more biologically feasible. One
example of CBM used in this illustration is flux balance analysis, where an objective function (Z, ATP utilisation) is defined and maximised for the optimal solution of Z,
which can be identified within the solution space.

lower flux bounds of all steady state reaction fluxes within
the network while satisfying the optimal objective function,
resulting in a solution space of flux distributions to determine
what is physiologically feasible based on the condition of the
model. This can reveal the level of model robustness in response
to perturbations. The FVA simulation predicted that ATP
production was the least flexible, while haem and phospholipid
synthesis had greater flexibility (Vo et al., 2004). It is important
to note that the less flexible a model response is, the less
adaptable it is to maintain a steady state. The instability of
metabolic reaction flux can then lead to the identification of
critical points in dysregulation. With some modifications, the
Vo model (Vo et al., 2004) was also utilised to investigate the
impact of setting constraints that resembled diabetes, ischaemia,
and low fat-high glucose (high carbohydrate) diet and high
fat-low glucose (ketogenic) diet (Thiele et al., 2005). Network
modifications included the addition of ketone body degradation
and six transport reactions and the removal of 39 unused
reactions, totalling 235 metabolites and 185 reactions, including
23 exchange reactions. Each simulated condition resulted in
a reduction of network flexibility, rendering mitochondrial
metabolism more sensitive to perturbations, such as changes
in oxygen levels or higher ATP demands (Thiele et al., 2005).
Although several therapies tested in this model were found to
have only minimal effects, other therapies may be tested in
future to identify potential targets which may have the greatest

restoration of the network closest to the normal physiological
condition.

Through the iterative cycles of GEM reconstruction,
characterisation, testing and refinement, these sub-cellular
models of metabolism contributed to the development of the
first human whole cell metabolism models in 2007 (Duarte
et al., 2007; Ma et al., 2007). These global models have since
been utilised for various studies of human health and disease
(Cook and Nielsen, 2017). As one of the first to use this
methodology, Recon 1 (Duarte et al., 2007) was modified
to represent the metabolism of human fibroblasts to study
Leigh syndrome (Vo et al., 2007). This resulted in a network
of 430 metabolites and 508 reactions, further expanding the
previous mitochondrial model (Thiele et al., 2005) to include
the pentose phosphate pathway, the malate-aspartate shuttle
and de novo fatty acid synthesis. The study aimed to identify
affected enzymes by non-invasively profiling the metabolic
phenotype of normal and Leigh syndrome fibroblasts. This was
performed by setting the model flux rates to isotopomer data of
C13 labelled metabolites (pyruvate, lactate, glucose, and amino
acids) from one control and one Leigh syndrome patient primary
cell line and spent media. This study concluded that the Leigh
syndrome-affected cell line had a slower metabolic rate and
lower network flexibility within the respiratory chain enzyme
fluxes. More specifically, succinate cytochrome c reductase
(SCCR) enzyme activity was identified to be deficient with a
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higher activity ratio of cytochrome c oxidase/SCCR compared
to control. Thus complex II deficiency was considered to be the
most likely candidate for this particular Leigh syndrome-cell
line. This provides an important step forward to alternative,
non-invasive investigations to study the underlying mechanisms
of a highly heterogeneous primary mitochondrial disease, such
as Leigh syndrome. The interpretation of C13 isotopomer
data analysis can then be enhanced by integrating it into a
GEM for a more comprehensive coverage of mitochondrial
metabolism. However, due to the lack of annotation, i.e., gene-
protein reaction data, in Recon 1 at the time, further model
improvements would be necessary in order to optimise such
analyses. Another major limitation of this study was that the
Leigh syndrome-affected cell line used in this work was not
genetically characterised. Leigh syndrome is a heterogeneous
disorder with more than 89 genetic causes described to date
(Rahman et al., 2017). Thus it would be important to repeat
these experiments in a series of Leigh syndrome cell cultures
with different known gene defects, to determine whether there
are common pathway abnormalities in all forms of Leigh
syndrome or whether each gene defect has a unique profile.
This would greatly impact biomarker discovery and therapy
development.

