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The knowledge of ancestral origin is monumental in conservation of endangered animals

since it can aid in preservation of population level genetic integrity and prevent inbreeding

among related individuals. Despite maintenance of studbook, the biogeographical

affiliation of most captive gorillas is largely unknown, which has constrained management

of captive gorillas aiming at maximizing genetic diversity at the population level. In

recent years, ancestry informative markers (AIMs) has been successfully employed for

the inference of genomic ancestry in a wide range of studies in evolutionary genetics,

biomedical research, genetic stock identification, and introgression analysis and forensic

analyses. In this study, we sought to derive the AIMs yielding the most cohesive and

faithful understanding of biogeographical affiliation of query gorillas. To this end, we

compared three commonly used AIMs-determining methods namely, Infocalc, FST , and

Smart Principal Component Analysis (SmartPCA) with ADMIXTURE, using gorilla genome

data available through Great Ape Genome Project database. Our findings suggest that

the SNPs that were detected by at least three of the four AIMs-determining approaches

(N = 1,531), is likely most suitable for delineation of gorilla AIMs. It recapitulated the

finer structure within western lowland gorilla genomes with high degree of precision.

We further have validated the robustness of our results using a randomized negative

control containing the same number of SNPs. To the best of our knowledge, this is

the first report of an AIMs panel for gorillas that may aid in developing cost-effective

resources for large-scale demographic analyses, and greatly help in conservation of this

charismatic mega-fauna.

Keywords: ancestry informative marker (AIM), gorilla ancestry, conservation genetic management, admixture,

informativeness of SNPs

BACKGROUND

Effective conservation of endangered animals with unknown ancestral origin entails delineation of
the biogeographic affinities of their ancestors in order to facilitate preservation of the population
level integrity of genomic signal. The knowledge of ancestral origin could be particularly relevant
for planned re-introduction of animals to wild habitats and management of captive breeding
programs in order to avoid inbreeding depression.

Gorillas, the largest living ape, were pronounced as critically endangered by IUCN Red List
in 2007 (Walsh et al., 2008). Since the gorilla population is rapidly dwindling in the wild as a
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result of severe habitat encroachment and the illegal bushmeat
trade, effective management of captive breeding programs
has become monumental in order to both increase their
numbers and to protect them from inbreeding. Overall 283
wild gorillas were imported to North America till 1970s, which
subsequently stopped owing to the introduction of Convention
on International Trade in Endangered Species of Wild Fauna and
Flora (CITES) in 1975 (Nsubuga et al., 2010). It is noteworthy
that despite maintenance of studbooks, insufficient information
is available pertaining to the biogeographic origin of the majority
of captive gorillas in the USA (Wharton, 2009) and that has likely
constrained proper management of captive gorillas pertaining
to maximizing genetic diversity at the population level. Proper
knowledge of ancestry is of great importance in captive breeding
programs of gorillas in order to avoid inbreeding depression and
at the same time to conserve the genomic integrity of the native
gorilla populations.

While whole genome approaches can efficiently resolve the
biogeographical affiliation of gorillas by measuring genomic
ancestry and level of admixture occurring among various gorilla
populations, it is not cost-effective and dependent on the
quality of DNA samples such that lower DNA quality (such as
DNA extracted through non-invasive techniques) can hamper
genome re-sequencing methods to a considerable extent. An
alternative cost-effective strategy to whole genome approaches
could be estimation of genomic ancestry using a handful of
highly informative Single Nucleotide Polymorphisms (SNPs)
which may range from a few hundreds to a few thousands.
These highly informative SNPs that exhibit large differences in
allele frequencies between ancestral populations are commonly
referred to as Ancestry Informative Markers (AIMs) (Rosenberg
et al., 2003; Shriver et al., 2003; Nassir et al., 2009).

