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The mammary gland is the production organ in mammals that is of great importance
for milk production and quality. However, characterization of the buffalo mammary
gland transcriptome and identification of the valuable candidate genes that affect milk
production is limited. Here, we performed the differential expressed genes (DEGs)
analysis of mammary gland tissue on day 7, 50, 140, and 280 after calving and
conducted gene-based genome-wide association studies (GWAS) of milk yield in 935
Mediterranean buffaloes. We then employed weighted gene co-expression network
analysis (WGCNA) to identify specific modules and hub genes related to milk yield based
on gene expression profiles and GWAS data. The results of the DEGs analysis showed
that a total of 1,420 DEGs were detected across different lactation points. In the gene-
based analysis, 976 genes were found to have genome-wide association (P ≤ 0.05)
that could be defined as the nominally significant GWAS geneset (NSGG), 9 of which
were suggestively associated with milk yield (P < 10−4). Using the WGCNA analysis,
544 and 225 genes associated with milk yield in the turquoise module were identified
from DEGs and NSGG datasets, respectively. Several genes (including BNIPL, TUBA1C,
C2CD4B, DCP1B, MAP3K5, PDCD11, SRGAP1, GDPD5, BARX2, SCARA3, CTU2,
and RPL27A) were identified and considered as the hub genes because they were
involved in multiple pathways related to milk production. Our findings provide an insight
into the dynamic characterization of the buffalo mammary gland transcriptome, and
these potential candidate genes may be valuable for future functional characterization
of the buffalo mammary gland.

Keywords: buffalo, genome-wide association studies, hub genes, milk yield, RNA-seq, WGCNA

INTRODUCTION

Water buffaloes (Bubalus bubalis) are known for their high-quality milk and meat consumption
despite nutritional rations consisting of low-quality forage and fodder. Murrah, Nili-Ravi and
Mediterranean breeds appear to be the top three dairy breeds of buffalo in the world with an average
milk yield of 1800–2500, 1800–2400, and 2000–2800 liters in 300 days, respectively (Thomas, 2008;
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Medhammar et al., 2012). However, even the best milk producing
buffalo breed cannot compare to Holstein cattle when it comes
to average milk production. The lower milk production level
may limit the development of dairy buffalo industry. Thus,
the dairy buffalo industry prioritizes the improvement of milk
production. Therefore, the implementation of new strategies,
such as investigating the genetic architecture of milk yield, could
facilitate a better understanding of different production traits,
and these strategies may be used in high-yield buffalo breeding
programs.

Transcriptome sequencing (RNA-Seq) is a sensitive, broad-
spectrum detection tool for the analysis of gene expression
pattern and provides insight into the mechanisms underlying
complex traits in humans and livestock animals. The mammary
gland is of great importance for milk production and quality.
In recent years, numerous reports on the transcriptome profile
analysis of the mammary gland have emerged in different
livestock animals such as cattle (Cui et al., 2014), sheep (Suárez-
Vega et al., 2016), and goat (Mobuchon et al., 2015). Moreover,
different RNA sources including mammary gland biopsies (Dai
et al., 2017), milk somatic cells (Salama et al., 2015) and milk
fat globules (Cánovas et al., 2014) have been utilized to perform
the mammary gland transcriptome analysis. However, RNA-Seq
technology has not been used to describe the buffalo mammary
gland transcriptome.

Genome-wide association studies (GWAS) are a powerful
tool for investigating the genetic architecture of complex traits
that have been widely used to identify the genetic variants and
quantitative trait loci (QTL) affecting production traits among
livestock (Jiang et al., 2010; Bush and Moore, 2012; Li et al.,
2013). To date, traditional GWAS have had limited success in
illustrating the genetic architecture underlying the complex traits
because of a large number of loci with small effects (Visscher
et al., 2012; Wood et al., 2014; Fang et al., 2017). The novel
analytical methods to increase power should is necessary to
overcome this limitation. The gene-based or pathway-based
GWAS emerged as a novel approach that combines genetic
information for all single nucleotide polymorphisms (SNPs)
in a gene or pathway to increase the capability to find novel
genes and generate more informative results (Neale and Sham,
2004; Wang et al., 2010; Xia et al., 2017). However, several
issues complicate gene-based or pathway-based analysis such as
variations in enrichment results across software tools, biased
enrichment analyses due to concerned pathway membership,
and the relatively unknown relationship between associated
genes (Elbers et al., 2009; Farber, 2013). More importantly,
information related to these issues is vital to understand how
the associated genes influence the complex traits. This particular
limitation may be improved by employing a weighted gene co-
expression network analysis (WGCNA). The WGCNA algorithm
can group genes into modules based on the gene co-expression
similarities across the samples, resulting in a cluster of genes
with similar functions (Langfelder and Horvath, 2008; Van-
Nas et al., 2009; Liu et al., 2017). Therefore, WGCNA is
a useful tool to identify the functional connections between
genes in an unbiased manner using trait-relevant expression
data.

