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Background: Down syndrome (DS) is one of the most common chromosomal
abnormalities associated with congenital heart defects (CHD), with approximately 40 to
60% of cases showing cardiac defects. This study assessed (i) the association between
maternal LINE-1 methylation and the occurrence of CHDs in children with DS and (ji) the
impact of endogenous maternal factors (MVTHFR C677T polymorphism and maternal
age) and exogenous maternal factors (cigarette smoking, alcohol intake, medication
use, body mass index and dietary habits such as folate intake) on maternal LINE-1
methylation and on the occurrence of CHD in children with DS.

Patients and Methods: The study included 90 mothers of children with DS of maternal
origin (49% DS-CHD™ mothers/51% DS-CHD™ mothers). LINE-1 DNA methylation was
analyzed in peripheral blood lymphocytes by quantification of LINE-1 methylation using
the MethyLight method. MTHFR C677T polymorphism genotyping was performed using
PCR-RFLP.

Results: LINE-1 methylation was not significantly different between DS-CHD™ and DS-
CHD™ mothers (P = 0.997). Combination of MTHFR C677T genotype/diet and BMI were
significant independent predictors of LINE-1 DNA methylation in DS-CHD* mothers (8
—0.40, P =0.01 and B —0.32, P = 0.03, respectively). In the analyzed multivariate model
(model P = 0.028), these two factors explained around 72% of the variance in LINE-1
DNA methylation in mothers of children with DS and CHD. The group with the highest
BMI (=30 kg/m2) had significantly lower LINE-1 methylation than the group with normal
BMI (Bonferroni post hoc P = 0.03) and the overweight group (Bonferroni post hoc
P = 0.04). The lowest LINE-1 DNA methylation values were found in DS-CHD+ mothers
with the CT+TT genotype and a low-folate diet; the values were significantly lower than
the values in mothers with the CC genotype and a folate-rich diet (Bonferroni post hoc
P =0.04).

Conclusion: Association between maternal LINE-1 methylation and CHD in children
with DS was not found. Study showed that the MTHFR genotype/diet combination
and BMI were significantly associated with LINE-1 methylation in mothers of children
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with DS-CHD™. These results highlight the need for a multifactorial approach to assess
the roles of endogenous and exogenous maternal factors in maternal LINE-1 DNA
methylation and the consequent pathologies in children. More extensive studies in a
larger sample may help elucidate these relationships.

Keywords: DNA methylation, LINE-1, congenital heart defects, Down syndrome, maternal risk

INTRODUCTION

Congenital heart defects (CHDs) are the most common birth
defects in humans, with a prevalence of 0.8% (Dolk et al., 2011;
Van Der Linde et al., 2011). The etiology of most CHDs is
unknown but is thought to involve multiple genetic, epigenetic,
environmental, and lifestyle factors (Botto et al., 2003; Pierpont
et al.,, 2007; Dolk et al., 2011; Van Der Linde et al., 2011;
Sun et al, 2015). Only about 15 to 20% of CHDs can be
attributed to known causes, with 5 to 10% of cases with CHDs
showing chromosomal abnormalities (Botto and Correa, 2003;
Dolk et al,, 2011). Trisomy 21 (OMIM 190685), which results
in Down syndrome (DS), shows the highest association with
major heart abnormalities, which are present in approximately
40 to 60% of individuals with DS. Such CHDs typically involve
septal defects such as atrial septal defects, ventricular septal
defects, and complete atrioventricular canal defects (Freeman
et al., 2008; Marder et al., 2015). In addition to the direct effects
of the chromosomal abnormality, maternal genotype, diet, and
lifestyle factors, along with environmental exposures, may be
involved in the development of heart anomalies in individuals
with DS. Foremost among these maternal risk factors are folic
acid deficiency and genetic variations of folate pathway genes,
such as the methylenetetrahydrofolate reductase gene (M THFR)
(Brandalize et al., 2009; Hobbs et al., 2010; Coppede, 2015; Asim
et al., 2017). Altered maternal DNA methylation is suggested to
be an underlying mechanism in the development of birth defects,
including CHDs (Blom et al., 2006; Chowdhury et al., 2011; Barua
and Junaid, 2015; Serra-Juhé et al., 2015; Spearman, 2017). Some
risk factors have been proposed to modulate DNA methylation,
including aging, body mass index (BMI), cigarette smoking,
alcohol intake, folate deficiency, MTHFR polymorphisms, and
hyperhomocysteinemia patterns (Chowdhury et al., 2011; Flom
etal., 2011; Terry et al., 2011; Zacho et al., 2011; Delgado-Cruzata
et al., 2015; Marques-Rocha et al., 2016; Mendelson et al., 2017;
Wabhl et al., 2017; Liu et al., 2018).