A more comprehensive mitochondrial model was later
generated, iAS253, a human heart mitochondrial model (Smith
and Robinson, 2011). This model was manually reconstructed
and annotated based on metabolite availability from the
MitoMiner database (Smith and Robinson, 2009) and thoroughly
annotated. iAS253 featured 253 reactions, 245 metabolites and 89
transport reactions. FBA was used to simulate perturbations, e.g.,
deficiency of fumarase, SDH and mAKGD, and to test dietary or
supplementary therapeutic options in silico. This model showed
high similarity between the in silico model features and clinical
phenotypes, revealing possible disease mechanistic insights and
initial stratification of potential therapeutic options. An expanded
version of this model was later used to study OXPHOS disorders
with deficiencies of complexes I–IV (Zielinski et al., 2016).
Conclusions of this study were that complex I deficiency
could be compensated by alternative pathways and complex II
deficiency had lower metabolic flexibility leading to detrimental
effects in both the TCA cycle and OXPHOS, whilst complexes
III and IV deficiencies had the largest impact on ATP
production. iAS253 has now been updated to MitoCore, which
is currently the most comprehensive mitochondrial GEM to
date (Smith et al., 2017). The model was manually upgraded
to include 324 metabolic reactions, 83 transport steps between
the mitochondrion and the cytosol, and 74 metabolite inputs
and outputs through the plasma membrane. Initially, MitoCore
was systematically compared with Recon 2.2, e.g., modelling
fuel utilisation and fumarase deficiency, resulting in a more
accurate representation of central metabolism (Smith et al.,
2017).

More recently, MitoCore was used to investigate the effects
of impaired mitochondrial citrate carrier (SLC25A1) function
by FBA simulations (Majd et al., 2018). Whilst maintaining
a minimal rate of ATP production, two objective functions
were maximised; (i) fatty acid biosynthesis or (ii) glucose

production via gluconeogenesis, with SLC25A1 specific reactions
disabled to represent SLC25A1 deficiency. Although the majority
of the connected pathways were sufficiently compensated
by alternative pathways, the lack of citrate export had a
detrimental effect on the production of acetyl-CoA required
for fatty acid biosynthesis. The deficiency in acetyl-CoA would
impair lipid, cholesterol, sphingolipid, and dolichol synthesis,
all of which are vital for brain development, function and
maintenance. In accordance with these predictions, these
biosynthetic pathways also appear to be compromised in
patients with missense mutations in SLC25A1, associated with
an autosomal recessive neurometabolic disorder characterised by
neonatal–onset encephalopathy. Future analyses could utilise this
computational model to test therapeutic options for SLC25A1
deficiency.

MitoCore has also been used, after some modifications
to include the production and efflux of tryptophan and
lysine intermediates, to determine the effect of deficiency
of the mitochondrial oxodicarboxylate carrier SLC25A21 on
central metabolism (Boczonadi et al., 2018). The corresponding
transport reactions of SLC25A21 were disabled during the
FBA simulation while maximising ATP production. Simulation
results showed that while ATP production and respiratory
chain fluxes were maintained, there was an accumulation
of lysine and tryptophan intermediates, L-pipecolic acid and
quinolinic acid. The intermediate 2-oxoadipate was also found
to be accumulated without affecting central metabolism in
general. Furthermore, mass spectrometry analysis confirmed
an accumulation of these three metabolites in patient urine
samples compared to controls. Functional consequences were
also tested in vitro by supplementing oxoadipate and quinolinic
acid in control fibroblasts and neuronal SH-SY5Y cells, at
equivalent concentrations to those measured in urine samples
from affected patients using ultrahigh-performance liquid
chromatography-tandem mass spectrometry. Although treated
fibroblasts were largely unaffected, treated neuronal cells had
decreased mitochondrial respiratory chain complexes and lower
mtDNA copy number, resulting in induction of apoptosis. This
implies that the intermediates are likely neurotoxic, which relates
to the patient phenotype of a spinal muscular atrophy-like
disease. Again, future analyses could use this model to identify
critical points that could be targeted to allow restoration of
normal levels of intermediates.

