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Discovering cancer subtypes is useful for guiding clinical treatment of multiple cancers.

Progressive profile technologies for tissue have accumulated diverse types of data.

Based on these types of expression data, various computational methods have been

proposed to predict cancer subtypes. It is crucial to study how to better integrate

these multiple profiles of data. In this paper, we collect multiple profiles of data for

five cancers on The Cancer Genome Atlas (TCGA). Then, we construct three similarity

kernels for all patients of the same cancer by gene expression, miRNA expression and

isoform expression data. We also propose a novel unsupervised multiple kernel fusion

method, Similarity Kernel Fusion (SKF), in order to integrate three similarity kernels into

one combined kernel. Finally, we make use of spectral clustering on the integrated

kernel to predict cancer subtypes. In the experimental results, the P-values from the Cox

regression model and survival curve analysis can be used to evaluate the performance of

predicted subtypes on three datasets. Our kernel fusion method, SKF, has outstanding

performance compared with single kernel and other multiple kernel fusion strategies. It

demonstrates that our method can accurately identify more accurate subtypes on various

kinds of cancers. Our cancer subtype prediction method can identify essential genes and

biomarkers for disease diagnosis and prognosis, and we also discuss the possible side

effects of therapies and treatment.

Keywords: cancer subtypes prediction, similarity kernel fusion, spectral clustering, sparse matrix, The Cancer

Genome Atlas

1. INTRODUCTION

Cancer is a heterogeneous disease caused by chemical, physical, or genetic factors (Mager, 2006;
Liu and Chu, 2014). The development of high-throughput genome analysis techniques on the
research of cancer subtypes plays an important role in the analysis and clinical treatment of various
kinds of cancers (Kruijf et al., 2013; Prat et al., 2015; Thanki et al., 2017). In recent years, much
expression data, including genomes, transcriptome and epigenomes, has accumulated and been
stored in various databases. The Cancer Genome Atlas (TCGA) (Katarzyna et al., 2015) is a large-
scale project including over 34 cancers and 15 expression data sets. We can conveniently obtain
genome-scale molecular data, which contributes to the development of computational methods for
discovering cancer subtypes.
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Until now, massive computational methods were proposed
to discover cancer subtypes. Some methods are based on
single expression data, including gene expression data (Nguyen
and Rocke, 2002; Brunet et al., 2004; Finnegan and Carey,
2007; Teschendorff et al., 2007) and copy number (Wong
et al., 2012) and DNA methylation (Zhang et al., 2017).
Gao and Church (2005) employed sparse non-negative matrix
factorization (SNMF) and gene expression data to identify
subtypes of three cancers. Also, various kinds of expression data
(Wei et al., 2017, 2018a,b) and several types of similarity strategies
(Zeng et al., 2016; Ding et al., 2017a,b; Pan et al., 2017, 2018; Guo
F. et al., 2018; Song et al., 2018) can be applied in many other
biological prediction problems.

Generally, we desire a comprehensive view of one disease with
a cohort of patients. We cannot analyze just one kind of data,
but must separately abstract information from different types
of data (Xu et al., 2017). Therefore, many methods improve
the robustness of clustering by focusing on data processing
(Ren et al., 2015). Wang et al. (2014) proposed the Similarity
Network Fusion (SNF) approach for accurately clustering caner
subtypes. This method first collects three types of genome-wide
data including gene, methylation and miRNA expression. Then,
it constructs the networks of samples (e.g., patients) by using
three types of expression data, and fuses these networks into
one network by using SNF representing the full spectrum of
underlying data. Finally, it employs spectral clustering on an
integrated network to predict caner subtypes. Ma and Zhang
(2017) developed an improved SNF, Affinity Network Fusion
(ANF), to integrate multiple similarity networks. Xu et al.
(2016) proposed Weighted Similarity Network Fusion (WSNF)
to identify cancer subtypes. This method constructs similarity
of patients by integrating associations between miRNA, mRNA,
and transcription factors. It is applied to two cancer types to
demonstrate performance.