Over the years AIMs panels have been successfully used for
inferring biogeographical ancestry of humans (Rosenberg et al.,
2003; Shriver et al., 2003; Kosoy et al., 2009; Nassir et al., 2009;
Kidd et al., 2011; Tandon et al., 2011; Galanter et al., 2012;
Huckins et al., 2014; Vongpaisarnsin et al., 2015), detection of
illegal trade and translocation of wild animals (Frantz et al.,
2006), food forensics (Wilkinson et al., 2012), genetic stock
identification and introgression analysis (Munoz et al., 2015),
forensic analysis (Phillips et al., 2016) to name a few. Recently,
9,000 genetic markers have been identified which are unique to a
specific subspecies of chimpanzee and gorilla, and around 40,000
markers have been detected that are specific to each hominoid
species or lineage (Hormozdiari et al., 2013).

In this study, we have compared three strategies previously
used for AIMs determination, namely Infocalc algorithm
(Paschou et al., 2007; Kosoy et al., 2009), Wright’s FST (Tian et al.,
2007; Kidd et al., 2011; Nievergelt et al., 2013), Smart Principal
Component Analysis (SmartPCA) (Patterson et al., 2006) with
a novel ADMIXTURE based approach (Alexander et al., 2009)
to interrogate previously published whole genome data of 31
gorillas available in Great Ape Genome Project (GAGP) (Prado-
Martinez et al., 2013) corresponding to two subspecies of western
gorillas (Gorilla gorilla), namely western lowland gorilla (Gorilla
gorilla gorilla) and Cross River gorilla (Gorilla gorilla dielhi),
as well as the eastern lowland gorilla (Gorilla beringei graueri),

to delineate an AIMs panel that can reproducibly capture the
genomic ancestry of gorillas at the population level and aid in
identification of gorillas at the individual level.

We performed our analysis in three steps. In the first
step we evaluated the performance of the four AIMs
determining approaches (Wright’s FST , Infocalc, SmartPCA
and ADMIXTURE) by comparing them with complete SNP
sets (CSS). Subsequently, we developed a consensus dataset,
incorporating the SNPs that are common to at least three of
the four AIMs-determining strategies. Finally, we developed
a negative control dataset (randomly chosen SNPs from CSS)
containing the same number of SNPs as the consensus dataset
and re-evaluated the performance of the consensus dataset
and four AIMs determining approaches. The consideration of
the consensus SNPs as the AIMs panel for gorilla was robust
since it balanced out the limitations of each individual AIMs
determining method and at the same time recapitulated the
ancestry information of query gorillas with high precision.

METHODS

Dataset
The dataset employed in this study comprised of 31 gorilla
genomes available in GAGP, which overall sequenced 79 great
ape individuals to a mean coverage of 25X in an Illumina HiSeq
2000 platform (Prado-Martinez et al., 2013; Das and Upadhayai,
2018): western lowland gorilla (Gorilla gorilla gorilla, N = 27),
eastern lowland gorilla (Gorilla beringei graueri, N = 3), and
Cross River gorilla (Gorilla gorilla dielhi, N = 1). As indicated
previously (Prado-Martinez et al., 2013; Das and Upadhayai,
2018) the western lowland gorilla genomes employed in this
study belong to three distinct wild populations: Cameroonian,
Congolese, and Equatorial Guinean. The biogeographical origin
of the gorilla genomes as mentioned in the Studbook and
that predicted through Geographical Population Structure (GPS)
algorithm is mentioned in Supplemental Table 1. The same
dataset comprised of 354,080 markers that has been used recently
for tracing ancestry of gorillas (Das and Upadhayai, 2018) was
used in this study.

Population Clustering and Admixture
Analysis Employing the CSS
Principal component analysis (PCA) was performed in PLINK
v1.9 using - -pca command. The ancestry of the gorilla genomes
was estimated using unsupervised clustering as implemented
in ADMIXTURE v1.3 (Alexander et al., 2009). Similar to our
recent study (Das and Upadhayai, 2018), we chose K = 3 for all
downstream analysis to differentiate the western gorilla genomes
into the Congolese and Cameroonian clusters and detection
of AIMs for identification of genomic ancestry of gorillas at
the population level. PCA and Admixture plots were generated
in R v3.2.3.

Determination of AIMs
In order to deduce the SNP markers that are able to infer the
genomic ancestry of gorilla samples with accuracy comparable
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to that of the CSS of 354,080 SNPs, we evaluated four AIMs
determining approaches enumerated below.