In the present study, we performed the transcriptome analysis
of lactating mammary gland tissue at different lactation stages of
buffaloes. WGCNA was then used to investigate the differentially
expressed genes (DEGs) associated with milk yield. Previously
published GWAS datasets were used to conduct the system-level
study of milk yield traits by WGCNA. Finally, we integrated the
analyses of the two datasets to identify hub genes affecting milk
production. As a result, an exclusive set of genes affecting milk
production were identified. These genes may play a vital role in
mammary gland development and lactation.

MATERIALS AND METHODS

Mammary Gland Tissue
All experimental designs and animal care protocols were
approved by the Animal Ethics Committee of the Buffalo
Research Institute, Chinese Academy of Agricultural Sciences
(BRI-CAAS) and Huazhong Agricultural University.

A total of eight Murrah buffaloes were selected and
used for the biopsy at the BRI-CAAS. Lactation history
(including milk yield and parity) was used for sample
selection. The selected animals were in their 3rd and 4th
parity. Mammary gland tissue samples were collected on
day 7 (D7), 50 (D50), 140 (D140), and 280 (D280) after
calving and immediately preserved in liquid nitrogen until
use. Two replicates were used for each lactation point in
this experiment. The sampling points represented the different
physiological stages of the mammary gland across lactation. D7
represented early lactation, D50 corresponded peak lactation,
and D140 and D280 represented the mid and late stages of
lactation.

RNA Extraction, cDNA Library
Construction and RNA Sequencing
Total RNA from approximately 3 ∼ 5 mg of mammary
gland biopsies was isolated using Trizol reagent according
to the manufacturer’s protocol (Invitrogen, Carlsbad, CA,
United States). The total RNA was quantified and evaluated using
the Agilent Bioanalyzer 2100 Instrument (Agilent Technologies,
Beijing, China) with the RNA Integrity Number (RIN) value.

The cDNA library for each sample was prepared by
Illumina TruSeqTM RNA Sample Preparation Kit (Illumina,
San Diego, CA, United States) following the manufacturer’s
instructions. Briefly, 5 µg of RNA for each sample was used
for RNA-seq library preparation. The poly (A) mRNAs were
isolated from total RNA using the Oligo (dT) magnetic beads.
The cDNA synthesis was performed using the SuperScript
II, DNA Polymerase I and RNase H treatment, and then
chemically fragmented to ∼200 nt fragments and enriched
with PCR to create the final cDNA libraries. Eight cDNA
libraries were sequenced on the Illumina HiSeqTM 2000
platform (Illumina, San Diego, CA, United States). The
sequencing data were deposited in the NCBI SRA database
(BioProject ID: PRJNA480718). Supplementary Figure S1
describes the main steps and bioinformatics used for data
analysis.
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Differential Gene Expression Analysis
The sequencing quality of raw fastaq files was checked using
the FastQC version 0.11.7 software1. After quality control, the
clean data were used to align reads to the buffalo genome
(UOA_WB_1) allowing 2 bp mismatch using the TopHat version
2.1.1 software (Kim et al., 2013). The expression level of each
transcript was represented by the Trimmed Mean of M-values
(TMM) described in and implemented in the edgeR R-package
(Robinson et al., 2010). The differential analysis for pairwise
contrasts was performed using the DESeq2 R-package (Love et al.,
2014). The Benjamini and Hochberg corrected P-value ≤ 0.05
and FoldChange > 2 were defined as the selection threshold for
the DEGs.