During the last decade, quantitative measurement of the
methylation status of long interspersed nucleotide element-1
(LINE-1) in white blood cells (WBCs) has been used as a
surrogate measure of global DNA methylation and as a potential
biomarker in a variety of diseases (Weisenberger et al., 2005;
Chowdhury et al., 2011). Maternal LINE-1 hypomethylation
has been linked to an increased risk of non-syndromic
CHD, particularly septal defects (Chowdhury et al., 2011). We

Abbreviations: BMI, body mass index; CHD, congenital heart defects; DS,
Down syndrome; LINE-1, long interspersed nucleotide element-1; MTHEFR,
methylenetetrahydrofolate reductase; PCR, polymerase chain reaction; PMR,
percent of methylated reference; PUR, percent of unmethylated reference; WBC,
white blood cells.

previously found significantly lower levels of LINE-1 methylation
in the mothers of children with DS than in the mothers of healthy
children (Bozovi¢ et al., 2015). However, the relationship between
LINE-1 methylation and DS-associated CHD has not yet been
investigated.

Thus, the aim of the present study was to assess (i) the
association between maternal LINE-1 methylation and the
occurrence of CHD in children with DS and (ii) the association
of endogenous maternal factors (MTHFR C677T polymorphism
and maternal age), and exogenous maternal factors (cigarette
smoking, alcohol intake, medication use, body mass index, and
dietary habits, such as folate intake) with LINE-1 methylation in
mothers of children with DS and CHD.

MATERIALS AND METHODS
Study Participants

The study population consisted of 90 mothers of children with
maternally derived full trisomy 21. All participants were the
same ethnicity (Caucasian); 49% (44/90) had children with DS
and CHD (DS-CHD™ mothers), and 51% (46/90) had children
with DS without CHD (DS-CHD™ mothers). There was a
septal defect in 82% (36/44) of the children with DS-CHD™,
a patent foramen ovale in 11% (5/44), patent ductus arteriosus
in 5% (2/44), and persistent truncus arteriosus in 2% (1/44).
Information about CHD was obtained from each child’s medical
records. Maternal blood samples were collected in collaboration
with DS associations in larger cities in Croatia (Rijeka, Zagreb,
Pula, Zadar, Split, Karlovac, Cakovec, and Osijek). The Ethics
Committee of the School of Medicine, University of Rijeka,
reviewed and approved all study protocols (reference number:
2170-24-01-13-04). Written informed consent was provided by
all participants prior to participation in the study in accordance
with the Declaration of Helsinki. Before the sampling, the
mothers were asked to complete a specially created questionnaire
that asked about demographic data, weight and height, intake
of folate-rich foods, cigarette smoking, alcohol intake, and
medication use. The questionnaire was adapted from a food
frequency questionnaire that has been validated for Croatian
women (Coli¢ et al., 2009).

Genetic Analysis

Genomic DNA was extracted from peripheral blood leukocytes
using the QIAamp DNA Blood FlexiGene DNA Kit (Qiagen,
Hilden, Germany). Quantification of genomic DNA was
performed using a spectrophotometer (BioMateTM3, Thermo
Electron Corporation, United States). The parental origin of
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trisomy 21 was determined as described previously (Vranekovi¢
et al.,, 2012). The MTHFR C677T polymorphism was evaluated
using polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) (Coppede et al.,, 2006). Using the
EpiTect Bisulfite Kit (Qiagen, Hilden, Germany), 500 ng of
genomic DNA was subjected to sodium bisulfite modification
and resuspended in 30 pl of TE buffer. Bisulfite-treated DNA
was diluted 10x, and 8.18 .l was used for each real-time PCR
reaction. All samples were stored at —20°C until analysis.