Furthermore, the effective models of clustering that we
usually use have strong data sensitivity, such as k-means and
hierarchical clustering. Today, many clustering methods have
been developed to identify cancer subtypes. Le et al. (2016)
developed the SRF algorithm, which identifies subtypes by
combining mutational and expression information. It diffuses
mutation information over an interaction network on the basis
of each sample and eliminates scale differences by applying a
rank-based transformation based on mutation and expression
data. Then, rank matrix factorization is used to jointly factorize
the transformed data into a number of ranked factors, and
the subtypes are defined as the combination of ranked factors.
This method obtains excellent performance, but some of the
patients cannot be identified. Shen et al. (2009) proposed
the iCluster method, which is based on the Gaussian latent
variable model, to discover caner subtypes. This method was
tested on breast cancer and lung cancer by using copy number
and gene expression data types. Speicher and Pfeifer (2015)
pointed out that iCluster has high computational complexity
and proposed a dimensionality reduction method to integrate
multiple similarity kernels. This method is evaluated by using
five cancer types. Ge et al. (2017) developed the Scluster method,
which integrates different types of data and maps them into an

effective low-dimensional subspace. First, Scluster uses adaptive
sparse reduced-rank regression (S-rrr) to map the original data
into the principal subspaces. Next, a fused patient-by-patient
network is abstracted for these subgroups by a scaled exponential
similarity kernel method. It can then obtain the cancer subtypes
by spectral clustering.

In this paper, we first collect multiple profile data on The
Cancer Genome Atlas (TCGA), including five cancers (lung
cancer, kidney cancer, stomach cancer, breast cancer, and colon
cancer) and their three types of expression data (gene expression,
isoform expression, and miRNA expression). Then, we construct
three similarity kernels for all patients of the same cancer by
using the three types of expression data. We then propose a novel
unsupervised multiple kernel fusion method, Similarity Kernel
Fusion (SKF), in order to integrate three similarity kernels into
one combined kernel. Compared with SNF, SKF not only keeps
the original information of each type of similarity kernel, but
also gets rid of the noise in the integrated kernel. Finally, we
make use of spectral clustering on the integrated kernel to predict
cancer subtypes. To test the effectiveness and robustness of this
novel approach, P- values from a Cox regression model and
survival curve analysis can be used to evaluate the performance
of our method on cancer subtype prediction. We compare
the integrated kernel with the single kernel and other fusion
methods, and also analyze the survival curve of the clinical data.

2. MATERIALS AND METHODS

In this paper, we first extract five cancer datasets fromThe Cancer
Genome Atlas (TCGA). For a particular cancer, we construct
three patient similarity kernels by using the expression data.
Then, we combine these similarity kernels into one similarity
kernel by using Similarity Kernel Fusion (SKF). Finally, we
employ spectral clustering on the integrated kernel to divide all
patients into multiple clusters. The flowchart of our method is
shown in Figure 1.

2.1. Dataset
We collect five cancer datasets from the TCGA website,
including stomach cancer, lung cancer, kidney cancer, breast
cancer, and colon cancer. For each cancer, we extract three
kinds of expression data respectively, including gene expression,
miRNA expression, and isoform level. Our dataset is denoted
as Dataset No.1 in this paper. In addition, we employ anther
dataset to evaluate the performance of our method. The
second dataset is provided in Wang et al. (2014), which
includes lung cancer, kidney cancer, breast cancer, colon cancer,
and glioblastoma multiforme (GBM). For each tumor, gene
expression, methylation expression, andmiRNA expression from
TCGA are used to analyze cancer subtypes. We denote this
dataset as Dataset No.2. Since genes could be categorized into
multiple groups, we selected 18222 coding genes from Dataset
No.1, formed as Dataset No.3 . A summary of the three datasets
is shown in Table 1. It is clear that Dataset No.1 and Dataset No.3
have more patients and expression factors than Dataset No.2 .
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FIGURE 1 | The flowchart of our method for discovering cancer subtype.

2.2. Similarity Kernel Construction
A special expression dataset is denoted as E ∈ Rn×m, where m is
the number of expression factors and n is the number of patients.
We first normalize E by using Equation (1).

x′ =
x− X

S
(1)

where x is an element of E, x′ is corresponding elements of E after
standardization, X is the mean of E and S is standard deviation of
E. And, we denote normalized expression data as E′.

Based on the processed expression data E′, we construct
similarity kernel K ∈ Rm×m for patients. Here, the similarity
between two patients is defined as Equation (2) (Chen et al.,
2018b; Zhao et al., 2018a,b).