Gene-Based Association Analysis
Two previously published GWAS datasets (Iamartino et al., 2017;
Liu et al., 2018) were used to perform the gene-based association
analysis aiming to investigate the candidate genes associated
with milk yield in buffaloes. All SNPs in the GWAS dataset
were converted to gene lists using MAGMA (de Leeuw et al.,
2015) software. Prior to MAGMA analysis, a total of 33,478
buffalo genes (UOA_WB_1) were extracted from the buffalo
GTF annotation file using the in-house scripts. Because it was
previously reported that approximately 90% of SNPs affecting
eQTL were observed within 15 kb from the 5′ and 3′-end of a
gene (Pickrell et al., 2010), a window of 7.5 Kb upstream and
7.5 Kb downstream of the gene was selected for SNP mapping
in the present study. We performed the gene-level association
analysis with the multi = all command, which computed all three
models: (1) principal components regression model, (2) SNP-
wise Mean (snp-wise = mean) model, and (3) SNP-wise Top 1
(snp-wise = top) model for each gene. The three P-values were
combined into an aggregate P-value. According to the currently
published buffalo GWAS reports (De Camargo et al., 2015; El-
Halawany et al., 2017; Iamartino et al., 2017; Liu et al., 2018),
the 10−4 was set as the threshold of gene-based analysis in this
work. The genes with a joint P < 0.05 for milk yield were defined
as the nominally significant GWAS gene set (NSGG) for further
analysis.

Co-expression Network Analysis for the
DEGs and NSGG
For the gene expression matrix from the DEGs and NSGG,
we employed the WGCNA R-package (Langfelder and Horvath,
2008) to conduct the co-expression network construction
analysis. Briefly, the gradient method was used to explore the
value of the adjacency matrix weight parameter: power (values
ranged from 1 to 30). Then, the topological overlap matrix
(TOM) was constructed using correlation expression values and
used for the hierarchical clustering analysis. The gene module was
detected using a dynamic tree cutting algorithm. In this study,
powers with 17 and 9 were set as the power cutoff for the DEGs
and NSGG dataset, respectively. Because these power values were
chosen based on the scale-free topology criterion (Zhang and

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Horvath, 2005), resulting in a scale-free topology index (R2) of
0.85. For both datasets, gene modules were constructed using
the dynamic hierarchical tree-cut algorithm with the following
parameters: minModuleSize = 40, deepSplit = 2, corFnc = “bicor,”
mergeCutHeight = 0.25, and networkType = “signed hybrid.”
The co-expression module structure was visualized by the gene
dendrogram plots.

Identification of Modules Associated
With Milk Yield
To identify modules that were significantly associated with milk
yield trait, the resulting module genes were used to calculate the
module eigengenes (MEs, or the first principal component of the
module). In general, the expression patterns of all genes could be
summarized into a single characteristic expression profile within
a given module (Yuan et al., 2017). Therefore, the correlation
analysis between MEs and milk yield was conducted to identify
the relevant module.

Hub Gene Analysis
Hub gene is usually used as an abbreviation of a highly connected
gene that tends to have high connectivity in the co-expression
modules. The module membership (MM) was defined as the
correlation between each gene’s expression and its MEs. The
gene significance (GS) was defined as each gene’s correlation with
traits of interest. Genes with the highest MM and highest GS in
modules of interest were set as the candidates for further analysis
(Fuller et al., 2007). In this study, for the DEGs and NSGG
modules, the intramodular hub genes that were associated with
milk yield were chosen by the following threshold: GS > 0.2,
MM > 0.8, and P ≤ 0.05. The common hub genes both in co-
expression network and NSGG network were regarded as “real”
hub genes for further analysis. Gene interaction network of the
common hub genes was visualized using the Cytoscape ver3.6
software (Shannon et al., 2003).

Functional Annotation and Enrichment
Analysis
The gene ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis for the DEGs,
module genes and hub genes were performed using the KEGG
Orthology-Based Annotation System (KOBAS) 3.0 (Xie et al.,
2011) with a cutoff of P < 0.05. The plot results were visualized
using the in-house R scripts.