LINE-1 DNA methylation was analyzed by quantifying
LINE-1 methylation using previously developed and validated
MethyLight methodology, which precision and reproducibility
have been well described (Eads et al., 2000; Weisenberger et al.,
2005; Chowdhury et al., 2011; BoZzovi¢ et al., 2015). The PCR
primers and probes for LINE-1 and for Alu sequences (ALU-
C4) (Applied Biosystems, Forest City, CA, United States) were
designed/validated (Weisenberger et al, 2005) and described
previously (Weisenberger et al., 2005; Bozovi¢ et al., 2015). The
LINE-1 primers lack CpG sites and the specific TagMan MGB
probes (corresponding to the methylated and unmethylated
LINE-1 sequence after bisulphite treatment) were used in real-
time PCR (Applied Biosystems, Forest City, CA, United States).
An Alu-based real-time PCR control reaction was performed in
parallel with each LINE-1 real-time PCR reaction to normalize
DNA input, as previously described (Weisenberger et al., 2005;
Bozovi¢ et al.,, 2015). PCR reactions were performed with a final
reaction volume of 25 pul in sealed 96-well plates on the ABI 7500
Real-Time PCR System (Applied Biosystems). The PCR reactions
and cycle conditions for the LINE-1 and ALU-C4 assays were
described previously (Bozovic et al., 2015). Real-time PCR was
performed in duplicate for each sample. The standard curve was
established using EpiTect Methylated Control DNA and EpiTect
Unmethylated Control DNA (Qiagen), as described previously
(Bozovic¢ et al,, 2015). After PCR amplification, the data were
read using SDS 1.4.0 software (Applied Biosystems). The
percentage of methylated reference (PMR) and the percentage
of unmethylated reference (PUR) were calculated, and the final
percentage of LINE-1 DNA methylation was calculated according
to the formula PMR/(PMR+PUR) x 100 (Eads et al., 2000;
Weisenberger et al., 2005; Bozovi¢ et al., 2015). After all runs
we randomly repeated runs for 10% of all samples and we have
complete reproducibility of the results.

The Influence of Endogenous and
Exogenous Factors on Maternal LINE1
DNA Methylation

The analysis included maternal age and BMI as continuous
variables and folate supplement intake, cigarette smoking, alcohol
intake, and medication use as categorical variables. BMI was also
studied as a categorical variable (“WHO BMI”), and four groups
were defined according to WHO classification: underweight,
normal, overweight, and obese. Because the impact of folic acid
intake is modified by genes that code for enzymes involved
in folate metabolism, the analysis also included the variable
“MTHFR C677T genotype/diet,” which was used to indicate the
combination of the MTHFR C677T polymorphism and dietary

folate intake (rich or poor) (Friso et al., 2002; Castro et al., 2004).
A folate-rich diet was defined as the consumption of at least
three folate-rich foods (green leafy vegetables, legumes, veal liver,
fruit, corn flakes, muesli) at least 2-3 times each week; lower
intake was considered a low-folate diet. Mothers who consumed
folic acid daily from 4 weeks before conception until 8 weeks
after conception were considered to be periconceptional folic acid
users. The questionnaire asked about cigarette smoking, alcohol
intake, and medication use both (i) during the first 6 weeks of
pregnancy and (ii) currently. Mothers who consumed one glass
of wine or one glass of beer or one small strong alcoholic drink
at least one time per week were defined as alcohol consumers.
Those who smoked cigarettes daily or occasionally were classified
as smokers.