Other Systems Biological Models for Mitochondrial
Research
An early GEM that represented the whole cell, rather than
just the mitochondrion, included the Vo mitochondrial model
(Vo et al., 2004; Duarte et al., 2007). Whole cell GEMs have
evolved dramatically over the last decade, with the most recently
published global GEM being Recon3D (Brunk et al., 2018).
Recon3D can be accessed on the Virtual Metabolic Human
[VMH, (Noronha et al., 2019)] and is graphically represented in
ReconMap (Noronha et al., 2017). Several primary mitochondrial
diseases have been mapped to Recon, including mitochondrial
trifunctional protein deficiency, phosphate carrier deficiency
and SUCLA2-related mtDNA depletion syndrome (Sahoo et al.,
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2012). Global GEM reconstructions have also been utilised for
predictive modelling to represent multi-tissue systems (Bordbar
et al., 2011). This could be a particularly useful approach
to represent primary mitochondrial dysfunction in one or
several tissues, and the interactions between tissues and their
effects on the system as a whole. An example of a more
detailed mitochondrion-centric model include a brain model
with different cell types (Lewis et al., 2010). Such tissue-specific
models could aid the eventual reconstruction of multi-tissue
mitochondrial models.

Another common approach to computational modelling is the
use of mathematical models, e.g., ordinary differential equations
and kinetic data as parameters, to predict biological outcomes.
There has also been a long historic use of mathematical models
for mitochondrial basic science research, which is beyond the
scope of this review. However, some noteworthy examples
will be described briefly here. Many mathematical models
have focused on modelling mitochondrial energy metabolism
and signalling, calcium dynamics and regulation, ROS and
redox, apoptosis, and fission and fusion. Historically, a popular
mitochondrial model based on OXPHOS was made by Magnus
and Keizer (1997) and other mitochondrial models were
also developed independently by using different datasets and
alternative biophysical theories, also focusing on OXPHOS
(Korzeniewski, 1998, 2000; Korzeniewski and Zoladz, 2001;
Beard, 2005). The Magnus and Keizer model (Magnus and Keizer,
1997) was widely used and adapted, e.g., to include metabolic
pathways such as the TCA cycle, (Dudycha, 2000), calcium
dynamics (Cortassa et al., 2003), and the production of ROS
(Cortassa et al., 2004). Further model iterations for investigating
these behaviours have since been developed, e.g., ROS (Gauthier
et al., 2013), pH regulation and ion dynamics (Wei et al., 2011).
Mitochondrial apoptosis has also been extensively investigated
using this approach (Fussenegger et al., 2000; Rehm et al.,
2006; Albeck et al., 2008; Bertaux et al., 2014). More recently,
advances in computational and statistical approaches and the
increasing availability of kinetic data have allowed these models
to be developed to capture more mitochondrial behaviours,
e.g., dynamic regulation of cellular metabolism and energetics
(Dash et al., 2008; Zhang et al., 2018). Additionally, models have
aimed to capture diversity within a mitochondrial population to
investigate mitochondrial spatial and temporal dynamics (fission,
fusion, mass, and motility) and heterogeneity by identifying
sources of cell-to-cell variation of mitochondrial morphology and
energetic stress states (Kowald and Kirkwood, 2011; Johnston
et al., 2015; Dalmasso et al., 2017). Notably, kinetic modelling
has covered a combination of metabolic and signalling models.
It is a powerful method with its detailed use of reaction rates
and metabolic concentrations for modelling, and can describe
dynamic behaviour over time. However, this can become an
incompatible method to model at a whole cell or tissue scale,
since parameters may be limited or may not be suitable for the
conditions in question.

A different type of predictive mitochondrial model recently
built is Leigh Map (Rahman et al., 2017). Leigh Map was manually
curated, incorporating >500 publications dated to November
2016 and information from the senior author’s clinical archive to

include 89 genes and 237 phenotypes. This model is designed to
be used as a diagnostic tool for Leigh syndrome to query a gene to
identify associated phenotypes, or query phenotype(s) to identify
the most likely causative gene(s). The efficiency of Leigh Map was
found to be 80% identification of the correct gene in 20 Leigh
syndrome cases (Rahman et al., 2017). Future work to expand the
application of this tool to diagnose other primary mitochondrial
diseases is ongoing.