Real-Time RT-PCR Confirmation of Hub
Genes
Total RNA was used for the cDNA synthesis using the RevertAid
First Strand cDNA Synthesis kit (Thermo Fisher Scientific,
Waltham, MA, United States). The quantitative real-time PCR
(qPCR) was conducted using the LightCycler 480 (Roche, CH),
and each reaction was performed in triplicate. Relative mRNA
expression levels were calculated using the 2−11Ct method
(Livak and Schmittgen, 2001) and normalized using the GAPDH
expression analysis. All the primers for the qPCR are shown in
Supplementary Table S1.
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RESULTS

mRNA Expression Profiles in the
Lactating Mammary Gland Tissues
In order to investigate the global mRNA expression changes
in the lactating mammary gland tissues, we performed the
high-throughput profiling analysis of eight mammary gland
tissues at four different lactation points (D7, D50, D140, and
D280). After filtering, approximately 22.14 Mb clean reads per
sample were generated. Approximately 90.89% of the clean
reads for each sample were mapped to the buffalo genome
(UOA_WB_1), and 74.79% of clean reads were mapped to
unique reads (Supplementary Table S2). Moreover, the Pearson
correlation coefficients (PCCs) analysis between all RNA-seq
samples showed that the PCCs between samples were ranged
from 0.9318 to 1.0000 (Supplementary Figure S2), suggesting
that our RNA-seq results met the requirement of following DEG
identification.

Herein, a total of 26,037 mRNAs were detected, and their
expression profiles are shown in Figure 1A. Similarly, the genes
with the highest TMM values in mammary gland tissues at
D7, D50, D140, and D280 during lactation were identified
(Figure 1B). Six comparison groups (D7 vs. D50, D7 vs. D140,
D7 vs. D280, D50 vs. D140, D50 vs. D280, and D140 vs.
D280) were set according to the lactation points, and the
results are presented in Figure 1C. A total of 103, 601, and
439 DEGs were up-regulated in the D50, D140, and D280
groups compared to the D7 group. In contrast, a total of 58,
440, and 266 DEGs were down-regulated in the D50, D140,
and D280 groups. Compared with those in D50, a total of
164 and 119 DEGs were found to be up-regulated in D140
and D280, respectively, whereas a total of 138 and 137 down-
regulated mRNAs were discovered in D140 and D280. In the
D140 vs. D280 group, we found 80 up- and 93 down-regulated
DEGs. The unified set of DEGs containing a total of 1,420
mRNAs was found among all comparison groups. Notably, a
total of 17 genes were shared among the different lactation
points, and 91, 181, and 87 unique genes were found in
the D7 vs. D50, D50 vs. D140, and D140 vs. D280 groups,
respectively (Figure 1C). Hierarchical cluster analysis of the
unique DEGs among all comparison groups was performed to
examine expression patterns (Figure 1D).

Gene-Based Association Analysis
In the gene-based analysis, the suggestively significant genes
affecting milk yield are shown in Figure 2A. The corresponding
genes are listed in Table 1, including their starting and ending
positions in the genes, ensemble IDs, buffalo Autosome, Gene
symbol, and the numbers of the mapping SNPs. A total of
nine genes (TCL1B, PDIA3, LOC112581059, COCH, STRN3,
CCDC88C, NPAS3, NUDT2, and UBE4B) were discovered. The
Q-Q plot of milk yield in the gene-based analysis demonstrated
that there was no inflation or systematic bias (Figure 2B).
Therefore, a total of 976 genes with P ≤ 0.05 were regarded
as the NSGG for further analysis in this study (Supplementary
Table S3).

Network Analysis of DEGs and NSGG
To evaluate the co-expression relationships for the DEGs
and NSGG datasets, we used the WGCNA algorithm to
define trends in gene co-expression across mammary gland
tissues at different lactation stages. For the DEGs, a total of
seven co-expression modules were detected (Figure 3A), with
164 DEGs failing to cluster into a distinct group (known
as the gray module). The size of modules ranged from
44 (red module) to 715 DEGs (turquoise module). Most
of these modules were significantly enriched in mammary
gland-specific gene ontologies as well as established cellular
functions (Figure 3A). These modules presented the strongest
correlation with categories of the cell (turquoise module),
cell part (blue module), cell (brown module), cell part
(yellow module), single-organism process (red module), and
membrane (green module). Interestingly, the metabolic pathways
were found to be significantly enriched (Top 1) in all
identified DEGs modules except for the yellow module
(Figure 3C).