Statistical Analysis

Differences in the frequencies between the investigated groups of
participants were estimated by the chi-square test. Continuous
variables with skewed distribution between groups were
compared using the Mann-Whitney U-test. Normally distributed
continuous variables were compared using analysis of variance
(ANOVA) with the Bonferroni post hoc test and are reported as
means and standard deviations (SDs). Logistic regression was
used to determine the odds ratio and 95% confidence interval for
the association between MTHFR C677T polymorphism and the
occurrence of CHD in children with DS. Multivariate regression
analysis was used to estimate the effects of the endogenous
and exogenous factors included in the model on LINE1 DNA
methylation (MTHFR C677T polymorphism, age, BMI, dietary
intake of folate, intake of folate supplements, smoking, alcohol
intake, and medication use), and the results are presented as
regression coefficient (beta) values plus the standard error (SE).
Statistical significance was considered for P < 0.05. Data analysis
was performed using Statistica for Windows 10.0 (StatSoft, Tulsa,
OK, United States).

RESULTS

Table 1 shows the characteristics of the study participants.
DS-CHD™ mothers were significantly younger than DS-CHD™
mothers (P = 0.003). The frequency of mothers who smoked
cigarettes during the first 6 weeks of pregnancy was significantly
higher in DS-CHD' mothers than in DS-CHD™ mothers
(P = 0.005).

Supplementary Table S1 shows the allele and genotype
frequencies of the MTHFR C677T polymorphism in DS-CHD™
and DS-CHD™ mothers. There were no significant differences
between the two groups.

Maternal LINE1 DNA Methylation

There was no significant difference in LINE-1 methylation
between DS-CHD™ mothers (median: 95.30%; min-max: 88.68—
99.90%) and DS-CHD™ mothers (median: 95.51%; min-max:
79.13-99.73%) (P = 0.997). The difference in LINE-1 methylation
between these groups remained non-significant after adjusting
for two factors that were significantly different between these
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TABLE 1 | Characteristics of mothers of children with Down syndrome (DS) with
or without congenital heart defects (CHDs).

DS-CHD* DS-CHD~ P-value
mothers mothers
Median age, years (min-max) 37 (24-59) 42 (28-64) 0.00
Median BMI (min-max) 2419 26.01 0.09
(17.19-35.43) (17.71-40.40)
Diet N (%)
Folate-rich 16 (36) 21 (46) 0.24
Low-folate 28 (64) 45 (54)
Intake of folic acid
supplements N (%)
No 25 (57) 33(72) 0.14
Yes 19 (43) 13 (28)
Periconceptional folic acid
intake
No 41 (93) 46 (100) 0.17
Yes 3(7) 0 (0)
Smoking during the first
6 weeks of pregnancy N (%)
No 15 (34) 29 (63) 0.00
Yes 29 (66) 17 (37)
Currently smoking N (%)
No 27 (71) 33(72) 0.21
Yes 17 (39) 13 (28)
Alcohol intake during the
first 6 weeks of pregnancy N
(%)
No 31 (70) 33(72) 0.54
Yes 13 (30) 13 (28)
Current alcohol intake N (%)
No 32 (73) 37 (80) 0.27
Yes 12 (30) 9 (20)
Medication use during the
first 6 weeks of pregnancy N
(%)
No 38 (86) 39 (85) 0.53
Yes 6 (14) 7(195)
Current medication use N
(%)
No 42 (95) 43 (99) 0.52
Yes 2(5) 3(7)

P-values were determined using the Mann-Whitney test or the chi-square test.

groups, namely maternal age and smoking during the first
6 weeks of pregnancy (adjusted OR = 1.03, 95% CI: 0.876-1.173,
P =0.853).

We have shown in Table 2 the values of LINE-1 methylation
in DS-CHD' mothers according to WHO BMI categories.
Those in the highest WHO BMI category (>30 kg/m2) had
significantly lower LINE-1 methylation than those in either the
normal WHO BMI category (Bonferroni post hoc P = 0.03)
or the overweight WHO BMI category (Bonferroni post hoc
P = 0.04). Table 3 lists the values for LINE-1 methylation in
DS-CHD™ mothers according to MTHFR C677T genotype/diet
combinations. The lowest LINE-1 DNA methylation values were

TABLE 2 | LINE-1 methylation in mothers of children with DS with congenital heart
defects (CHDs) according to World Health Organization (WHO) body mass index
(BMI) category.