1. Infocalc
The first method employed was the Infocalc algorithm
(Rosenberg et al., 2003), implemented in Infocalc v1.1, which
determines the amount of information multiallelic markers
provide regarding an individual’s ancestry by calculating the
informativeness (I) of each marker individually. Infocalc
determines I based on the mathematical expression described
previously (Rosenberg et al., 2003):

I =

N
∑

j=1

(

−pj log pj +

K
∑

i=1

pij

K
log pij

)

Where, pj is the mean frequency of allele j over all populations,
pij is the relative frequency of allele j in population i and K is the
total number of populations.

We selected the top 10,000 most informative markers from
the Infocalc v1.1 output file. Infocalc v1.1 compatible files were
generated by using - -structure modifier to the PLINK v1.9
command line. The top 10,000 most informative markers were
selected based on the informativeness defining column (I_n) of
the output file (Supplemental Figure S1).

2. Wright’s FST
FST (Sewall Wright, 2006) measures the degree of differentiation
among populations likely arising due to genetic structure within
them. Given a set of populations, PLINK estimated the fixation
indices (FST) separately for all 354,080 markers under evaluation
in this study using - -Fst command. The Family ID (FID) was
used as the indicator of the geographical affinity of the gorilla
genomes to different wild populations as mentioned previously
(Prado-Martinez et al., 2013) and/or estimated through our
recent biogeographical analysis (Das and Upadhayai, 2018).

The 10,000 SNPs with highest FST values were selected for
subsequent analyses (Supplemental Figure S2).

3. ADMIXTURE
Analyzing the ADMIXTURE output file with SNP information
(P file) for K of 3, we identified 10,662 SNPs with high K (column
to column) variance (≥ 0.15).

4. SmartPCA
In order to determine the most informative markers, SNP
weightings for each principal component (PC) were calculated
using the “SmartPCA” algorithm implemented in EIG v7.2.1
(Patterson et al., 2006; Price et al., 2006). SmartPCA, which
is especially designed for analysis of genomic data, employs
PCA to determine whether the test samples come from one
homogenous population or there is any signature of population
structure and outputs principal components (eigenvectors) and
eigenvalues. In addition to these two files SmartPCA generates a
“snpwt” file, depicting the weight of all 354,080 markers for each
principal component.

The 10,000 SNPs with the highest “weights” for the first
principal component (PC1) was selected for subsequent analyses
(Supplemental Figure S3).

Estimation of Candidate AIMs Panels
To determine the optimal AIMs-determining strategy for
gorilla genomes, we first compared the datasets comprising
of the top 10,000 SNPs generated through FST, Infocalc, and
SmartPCA with 10,662 SNPs detected through ADMIXTURE
both qualitatively (via Admixture analysis and PCA) and
quantitatively (by computing the Euclidean distances between
the admixture components of the query datasets and the CSS).

Further we developed a consensus dataset, containing SNPs
that are common to the four AIMs determining strategies (FST,
Infocalc, Admixture, and SmartPCA-based). Here, we note that
only 37 SNPs were found to be common to all four approaches
evaluated in this study, which was insufficient to recapitulate
intraspecific ancestry information of the query gorillas (data
not shown). So, in order to generate a consensus SNP panel
that is likely to be sufficient to detect the fine structure within
western gorilla populations, we developed a dataset comprising
of 1,531 SNPs that were common to at least three of the four
AIMs-determining methods (Supplemental Figure S4). Finally,
to adjudge the predictive accuracy of the candidate AIMs
datasets, we developed a negative control dataset by randomly
sampling 1,531 SNPs from CSS and compared this with those
comprising of the top 1,531 SNPs extracted through FST, Infocalc,
Admixture, SmartPCA-based methods and the consensus.

RESULTS

ADMIXTURE Analyses
Qualitative Analysis
The ancestry of 31 gorilla genomes was estimated using
unsupervised clustering as implemented in ADMIXTURE v1.3
(Alexander et al., 2009). For CSS, at K = 3 the eastern lowland
gorillas were homogeneously assigned to a unique cluster (blue)
while most western gorillas appeared to be a genomic admixture
of Cameroonian (green) and Congolese (red) components
in varying proportions (Figure 1A, Supplemental Figure S5A).
While the entire genome of Akiba-Beri, Choomba, Paki, Oko,
Kolo and Amani is consisted of the Cameroonian admixture
component, Katie (B650) and Katie (KB4986) also appeared to
be pure-bred and their genome is entirely composed of the
Congolese admixture component.