For the NSGG, a total of 402 genes were assigned into the
turquoise module (Figure 3B), followed by the blue module (103
genes) and brown module (59 genes), and the 65 uncorrelated
genes were grouped into a gray module. The turquoise and
blue module genes both were significantly enriched in the cell
part term, while the brown module genes were significantly
enriched in the single-organism process term. As shown in
Figure 3D, the genes in the turquoise module were found
to be significantly enriched in the following top3 pathways
including the metabolic pathways, endocytosis, and MAPK
signaling pathway. The blue and brown module genes were
significantly enriched in the Rap1 signaling pathway and ECM-
receptor interaction, respectively.

Identification of Modules Associated
With Milk Yield
To understand the module-trait significance, we correlated
the selected modules with milk production and searched for
significant associations. A total of five modules (turquoise,
yellow, green, brown, and red) of DEGs were found to have
a significantly positive correlation with milk yield at D7 and
D280, respectively (Figure 4A). DEGs clustered in the turquoise
module (n = 715) had the strongest positive correlation at D7
(r = 0.96, P = 1e−04), while the brown module displayed the
highest positive correlation at D280 (r = 0.92, P = 0.001). For
the NSGG modules, genes assigned in the turquoise module
(n = 402) exhibited the strongest positive correlation with
milk yield at D7 (r = 0.96, P = 1e−04), while the brown
module genes displayed a significantly positive correlation with
milk yield at D50 (r = 0.75, P = 0.03) (Figure 4B). The
correction analysis of the DEGs and NSGG indicated that the
turquoise module exhibited a higher ability to indicate external
traits accurately than other modules. Moreover, our GO and
KEGG analysis showed that the turquoise module genes were
significantly enriched in the metabolic pathways, suggesting that
these genes might be related to mammary gland development and
secretion.
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FIGURE 1 | Expression profiles of buffalo mammary gland tissues during four lactation point. (A) The cluster heat map of all mRNAs expression at different stages
during lactation. (B) Bar plots are showing top10 genes with highest TPM values across the four points. (C) Bar plots showing differentially expressed genes by the
pairwise comparison. (D) Hierarchical clustering is showing often up and down-regulated mRNAs across the four points.

FIGURE 2 | Manhattan plot (A) of −log10 (P-values) and Quantile-Quantile plot (B) of P-values for milk yield from the gene-based method. The blue horizontal line
indicates the suggestive significance level [−log10(1e−4)].
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TABLE 1 | Significant genes identified for milk yield by gene-based GWAS method.

GENE CHR Start (bp) Stop (bp) NSNPS P-value Symbol

112580920 20 8966541 8986082 1 4.26E−06 TCL1B

102408568 20 14035135 14072539 1 5.84E−06 PDIA3

112581059 20 14050439 14065548 1 5.84E−06 LOC112581059

102394136 20 28040397 28069174 1 6.94E−06 COCH

102396060 20 27932196 28053180 3 3.25E−05 STRN3

102411925 20 13250379 13408926 5 5.64E−05 CCDC88C

102402688 20 25285048 26264479 19 9.14E−05 NPAS3

102400876 3 1.38E + 08 1.38E + 08 1 7.27E−05 NUDT2

102409055 5 37551819 37688935 4 6.12E−06 UBE4B

GENE, gene ID name in buffalo genome; CHR, buffalo Autosome; Start (bp), the start position (bp) of genes; Stop (bp), the end position (bp) of genes; NSNPs, numbers
of SNPs mapped to a gene. Symbol: the corresponding gene name.

FIGURE 3 | Identification of modules and functional annotation analysis for the module genes. (A) Module detection for the DEGs dataset and GO analysis for the
module genes. (B) Module detection for the NSGG dataset and GO analysis for the module genes. (C) KEGG enrichment analysis for module genes from the DEGs
dataset. (D) KEGG enrichment analysis for module genes from the NSGG dataset.