WHO-BMI  DNA LINE1 methylation (%) DNA LINE1 methylation, N
Means SE

18.5 93.77 1.87 2

18.56-24.9 95.86 0.55 23

25-29.9 96.08 0.76 12

>30 92.50* 1.00 7

ANOVA P = 0.02; *Bonferroni post hoc, BMI > 30 vs. BMI 25-29.9, P = 0.04;
BMI > 30 vs. BMI 18.5-24.9, P = 0.03, N = 44.

TABLE 3 | LINE-1 methylation in mothers of children with DS with congenital heart
defects (CHDs) according to the MTHFR C677T genotype/diet combination.

MTHFR C677T DNA LINE1 methylation DNA LINE1 N
genotype/diet (%) Means methylation SE
CC/folate-rich diet 97.69 0.89 9
CT+TT/folate-rich 94.94 1.01 7
diet

CC/folate-poor diet 94.68 0.77 12
CT+TT/folate-poor 94.55* 0.67 16

diet

ANOVA P = 0.04, *Bonferroni post hoc CT+TT/folate-poor diet, N = 44.

TABLE 4 | Multivariate analysis of predictors that influence LINE-1 methylation in
mothers of children with DS with congenital heart defects (CHDs).

Predictors included in the Beta Standard error of beta P-level
analysis

Currently smoking 0.10 0.16 0.53
Current alcohol intake 0.08 0.15 0.57
Current medication use -0.20 0.14 0.17
BMI -0.32 0.14 0.03
Periconceptional folic acid —0.01 0.15 0.96
intake

MTHFR C677T genotype/diet —0.40 0.15 0.01
Age of mother -0.22 0.15 0.14

R=0.58, R? = 0.34, adjusted R = 0.21, P < 0.028.

observed in mothers with the CT4+TT genotype and a low-
folate diet. We performed multivariate regression analysis in
order to evaluate the independent effect of the investigated
parameters on LINE-1 DNA methylation in DS-CHD* mothers.
Among the investigated predictors (Table 4), only the MTHFR
C677T genotype/diet combination and BMI were significantly
independently associated with LINE-1 DNA methylation in
DS-CHD™ mothers (B -0.40, P = 0.01 and B-0.32, P = 0.03,
respectively).

In addition, we determined the LINE-1 methylation values
in mothers of children with DS and septal defects. We found
that the MTHFR C677T genotype/diet combination significantly
influenced LINE-1 DNA methylation (Table 5). There were
no statistically significant associations with LINE-1 methylation
identified in DS-CHD™ mothers (Supplementary Tables S2-S4).
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TABLE 5 | Multivariate analysis of predictors that influence LINE-1 methylation in
mothers of children with DS with septal defects.

Predictors included in the Beta Standard error of beta P-value
analysis

Intercept 0.00
BMI -0.27 0.15 0.08
MTHFR C677T genotype/diet —0.36 0.15 0.02

R=0.47, R2 = 0.23, adjusted R? = 0.18, P < 0.015.

DISCUSSION

To the best of our knowledge, this is the first study to investigate
the impact of endogenous maternal factors (MTHFR C677T
polymorphism and maternal age) and exogenous maternal
factors (cigarette smoking, alcohol intake, medication use, body
mass index, dietary habits such as folate intake) on LINE-
1 methylation in the mothers of children with DS regarding
the presence of DS-associated CHDs, particularly regarding
the presence of septal defect. The molecular mechanisms
that underlie the epigenetic regulation of gene transcription
are independent of DNA sequence, but they do depend
on environmental stimuli, such as periconceptional maternal
supplementation, diet, and the in utero environment (Barua and
Junaid, 2015; Toriyama et al., 2017). The morphological processes
that accompany embryonic heart development remain largely
unknown, but multiple genetic, epigenetic, environmental, and
lifestyle factors likely influence this process (Pierpont et al., 2007;
Van Der Linde et al., 2011; Eriksson, 2016; Grunert et al., 2016;
Toriyama et al., 2017).