At K = 3, the dataset comprising of the top 10,000 Inforcalc
SNPs (Infocalc-10,000) performed the best by successfully and
precisely capturing the population structure of gorilla genomes
as depicted by the CSS. It homogenously assigned Akiba-Beri,
Choomba, Paki, Oko, Kolo and Amani to Cameroon and the
Katies (B650 and KB4986) to Congo. Further, similar to the CSS,
this dataset revealed fractions of eastern lowland ancestry (blue)
in Kokomo, Mimi, Delphi, Coco, Carolyn, and Porta. However,
unlike the CSS, Infocalc-10,000 revealed minor fractions of
(<1%) eastern lowland ancestry in Kowali and Azizi (Figure 1B,
Supplemental Figure S5B).
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FIGURE 1 | Admixture analysis of data subsets generated through top 1,531 most informative SNPs detected by various AIMs-determining strategies. Admixture

plots showing the ancestry components of gorilla genomes. (A) Admixture analysis of the CSS (354,080 SNPs); (B) Admixture analysis of Infocalc-1,531 dataset;

(C) Admixture analysis of Admixture-1,531 dataset; (D) Admixture analysis of SmartPCA-1,531 dataset; (E) Admixture analysis of FST -1,531 dataset; (F) Admixture

analysis of Consensus-1,531 dataset; and (G) Admixture analysis of Random-1,531 dataset. Admixture proportions were generated through an unsupervised

admixture analysis at K = 3 using ADMIXTURE v1.3 and plotted in R v3.2.3. Each individual is represented by a vertical line partitioned into colored segments whose

lengths are proportional to the contributions of the ancestral components to the genome of the individual. Blue represents eastern lowland ancestry component while

green and red represent Cameroonian and Congolese ancestral components, respectively.

The dataset comprising of the top 10,662 Admixture
SNPs (Admixture-10,000) appeared to be the second best.
In concordance with CSS, Admixture-10,000 homogenously
assigned Akiba-Beri, Choomba, Oko and Amani to Cameroon
and the Katies (B650 and KB4986) to Congo. However, unlike
the CSS, this dataset depicted ∼2, 3, and 4% Congolese ancestral
component in the cross river gorilla Nyango, Kolo and Paki,
respectively, and eastern lowland ancestral component in Helen
and Anthal, which can be attributed to the likely loss of resolution
(Supplemental Figure S5C).

The remaining two datasets, comprising of 10,000 SNPs
generated using SmartPCA and FST-based approaches
(SmartPCA-10,000 and FST-10,000, respectively), performed
moderately. While SmartPCA-10,000 successfully homogenously
assigned Akiba-Beri, Choomba, Paki, Oko, Kolo and Amani
to Cameroon and the Katies (B650 and KB4986) to Congo, it
additionally assigned Delphi, Carolyn and Porta homogenously
to Congo and thus failed to capture their discernible proportions
of Cameroonian ancestry (Supplemental Figure S5D). Among
the four approaches, FST-10,000 performed the worst. In
addition to incorrectly assigning Delphi, Carolyn and Porta
homogenously to Congo, FST-10,000 revealed Congolese
ancestry in Kolo, Akiba-Beri and Paki, which were otherwise
homogenously assigned to Cameroon by all AIMs-determining
approaches (Supplemental Figure S5E).

Among datasets comprising of top 1,531 SNPs deduced via
FST, Infocalc, Admixture, and SmartPCA, the 1,531 SNPs derived
using Infocalc (Infocalc-1,531) was superior to the rest and

most comparable to the CSS in recapitulating the population
structure for query gorillas (Figure 1B). This was closely followed
by a panel of 1,531 SNPs generated as a consensus of at
least three of the four AIMs-determining strategies (Consensus-
1,531) (Figure 1F), and that were detected using Admixture
(Admixture-1,531) (Figure 1C). Here we note that among all
1,531 datasets, only Consensus-1,531 and Infocalc-1,531 were the
only two who could capture the eastern lowland ancestry in the
cross river gorilla, Nyango, as revealed by the CSS. In contrast, the
SNP panel inferred using SmartPCA (SmartPCA-1,531) and FST
(FST-1,531) completely failed to capture the population structure
revealed by the CSS (Figures 1D,E). Finally, the negative control
dataset comprising of 1,531 random SNPs (Random-1,531) was
expectedly unsuccessful in capturing the ancestry information
of the query gorillas, underscoring the superiority of the
AIMs over randomly selected markers in delineating ancestry
information (Figure 1G).