Hub Genes Analysis
To further identify the hub genes in the turquoise module that
were associated with milk yield, we investigated MM and GS
values of genes and set the genes with the highest values of MM
and GS in modules of interest as the hub genes. Figures 5A,B
shows the scatter plots of GS related to milk yield at D7 versus
MM in the turquoise module. A total of 544 and 225 genes highly
related to milk yield in the turquoise module were identified
and set as hub genes of the DEGs and NSGG, respectively.
Interestingly, a total of 12 genes (BNIPL, TUBA1C, C2CD4B,

DCP1B, MAP3K5, PDCD11, SRGAP1, GDPD5, BARX2, SCARA3,
CTU2, and RPL27A) were found to be shared by two modules
and were named “real” hub genes (Figure 5C and Table 2). The
visualized plot of the gene-gene interaction network for the 12
hub genes was shown in Figure 5D. The GO analysis found
most of the genes were enriched in the intracellular organelle,
followed by the organelle, intracellular part, intracellular and
cell part (Table 3). Notably, the MAP3K5 and TUBA1C genes
were significantly enriched in the apoptosis pathway (Table 3;
P < 0.05). We further validated the expression level of the 12 hub
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FIGURE 4 | Heatmap of the correlation between module eigengenes and milk yield. (A) module-traits analysis for the DEGs dataset. (B) module-traits analysis for
the NSGG dataset.

genes using qPCR, showing that a similar tendency was identified
between the mRNA expression level from the RNA-Seq and qPCR
(Supplementary Figure S3).

DISCUSSION

Transcriptome analysis to reveal genes actively expressed in
specific tissues and species of interest is particularly useful
to non-model organisms whose full genome data are not
available yet (Waiho et al., 2017). To date, there have been
numerous studies of global gene expression alterations in the
mammary gland (Bionaz and Loor, 2007; Shi et al., 2015;
Suárez-Vega et al., 2016). These studies have indicated temporal
and spatial specificity in the transcriptome profiles of the
mammary gland in different species. In the present study,
eight libraries of mammary gland tissues corresponding to
the different days of lactation (D7, D50, D140, and D280)
were constructed and used for high-throughput sequencing.
A total of 26,037 mRNAs were detected across the samples,
and several genes with the highest TMM values at different
lactation points were identified, such as the CSN1S2 (casein-
α-S2), CSN1S1 (α-S1-casein), CSN2 (β-casein), CSN3 (κ-casein),
Beta-LG (β-lactoglobulin), GLYCAM1 (Glycosylation-dependent
cell adhesion molecule 1), and LALBA (α-lactoalbumin). All
of these genes except GLYCAM1 have been reported to be
highly expressed in mammary cells in other species such as
cattle (Suárez-Vega et al., 2015) and human (Lemay et al.,
2013), reflecting the similar biological function of the lactating
mammary gland.

Identifying DEGs is critical to any transcriptome analysis. This
study found that most of the variations in the expression of
DEGs were identified in D7 vs. D140 group, followed by D7 vs.
D280, D50 vs. D140, D50 vs. D280, D140 vs. D280, and D7 vs.
D50 groups. This trend is consistent with the results reported
by Bionaz et al. (2012). Importantly, a unified set of DEGs
containing 1,420 mRNAs was identified among all comparison
groups, suggesting these DEGs may have temporal specificity and
reflect the physiological activity of the lactating mammary gland.
Interestingly, these DEGs assigned into 6 co-expression modules
using WGCNA analysis. In particular, the turquoise module had
a significantly positive correlation with milk yield at D7, and
four modules (green, brown, red, and yellow) were found to be
associated with milk yield at D280. The GO analysis showed that
most of these modules were significantly enriched for mammary
gland-specific GO as well as established cellular functions.
Early lactation is known to be a critical period for mammary
development, in which the mammary wet weight and total DNA
content continue to increase (Akersr et al., 1981), resulting in the
increased milk production in some species. Our data showed that
the turquoise module genes had the strongest correlation with
the metabolic pathways, ribosome, and endocytosis, suggesting
these genes might be involved in the metabolism, protein process,
and transport in the mammary epithelial cell. During late
lactation, the animals prioritized increasing body tissue over milk
production under thermal stress (Kim et al., 2010). Our data
revealed that the four (brown, green, red, and yellow) module
genes were significantly enriched in the metabolic pathways
and Chagas disease (American trypanosomiasis), suggesting that
these genes might be involved in energy metabolism.
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FIGURE 5 | Hub genes detection and network construction analysis. (A) Scatter plot of module eigengenes in the turquoise module from DEGs dataset. (B) Scatter
plot of module eigengenes in the turquoise module from NSGG dataset. (C) The Venn diagram of the DEGs and NSGG hub genes. (D) Hub gene interaction
network of in the turquoise module from the DEGs and NSGG dataset. The color intensity in each node was proportional to the TOM values calculated by WGCNA
(the higher TOM values were in a circle with red, whereas the lower TOM values were in a circle with white).