CHALLENGES IN THE SYSTEMS
UNDERSTANDING OF THE
MITOCHONDRION

Despite numerous advances, several challenges remain in the
application of systems biology to mitochondrial research. The
involvement of two genomes is an inherent challenge to
the study of mitochondria. Varying mtDNA copy number
and differing heteroplasmy levels between different cells and
tissues are additional challenges (Guantes et al., 2016). These
challenges are especially pronounced when studying the diversity
of the multi-systemic phenotypes of primary mitochondrial
diseases. Systems biology methods that can be used to
address some of these issues include the use of whole cell
GEMs, which have evolved to include the incorporation
of both nuclear and mitochondrial genomes responsible
for membrane transport, and have mapped several primary
mitochondrial diseases (Sahoo et al., 2012). Additionally,
whole-cell models can be applied to represent multiple
tissues, and can be enhanced for mitochondrial research
by the development of more detailed mitochondria-centric
models (Lewis et al., 2010). In addition, other computational
methods, e.g., agent-based modelling, have attempted to capture
diversity within a mitochondrial population and cell-to-cell
variation (Dalmasso et al., 2017). Mitochondrial disorders display
significant phenotypic heterogeneity, even between individuals
in the same family. This heterogeneity poses challenges for the
diagnosis of mitochondrial diseases, which have begun to be
addressed by a predictive diagnostic knowledgebase for Leigh
syndrome (Rahman et al., 2017).

Analytical tools that could be used to understand
mitochondrial biology and pathology using systems-level
data are continuously evolving. Network-based approaches have
played critical roles in the progression of systems biology, as they
help illustrate complex molecular interactions. Until recently,
a shortcoming of these networks was that network modalities
were based on the analysis of a single datum type with manual
comparisons to networks of different data types (Barabasi et al.,
2011; Stevens et al., 2014; Wang et al., 2014). The impracticality
of this approach led to the development of integrative network
tools. There has also been a paradigm shift in the nature of
data integration networks toward patient (population/study
cohort)-centric approaches, such as SNF, which has not yet
been explicitly used for mitochondrial datasets. Ultimately, the
aim of this would be to develop more efficient integration tools
to combine multi-omics datasets to gain further insight into
mitochondrial biology and pathology, see Figure 3.
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FIGURE 3 | Schematic representation of possible future biological networks for mitochondrial systems biology. Different omics datasets can be generated from high
throughput mitochondrial studies. To date, these are performed for single data types, for example using proteomic data to generate protein-protein interaction
networks. However, future advances in computational tools could allow high-throughput omics data to be transformed into biological networks using mathematical
algorithms, in order to find interactions and connections between biological moieties. Ultimately, the aim is to be able to integrate all relevant data types together to
study the mitochondria within a whole system to improve patient care.

TABLE 2 | Model summary.

Model Type of model Model composition Subject Studied Reference

Ramakrishna Mathematically structured
mitochondrial-focussed
metabolic model

46 reactions ATP production; TCA enzyme
deficiencies

Ramakrishna et al., 2001

Vo_1 Mitochondrial
cardiomyocyte GEM

230 metabolites; 189 reactions ATP production; haem
synthesis; mixed phospholipid
synthesis

Vo et al., 2004

Thiele Mitochondrial GEM 235 metabolites; 185 reactions Diabetes; Ischaemia; LF-HG
and HF-LG diets

Thiele et al., 2005

Vo_2 Modified whole cell GEM 430 metabolites; 508 reactions Leigh syndrome Vo et al., 2007

MitoInteractome PPIN: homology-based
interaction modelling

6549 protein sequences across
74 species

Mitochondrial PPIN Reja et al., 2009

Lewis Modified whole cell GEMs
to represent
mitochondrial-centric
multiple cell types

(i) 983 (ii) 983 (iii) 987
metabolites; (i) 1066 (ii) 1067 (iii)
1070 reactions

Alzheimer disease Lewis et al., 2010

InterMitoBase PPIN 5583 interactions between
2813 proteins

Mitochondrial PPIN Gu et al., 2011

iAS253 Mitochondrial
cardiomyocyte GEM

245 metabolites; 253 reactions TCA enzyme deficiencies Smith and Robinson, 2011

Mitochondrial protein
functional (MPF)
network

Based on network position,
a scoring system for
proteins in a PPIN ranging
from 0–1, from most central
to most peripheral