We found that BMI and the MTHFR genotype/diet
combination were significantly associated with variations in LINE-
1 DNA methylation in DS-CHD™ mothers. Lower LINE1 DNA
methylation values were significantly associated with the genotype
containing the MTHFR 677T allele in combination with a low
folate diet as well as with higher BMI, which is in accordance with
previous studies (Friso et al., 2002; Castro et al., 2004; Piyathilake
et al., 2011; Cai et al., 2014). Notably, it was reported previously
that higher BMI is associated with lower LINE-1 methylation
values in women of childbearing age (Piyathilake et al., 2011).
The association between a maternal BMI that is higher than
recommended by WHO and the occurrence of CHD in their
offspring is well documented (Stothard et al., 2009; Piyathilake
et al., 2011; Block et al.,, 2013; Cai et al.,, 2014). It is in line
with our finding of significant influence of BMI only in the DS-
CHD™ mothers. The mechanism by which BMI influences the
development of CHD is not well understood, but it is thought that
obesity is linked to lower concentrations of folate in the blood as
well as with undiagnosed diabetes, both of which are maternal
risk factors for CHD development (Hotzel, 1986; Becerra et al.,
1990; Towner et al., 1995; Casanueva et al., 2000; Stothard et al.,
2009; Hobbs et al., 2010). Likewise, increasing evidence suggests
that folate metabolism and the resulting epigenetic modifications
may contribute to the occurrence of CHD in individuals with
DS (Brandalize et al., 2009; Elsayed et al., 2014; Coppedg, 2015).

DNA synthesis and methylation, processes that are folate-
dependent, increase during pregnancy (Oommen et al., 2005).

Folate pathway genes have been extensively investigated in
regard to their association with CHD (Van Beynum et al., 2006,
2007; Wang et al, 2013; Elsayed et al., 2014). The MTHFR
enzyme plays a key role in the regulation of folate availability
in DNA synthesis and methylation. The C677T is one of the
most important functional polymorphisms of the MTHFR gene
(Frosst et al., 1995). Numerous studies have investigated the
association between the MTHFR C677T polymorphism and the
risk of CHDs, but the results have been inconsistent (Hobbs
et al,, 2005; Zhu et al.,, 2006; Brandalize et al., 2009; BoZovi¢
etal,, 2011). Meta-analyses showed that maternal MTHFR C677T
polymorphism may contribute to the risk of CHDs (Wang et al.,
2013; Xuan et al,, 2014; Yang et al., 2018). Research on the
relationship between the maternal MTHFR genotype and the
development of CHD in children with DS has also yielded
conflicting results (Brandalize et al., 2009; Hobbs et al., 2010;
Bozovi¢ et al., 2011; Elsayed et al., 2014; Coppede, 2015). There
has not yet been a meta-analysis, but almost all studies have
shown that the MTHFR C677T genotype may be a maternal risk
factor for CHD in children with DS, particularly if the mothers
did not consume folic acid during the periconceptional period
(Brandalize et al., 2009; Elsayed et al., 2014).

It is well established that increased folate intake can neutralize
the impact of the MTHFR C677T polymorphism and restore
normal enzyme activity (Guenther et al., 1999; Kluijtmans et al.,
2003). Thus, a number of studies suggest that periconceptional
maternal folic acid use has a protective effect on the occurrence
of CHD in offspring, particularly for septal defects (Czeizel et al.,
2001; Botto et al., 2003; Van Beynum et al., 2010). In our study,
the periconceptional use of folate was not significantly associated
with the level of LINE-1 methylation by itself. However, dietary
folate intake in combination with the MTHFR C677T genotype
showed a significant association with LINE-1 methylation levels.
Moreover, our results revealed that the values of LINE-1 DNA
methylation in DS-CHD™ mothers, as well as in the mothers
of children with DS and septal defects, were clearly stratified
according to the MTHFR C677T genotype/diet combination:
the lowest values were observed in mothers with the CT+TT
genotype and a low-folate diet, and the highest levels were
observed in mothers with the CC genotype and a folate-
rich diet. Chowdhury et al. also reported significant LINE-1
hypomethylation in women with children affected by septal
defects (Chowdhury et al., 2011).