Quantitative Analysis
For comparing the test datasets quantitatively, we computed
Euclidean distances between the three admixture components
(eastern lowland, Cameroonian and Congolese) of all datasets
and the CSS. The shortest mean Euclidean distance (µ = 0.022)
was found between Admixture-10,000 and the CSS, closely
followed by Infocalc-10,000 and the CSS (µ = 0.064) (Figure 2).
Among other 10,000 SNP panels, the longest Euclidean distance
was found between the CSS and FST-10,000, followed by the CSS
and SmartPCA-10,000 (0.154 and 0.108, respectively).
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FIGURE 2 | Box and whisker plots comparing the Euclidean distances

between the admixture proportions of the gorilla genomes obtained from the

CSS and those obtained from the reduced datasets. The number of SNPs the

datasets are comprised of is mentioned in their nomenclature. The random

dataset was comprised of 1,531 randomly generated SNPs from the CSS and

the Consensus-1,531 dataset comprised of 1,531 SNPs that were detected

by at least three of the four AIMs-determining approaches.

Among the 1,531 panels, the shortest distance was revealed
between Admixture-1,531 and the CSS (µ = 0.059). Consensus-
1,531 appeared as the second most sensitive approach (µ =

0.087), closely followed by Infocalc-1,531 (µ = 0.095). All three
aforesaid 1,531 panels highly significantly outperformed all the
remaining datasets including the random dataset (Tukey’s post
hoc test; p-value < 0.0001). Congruent with our results from
qualitative analyses in their inability to capture the accurate
population structure for query gorilla genomes, the SmartPCA
and FST-based datasets appeared to be the farthest from the CSS
(µ = 0.75 in both cases) and performed similar to the Random-
1,531 dataset (Tukey’s post hoc test; p-value = 0.94 and 0.95,
respectively). Here further we note that, although Admixture-
1,531 had the shortest mean Euclidean distance from the CSS,
its performance was statistically very similar to Consensus-1,531
and Infocalc-1,531 (Tukey’s post hoc test; p-value= 0.99).

Overall, our result indicates that while Infocalc-1,531 turned
out to be the best method in qualitative ADMIXTURE analysis,
Admixture-1,531 was superior to all other approaches in
the quantitative analysis. However, in both cases, Consensus-
1,531 was a close second and its performance was statistically
similar to the other two. Additionally, Consensus-1,531 had
discernibly smaller median Euclidean distance from the CSS
(0.032) compared to both Infocalc-1,531 (0.078) and Admixture-
1,531 (0.043) which further advocates for its candidacy to be
considered as the AIMs panel for the gorillas.

Principal Component Analysis (PCA)
Principal Component Analysis (PCA) was performed in PLINK
v1.9 and the top two PCs were plotted in R v3.2.3. The PCA
results for the CSS was in coherence with previous observations
of an eastern gorilla-western gorilla contrast along the horizontal
principal component (PC1) and vertical delineation (PC2)

among western gorilla genomes (Prado-Martinez et al., 2013; Das
and Upadhayai, 2018)(Figure 3A, Supplemental Figure S6A).
Further, as observed previously, two distinct clusters were
found among western gorillas along PC1: one predominantly
composed of Cameroonian gorillas and the other predominantly
of Congolese gorillas. Also, as found previously, Coco, the only
Equatorial Guinea gorilla employed in our study clustered with
the Cameroonian gorillas owing to its genomic proximity to the
latter (Das and Upadhayai, 2018).