TABLE 2 | List of the overlapping hub genes in the turquoise module from the DEGs and NSGG.

Gene Full name Reference

BNIPL BCL2/adenovirus E1B 19 kDa protein-interacting protein 2 /

TUBA1C Tubulin alpha-1C chain-like /

C2CD4B C2 calcium-dependent domain-containing protein 4A /

DCP1B mRNA-decapping enzyme 1B /

MAP3K5 Mitogen-activated protein kinase kinase kinase 5 Do et al., 2017

PDCD11 Protein RRP5 homolog /

SRGAP1 SLIT-ROBO Rho GTPase-activating protein 1 /

GDPD5 Glycerophosphodiester phosphodiesterase domain-containing protein 5 /

BARX2 Homeobox protein BarH-like 2 /

SCARA3 Scavenger receptor class A member 3 isoform X1 /

CTU2 Cytoplasmic tRNA 2-thiolation protein 2 /

RPL27A 60S ribosomal protein L27a Yamada et al., 2009

Genome-Wide Association Studies is another effective method
for mining the candidate genes responsible for the traits of
interest, although these loci reveal only a small proportion of
the genetic risk of the complex traits. Using the gene-level
GWAS analysis, we identified a total of 9 genes (TCL1B, PDIA3,
LOC112581059, COCH, STRN3, CCDC88C, NPAS3, NUDT2,
and UBE4B) associated with milk yield. Some genes including
the PDIA3 (Janjanam et al., 2014), CCDC88C (Jiang et al.,
2018), and UBE4B (Wickramasinghe et al., 2012) have been

reported to be associated with milk production. Laine et al.
(2002) reported that TCL1B is one member of the TCL1 proto-
oncogene family that could enhance the phosphorylation and
activation of AKT1 and AKT2, which is involved in the PI3K-
Akt signaling pathway related to mammary gland development
and lactation (Korkaya et al., 2009). Oka et al. (2011) highlighted
that the NUDT2 gene could asymmetrically hydrolyze Ap4A and
regulate the intracellular Ap4A level that is associated with a wide
variety of basic cellular functions including protein synthesis,

Frontiers in Genetics | www.frontiersin.org 8 February 2019 | Volume 10 | Article 36

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00036 February 1, 2019 Time: 17:47 # 9

Deng et al. Identification of Hub Genes

TABLE 3 | The results of GO and pathway enrichment analysis for the overlapping hub genes clustered in the turquoise module.

Category Term ID P-value Gene symbol

GO Intracellular organelle GO:0043229 0.001418 C2CD4B, RPL27A, BNIPL, PDCD11, DCP1B, GDPD5, TUBA1C, CTU2

Organelle GO:0043226 0.002491 C2CD4B, RPL27A, BNIPL, PDCD11, DCP1B, GDPD5, TUBA1C, CTU2

Intracellular part GO:0044424 0.00389 C2CD4B, RPL27A, BNIPL, PDCD11, DCP1B, GDPD5, TUBA1C, CTU2

Intracellular GO:0005622 0.004957 C2CD4B, RPL27A, BNIPL, PDCD11, DCP1B, GDPD5, TUBA1C, CTU2