1254 mitochondrial proteins;
6071 functional links

Mitochondrial proteome from
nine proteomic databases

Yang et al., 2013

Dalmasso Mitochondrial-centric whole
cell agent-based model

5 classes; 2 static and 3
dynamic agents

Cellular subpopulation
mitochondrial dynamics

Dalmasso et al., 2017

Leigh map Gene-to-phenotype
network model

87 genes; 234 phenotypes Leigh syndrome Rahman et al., 2017

MitoCore Mitochondrial
cardiomyocyte GEM

441 metabolites; 491 reactions ATP production; Proton
leakage; Fumarase deficiency

Smith et al., 2017

xMWAS Data integration and
differential network analysis
software

N/A Mitochondrial Transcriptome-
Metabolome-Wide Association
Study

Go et al., 2018

A descriptive outline of large scale models and tools described in this review.
Abbreviations: GEM, genome scale metabolic model; LF-HG, low fat-high glucose; HF-LG, high fat-low glucose; PPIN, protein–protein interaction network.
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We have also discussed several examples of the use of CBM
methods such as FBA and FVA which can provide predictive,
valuable insights of the subject model. However, these results are
only static snapshots of metabolism. Several methods have been
developed to predict behaviour over time [dynamic FBA (Varma
and Palsson, 1994) and dynamic FVA (Maldonado et al., 2018)],
integrate regulation [regulatory FBA (Covert et al., 2001)] and
integrate other data types [integrated FBA (Covert et al., 2008)
and integrated dynamic FBA (Lee et al., 2008)]. Furthermore,
other CBM methods and simulators have been developed to
expand their applications, e.g., multi-objective function analyses
(Costanza et al., 2012; Zakrzewski et al., 2012), whole human
cell metabolic analyses (Fisher et al., 2013), integrate multiple
simulation formats (Liao et al., 2012; Wu et al., 2016; Heirendt
et al., 2017), of which all could be adapted for use in future
primary mitochondrial research.

The generation and analysis of computational models have
been shown to aid further insight into disease mechanisms
and potential therapeutic discovery. However, the limitations
of these network models are that they are only as accurate as
the information input into them. Thus, these models have a
tendency to only represent well-established pathways. However,
as data and integration tools become increasingly available,
there are well-characterised models such as MitoCore that
could be built upon in the future. As we gain an increasing
understanding of mitochondrial biology and pathophysiology,
future computational models and accompanying analysis tools
will be instrumental in improving diagnostic and therapeutic
outcomes for primary mitochondrial disorders.

CONCLUDING REMARKS

Systems biology research is still in early development for
primary mitochondrial diseases. Since mitochondria are central
organelles for many cellular functions across multiple tissues,
the application of recent advances in systems biology will
likely improve our understanding of mitochondrial diseases
(Perocchi et al., 2006; Shutt and Shadel, 2007). The most
recent predictive models MitoCore and Leigh Map provide
useful examples of ongoing efforts using available mitochondrial
resources, and the need to continue the iterative cycle of

systems approaches to build, test and refine models for
better computational representations. Indeed, as context-specific
models become more comprehensive, global reconstructions
will inevitably improve in future iterations and be more useful
for mitochondrial research, made possible by utilising high
throughput omics data (Palese and Bossis, 2012; Williams
et al., 2016; Palmfeldt and Bross, 2017). For instance, GEMs
may evolve to feature more detailed data and omics profiles
specific to the subject of study, as these data become available
(Argmann et al., 2016). This development will be of particular
interest to represent the different types of primary mitochondrial
diseases to characterise and identify what is common to all
mitochondrial diseases and what is unique to particular gene
defects or subgroups, for better diagnostic and therapeutic
approaches.

Although current computational models have not yet reached
standards needed for use in a clinical setting for diagnostic and
therapeutic purposes, the quality of computational models has
vastly improved in the last decade; the evolution of models is
summarised in Table 2. Furthermore, computational modelling
of mitochondrial biology can be enhanced by other datasets
as described recently to gain mechanistic insight, progress
therapeutic development and improve outcomes for patients
with mitochondrial diseases (Rahman and Rahman, 2018).
Systems biology will most certainly become more applicable
to personalised medicine as these models evolve to encompass
patient-tailored models, ultimately aiming for improved patient
care.
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