Ki,j =

√

(ei − ej)T(ei − ej) (2)

where Ki,j is the similarity between i-th patient and j-th patient,
ei ∈ Rn×1 and ej ∈ Rn×1 is i-th column and j-th column of E′,
respectively.
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Finally, we get three similarity kernels for a special disease,
including similarity kernel K1 ∈ Rm×m by using gene expression,
similarity kernel K2 ∈ Rm×m by using miRNA expression, and
similarity kernel K3 ∈ Rm×m by using isoform expression.

TABLE 1 | Description of three datasets from TCGA.

Diseases Patients Genes Isoform miRNAs

No.1 Dataset Breast 1071 60483 183 1881

Colon 426 60483 186 1881

Kidney 868 60483 176 1881

Lung 981 60483 174 1881

Stomach 377 60483 211 1881

Diseases Patients Genes CpG sites miRNAs

No.2 Dataset Breast 105 17814 23094 354

Colon 92 17814 23088 312

Kidney 122 17899 24960 329

Lung 106 12042 23074 352

GBM 215 12042 1305 534

Diseases Patients Genes Isoform miRNAs

No.3 Dataset Breast 1071 18222 183 1881

Colon 426 18222 186 1881

Kidney 868 18222 176 1881

Lung 981 18222 174 1881

Stomach 377 18222 211 1881

2.3. Similarity Kernel Fusion
We constructed three similarity kernels for patients in the above
section. We propose Similarity Kernel Fusion (SKF) to combine
these kernels into one kernel K∗ ∈ Rm×m. First, we construct two
kernels P ∈ Rm×m and S ∈ Rm×m for each similarity kernel by
using Equations (3, 4), where P is a normalized kernel and S is a
sparse kernel that eliminates weak similarity.

P(i, j) =
Ki,j

∑m
k=1 Kk,j

(3)

where P satisfies
∑m

k=1 P(k, j) = 1.

S(i, j) =

{

0 if j /∈ Ni
Ki,j

∑

k∈Ni
Ki,k

if j ∈ Ni
(4)

where S satisfies
∑m

k=1 S(i, j) = 1; Ni is a set of all neighbors of
the i-th patient, including itself.

Second, we discover more information by using multiple
iterations as Equation (5).

Pt+1
l

= α(Sl ×

∑

r 6=l P
t
r

2
× Stl )+ (1− α)(

∑

r 6=l P
0
r

2
) (5)

where Pt
l
(l = 1, 2, 3) is the status of the l-th kernel after t

iterations, α is a coefficient and satisfies α ∈ [0, 1], P0r (r = 1, 2, 3)
represents the initial status of Pr .

FIGURE 2 | Results of SKF with α on three datasets.
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After t + 1 iterations, the overall kernel can be computed as
Equation (6).

Kcom =
1

3

3
∑

l=1

Pt+1
l

(6)

Finally, based on the integrated kernel, we construct a weight
matrix to eliminate noise in the integrated kernel as Equation (7).

w(i, j) =







1 if j ∈ Ni ∩ i ∈ Nj

0 if j /∈ Ni ∩ i /∈ Nj

0.5 otherwise
(7)

where Ni is a set of all neighbors of the i-th patient, including
itself, and Nj is a set of all neighbors of the j-th patient, including
itself.

The final similarity kernel can be obtained as Equation (8).

K∗ = w ◦ Kcom (8)

where K∗ is the final integrated similarity kernel by using SKF.

2.4. Mining Subtypes Using Spectral
Clustering
In this section, we employ spectral clustering (Ng et al., 2001)
on the integrated similarity kernel to divide all patients into
multiple clusters. Many previous studies, including CSPRV (Guo
Y. et al., 2018), Scluster (Ge et al., 2017), and SNF(Wang
et al., 2014), have constructed similarity kernels for patients
and used spectral clustering to discover cancer subtypes. These
methods have achieved excellent performance by using spectral
clustering. Additionally, Luxburg (2007) have pointed out that
spectral clustering is effective in capturing the global structure
of the graph. Therefore, we use spectral clustering to identify
cancer subtypes. Then, we will introduce the processes of spectral
clustering in detail. We define a matrix Y ∈ {0, 1}k×n to represent
the result of a cluster, where Y(i, j) = 1 if patient pj belongs to i-
th cluster, otherwise Y(i, j) = 0. We also use Equation (9) as the
optimal question to solve Y .

min
Q∈Rk×n

Trace(QTL+Q)

s.t.QTQ = I

(9)

where Q = Y(Y ′Y)−
1
2 , L+ = I − D− 1

2K∗D− 1
2 , D is a diagonal

matrix whose diagonal element is the sum of the row elements
of K∗.