We found that the MTHFR C677T genotype/low folate
diet combination was significantly associated with LINE-1
hypomethylation in mothers with children with DS who
developed septal defects, and our previous study showed that
significant LINE-1 hypomethylation (compared to controls)
in the mothers of children with DS was itself significantly
associated with the MTHFR C677T genotype/diet combination
(Bozovic¢ et al., 2015). Since the maternal environment potentially
affects the fetus during pregnancy (Dimasuay et al., 2016),
it is important that the analysis include as many factors as
possible that could influence fetal development. In the present
study, the MTHFR C677T genotype/diet combination and BMI
showed a univariate association with LINE-1 DNA methylation
in DS-CHD™ mothers. In addition, these parameters were

Frontiers in Genetics | www.frontiersin.org

February 2019 | Volume 10 | Article 41


https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Babi¢ Bozovi¢ et al.

Global DNA Methylation and CHD

independently associated with of LINE-1 DNA methylation
in a multivariate analysis that included other maternal risk
factors, such as smoking, periconceptional folic acid intake,
medication and alcohol use, and age. In the multivariate model
(model P < 0.028), these two factors explained around 72%
of the variance in LINE-1 DNA methylation in DS-CHD™
mothers. Factors like cigarette smoking, alcohol intake, and
age showed no associations with LINE-1 methylation status,
which is in accordance with other studies (Terry et al., 2011;
Zhang et al., 2011; Jones et al., 2015). Medication use was not
significantly associated with LINE-1 DNA methylation, although
only 6% of the participants were taking medications, and these
belonged to several different therapeutic groups. Thus, we do
not currently have enough data to discuss whether certain
medications influence LINE-1 DNA methylation.

This study has several limitations. Notably, approximately
1/3 of fetuses with trisomy 21 are lost during early pregnancy
(Savva et al., 2006). Thus, the true prenatal incidence of CHD
in fetuses with trisomy 21 is unknown, and we can only
speculate that those lost during early pregnancy may be more
affected by CHDs than those who are born alive. Several studies
have indicated that the increase of the prevalence of cardiac
anomalies with decreasing fetal gestational age contributes to
higher numbers of miscarriages (Gerlis, 1985; Tomek et al.,
2009). Tomek et al. reported that the spectrum of CHDs that
are diagnosed prenatally differs significantly from the spectrum
of CHDs diagnosed postnatally in that there is a markedly
higher proportion of additional abnormalities associated with
those who are diagnosed prenatally (Tomek et al., 2009). Thus,
we would have a clearer picture of the impact of maternal
LINE-1 DNA methylation on DS-associated CHDs if we could
analyze the maternal LINE-1 DNA methylation values during
pregnancy (and thus during organogenesis) for all conceived
fetuses with trisomy 21, since during this time, altered maternal
DNA methylation would exert the greatest effects. It is possible
that increases in cellular proliferation and carbon metabolism
during pregnancy, as well as an increased demand for methyl
groups during embryonic development, could have an even
greater influence on maternal LINE-1 DNA methylation and
contribute to the development of CHD in offspring. Given
the rare prevalence of DS-associated CHD, the resources and
sample size required to conduct such a study, and the difficulty
in enrolling women before conception and monitoring them
until the completion of their pregnancy, it would be very
challenging to conduct this type of study. Also, analysis of other
class of repetitive elements, such as ALU, might give additional
information on the global DNA methylation in mothers of
children with DS with regard to presence of CHD. It was
suggested that Alu might be more informative in background
where the LINE-1 hypomethylation might be influenced by
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