Cell part GO:0044464 0.012614 C2CD4B, RPL27A, BNIPL, PDCD11, DCP1B, GDPD5, TUBA1C, CTU2

Pathways apoptosis bta04210 0.001751 MAP3K5, TUBA1C

cell contact growth inhibition and apoptosis. This association
indicates that this gene might be involved in the functional
regulation in the mammary epithelium cell. Moreover, previous
studies reported that a potential limitation of both the single-
marker and the gene-based GWAS is that these two types of
GWAS do not provide functional information of associated genes
(Farber, 2013; Xia et al., 2017). To overcome the limitation,
we further performed a WGCNA analysis to investigate the
functional connections between genes in the NSGG dataset.
Interestingly, we found that a total of 402 genes were assigned
into the turquoise module and 65 uncorrelated genes were
grouped into a gray module. Notably, the turquoise module
genes (63.91%) associated with milk yield at D7, as most of
them were significantly enriched in the metabolic pathways.
Our results suggest that these genes might be involved in the
biological regulation of mammary gland development and early
lactation.

One of the contributions of this study is that hub genes were
identified by using the intramodular connectivity of genes in
modules. The data show that the hub genes with the highest
MM and GS in modules of interest should be considered
as the natural candidates for further research (Ghazalpour
et al., 2006; Horvath et al., 2006; Oldham et al., 2006). This
study identified turquoise module genes associated with milk
yield at D7 in the DEGs and NSGG datasets. Based on
these findings, a total of 544 and 225 genes were separately
considered as the hub genes from the DEGs and NSGG
datasets. Notably, a total of 12 overlapping genes (BNIPL,
TUBA1C, C2CD4B, DCP1B, MAP3K5, PDCD11, SRGAP1,
GDPD5, BARX2, SCARA3, CTU2, and RPL27A) were found
within the DEGs and NSGG networks and may be regarded
as “real” hub genes. The proportion of common hub genes
in the NSGG turquoise module (5.33%) was higher than that
of the DEGs turquoise module (2.21%). Functional annotation
analysis showed that many of the shared genes (C2CD4B,
RPL27A, BNIPL, PDCD11, DCP1B, GDPD5, TUBA1C, and
CTU2) were significantly enriched in the intracellular organelle,
followed by the organelle, intracellular part, intracellular and
cell part. For example, Cao et al. (2016) reported the GDPD5
silencing could decrease the cell proliferation, migration, and
invasion of breast cancer. In addition, it should be noted
that two genes (MAP3K5 and TUBA1C) were significantly
enriched in the apoptosis pathway. This pathway has been
demonstrated to be involved in mammary gland development
and lactation (Lund et al., 1996; Green and Streuli, 2004; Watson,
2006). In fact, MAP3K5 (known as ASK1) is a member of

the MAP3K family and has been identified as the upstream
activator of Jun N-terminal kinases (JNKs) and p38 MAPKs
pathways involved in mammary gland development (Wagner
and Nebreda, 2009; Whyte et al., 2009; Cellurale et al., 2012).
Do et al. (2017) reported that MAP3K5 gene had a significant
genetic effect on lactation persistency in Canadian Holstein
cattle. Moreover, TUBA1C is a member of the tubulin family
that plays a vital role in the maintenance of cell morphology,
movement, and intracellular transport (Hammond et al., 2008;
Zhao et al., 2014). Loizzi and Shao (1990) reported that
tubulin could increase with lactation in rat and pig mammary
alveolar cells. These results suggest that the TUBA1C gene
may be involved in many cell processes in the mammary
gland, thereby affecting mammary gland development and
lactation. Consequently, it can be assumed that these genes
serve as the candidate genes affecting the mammary gland
development and lactation. However, these findings remain to be
confirmed.

In summary, this study is the first attempt to report the
transcriptome profiles of the lactating mammary gland at
different stages in dairy buffalo and identify the turquoise
module genes associated with milk yield using the WGCNA
algorithm. Twelve hub genes associated with milk yield were
identified through a combination of transcriptome and GWAS
data, two of which were predicted to be significantly enriched
in the apoptosis pathway. Our findings provide an insight
into the dynamic characterization of buffalo mammary gland
transcriptome, and the identified candidate genes provide
valuable information for future functional characterization.
This study contributes to a better understanding of the
genetic mechanisms underlying the milk production trait in
buffaloes.
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