3. RESULTS

In this section, we discuss the performance of our method in a
variety of ways. First, we introduce an evaluation criteria and a
verification method that are used to evaluate the performance
significance of the cancer subtype predictions. Second, we analyze
the performance of SKF with different parameters α on Dataset
No.1 . Third, we discuss the performance of SKF on the three
datasets. Fourth, we compare SKF with two other fusion methods
on the three datasets. Finally, we analyze the survival probability
curves of the predicted subtypes for four cancers.

3.1. Evaluation Criteria and Verification
Method
In this paper, we employ the P-value from the Cox regression
model to evaluate the performance of our method, where a
lower P-value indicates higher significance for performance.
When the P-value is less than 0.05, it is of significance to
the performance of the model. When the P-value is less than
0.01, the performance of the model is highly significant. Here,
we use 0.05 as the threshold for significance. The meaning of
the P-value is significance in the difference of survival profiles
between cancer subtypes. Moreover, we also use survival analysis
to evaluate the performance of the clustering results. The survival
curve represents the change in survival rate over time, and it
is a monotone decreasing curve without any fluctuation. In the
survival curve, we can find that different subtypes have different
survival rates. We can analyze some subtypes that have a higher
risk of death.

3.2. Parameter Selection for SKF
Particularly, α is an important parameter in the process of SKF.
A lower α value represents keeping more initial information
in the integrated kernel. A higher α value represents keeping
more information after multiple iterations. In the three datasets,
we take α from 0 to 1 with a step of 0.1 to find the optimal
α for the five cancers. Results are shown in Figure 2, with the
X axis representing the α value and the Y axis representing
the − log10(Pvalue). A lower P-value is represented by a higher
value of − log10(Pvalue). In Figure 2, the P-value maintains clear
fluctuation in the range between 0 and 1. It demonstrates that
SKF is sensitive to changes in α. We get the optimal P-value when
α is equal to 1 for the four cancers except lung cancer on Dataset
No.3. From the results of Dataset No.2, we can see that keeping
more initial information is necessary for many of the datasets.

TABLE 2 | Comparison results between SKF and single kernel on three datasets.

Datasets Cancers
Gene miRNA Isoform

SKF
expression expression expression

Dataset No.1 Stomach (C=12) 0.703 0.027 0.548 8.86× 10−14

Lung (C = 8) 0.621 0.137 0.829 3.81× 10−4

Kidney (C = 3) 0.228 0.642 0.358 0.120

Breast (C = 5) 0.516 0.281 0.281 9.79× 10−6

Colon (C = 6) 0.045 0.726 0.133 0.025

Cancers
Gene DNA miRNA

SKF
expression methylation expression

Dataset No.2 GBM (C = 5) 0.159 0.001 0.436 0.037

Lung (C = 3) 8.25× 10−4 0.009 0.289 6.66× 10−5

Kidney (C = 5) 0.0177 0.467 0.368 0.0372

Breast (C = 5) 0.009 0.00164 1.38× 10−4 2.7× 10−7

Colon (C = 5) 0.587 0.084 0.702 1.81× 10−3

Cancers
Gene miRNA Isoform

SKF
expression expression expression

Dataset No.3 Stomach (C = 9) 0.0538 0.438 0.621 0.003

Lung (C = 3) 0.352 0.171 0.398 0.005

Kidney (C = 8) 0.048 0.0018 0.779 0.101

Breast (C = 7) 0.597 0.0343 0.864× 10−8 1.06× 10−34

Colon (C = 7) 0.0465 0.626 0.134 3.66× 10−4
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FIGURE 3 | Calculating P-values of SKF, SNF, and UMKL with different number of clusters. (A) Results of Dataset No.1. (B) Results of Dataset No.2. (C) Results of

Dataset No.3.
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FIGURE 4 | Survival curves of subtypes for four cancers.

3.3. Performance of SKF in Difference
Datasets
In this paper, we obtain Dataset No.1 from TCGA. For a
specific disease, we extract all 60483 gene expression data points
on Dataset No.1 . We employ the three datasets to evaluate
the performance of SKF. For each dataset, we compare the
performance of SKF with single kernel by using the optimal
number of clusters. In Table 2, we can see that SKF achieves
outstanding performance compared with single kernel in 12
cases. We also find that the same kernels with different numbers
of clusters have different P-values. Therefore, we need to adjust
the number of clusters to obtain optimal clustering results.
Although P-values do not achieve significant performance for
GBM cancer in Dataset No.2 or Kidney cancer in Datasets No.2
and No.3 after SKF, these P-values get remarkable promotion
compared to single kernel. Moreover, it is clear that the P-value
of Dataset No.3 is better than that in Dataset No.1 , which shows
that coding genes play an important role in the clustering of
cancer subtypes.

3.4. Comparing With Other Fusion Methods
Several multiple kernel fusion strategies have been developed,
including similarity network fusion (SNF) (Wang et al., 2014)
and unsupervised multiple kernel learning (UMKL) (Mariette
and Villavialaneix, 2018). We compared the performance of SKF
with these two strategies to find better subtypes for a particular

cancer. We tested the three strategies on the three datasets
to compare the performance of different fusion methods. All
results are found in the Supplementary Table 1. The graphical
results are shown in Figure 3, with the X axis representing the
number of clusters and the Y axis representing the value of
− log10(Pvalue). The blue lines represent the change of SKF, the
red lines represent the change of SNF, the green lines represent
the change of UMKL and the black dashed lines show the P-
value equal to 0.05. In Figure 3, we find that SKF achieved a
remarkable level of performance for the clustering of breast and
colon cancer subtypes in the three datasets. Additionally, SKF
achieved better performance than other kernel fusion strategies
for the clustering of lung cancer subtypes in Datasets No.1 and
No.3. We also found that SNF performed well for the clustering
of kidney cancer subtypes in the three datasets and UMKL
reached the best level of performance for the clustering of lung
cancer subtypes in Dataset No.2 and stomach cancer subtypes
in Dataset No.1. It demonstrates that SKF obtained a significant
level performance for discovering subtypes of a particular cancer,
and also that the cluster results can be used for guiding clinical
treatment.

3.5. Survival Analysis
In this paper, we analyzed the performance of SKF based on
six cancers, including breast, lung, kidney, colon, stomach, and
GBM cancers. However, since the P-values for the clustering
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of kidney and GBM cancer subtypes were larger than 0.05, we
showed survival probability curves for the four other cancers.
We analyzed these cancer subtypes by using Dataset No.3 . In
Figure 4, we find that subtype 3 for stomach cancer has a higher
death rate. These patients with subtype 3 need more attention to
be paid to them. The average survival time of subtype 2 for colon
cancer is longer than the other subtypes. Similarly, subtype 3 for
other cancers tends to be more aggressive than other subtypes.
We also found that the average survival time for breast cancer
and lung cancer are longer than for stomach and colon cancer. It
demonstrates that the cluster results of SKF can be used to guide
clinical treatment.

4. CONCLUSIONS

In this paper, we proposed an accurate model for predicting
cancer subtypes. First, we extracted a novel dataset with three
expression data types (gene expression, miRNA expression,
and isoform expression) and five cancers (breast, lung, kidney,
colon, and stomach cancers) from the TCGA website. Second,
we constructed three similarity kernels by using the three
types of expression data for each cancer. Then, we proposed
Similarity Kernel Fusion (SKF) to integrate the three kernels
into one combined kernel. Finally, we used spectral clustering on
integrated kernel to discover cancer subtypes.

We used an evaluation criteria (P-value) and a verification
method (survival analysis) to evaluate the performance of SKF for
the discovery of cancer subtypes. We compared SKF with single
kernel and two kernel fusion strategies (SNF and UMKL) in three
datasets. Results showed that SKF obtains a significant level of
performance on P-value, and the survival curve of the subtypes
was consistent with the clinical data. It demonstrates that SKF is
an accurate computational tool for guiding clinical treatment.

Our method also has some limitations that require some
attention. Since spectral clustering is a widely used and accepted

cluster method, we are attempting to find an improved method
to discover cancer subtypes more accurately. We will consider
various machine learning methods and constructing kernel
methods to predict cancer subtypes (Zeng et al., 2017; Ding et al.,
2018; Zhang et al., 2018a,b,c; Zou et al., 2018). We also consider
the potential possibility of developing computational models for
cancer subtype identification based on microRNA information
(Chen and Huang, 2017; Chen et al., 2017, 2018a,b; Hu et al.,
2018).
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