Similar to ADMIXTURE analysis, Infocalc-10,000
(Supplemental Figure S6B) and Admixture-10,000
(Supplemental Figure S6C) best replicated the
population clusters depicted by CSS-based dataset
(Supplemental Figure S6A) with high precision. Both
datasets successfully recapitulated the overlap of some of
the Cameroonian and Congolese gorillas at the center of PC2
and the genomic proximity of the cross river gorilla Nyango
to Cameroonian gorillas. Among the remaining datasets,
SmartPCA-10,000 could recapitulate the overlap of Cameroonian
and Congolese gorillas along PC2, but it failed to recapture the
high genomic proximity of Nyango with Cameroonian gorillas
as depicted by the CSS (Supplemental Figure S6D). Finally,
FST-10,000 portrayed two distinct clusters of Cameroonian and
Congolese gorillas and failed to replicate the overlap of some
of the Cameroonian and Congolese gorillas at the center of the
vertical principal component (PC2) (Supplemental Figure S6E).

Among the 1,531 SNP panels, Infocalc-1,531 was superior
to all other AIMs-determining strategies in replicating the
population structure of query gorillas depicted by the CSS
(Figure 3B). Coherent with the ADMIXTURE analysis,
Consensus-1,531 turned out to be the second best (Figure 3F),
followed by Admixture-1,531 (Figure 3C). Among the remaining
datasets, SmartPCA-1,531 and FST-1,531 performed discernibly
worse and completely failed to depict any contrast among
the western gorilla genomes along PC2 (Figures 3D,E).
Finally, in concordance with the ADMIXTURE analysis,
Random-1,531 was completely unsuccessful in capturing
population structure of all query gorillas, such that it
even failed to depict the eastern gorilla-western gorilla
contrast along the horizontal principal component (PC1)
(Figure 3G). The failure of the random dataset once again
underscored the superiority of the AIMs over randomly
selected markers in portraying population structure of
query genomes.

Taking together all analyses, our study revealed that while
Infocalc performed better than other approaches in qualitative
analysis, the Admixture-based approach turned out to be the
best in the quantitative analysis. This indicates that no single
AIMs-determining strategy may be sufficient to recapitulate the
ancestry information of gorillas. So, we propose that Consensus-
1,531 which performed consistently well in both qualitative and
quantitative analysis (ranked 2nd in both) should be elucidated
as the AIMs panel for the gorillas as it emerged as the smallest set
of SNPs that delineates the ancestry information and population
structure of gorillas with optimum precision. Further, we have
generated a set of 262 most informative SNPs from the 1,531
AIMs panel, which can be detected through common genotyping
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FIGURE 3 | Principal Component Analysis (PCA) of gorilla genomes. PCA plots showing genetic differentiation among query gorilla genomes. The data subsets were

generated using top 1,531 most informative SNPs detected through various AIMs determining approaches. (A) PCA of the CSS (354,080 SNPs); Here, the X-axis

(PC1) explained 45% variance while the Y-axis (PC2) explained 23% variance of the data. (B) PCA of Infocalc-1,531; In this case, the X-axis (PC1) explained 45%

variance while the Y-axis (PC2) explained only 21% variance of the data. (C) PCA of Admixture-1,531; In this case, the X-axis (PC1) explained 68% variance while the

Y-axis (PC2) explained 22% variance of the data. (D) PCA of SmartPCA-1,531; Here, the X-axis (PC1) explained 88% variance while the Y-axis (PC2) explained only

6% variance of the data. (E) PCA of FST -1,531; In this case, the X-axis (PC1) explained 85% variance while the Y-axis (PC2) explained only 5% variance of the data.

(F) PCA of Consensus-1,531; In this case, the X-axis (PC1) explained 82% variance while the Y-axis (PC2) explained 10% variance of the data. (G) PCA of

Random-1,531; Here, the X-axis (PC1) explained 28% variance while the Y-axis (PC2) explained 24% variance of the data. Notable populations are marked with

circles such that the blue circles represent eastern lowland gorillas; brown represents the cross river gorilla; and green, red and yellow represents western lowland

gorillas of Cameroonian, Congolese and Equatorial Guinean ancestry, respectively. In all cases, PCA was performed in PLINK v1.9 and the top four principal

components (PCs) were extracted. Top two PCs (PC1 and PC2), explaining the highest variance of the data were plotted in R v3.2.3.

techniques and are powerful enough to detect fine structure
within gorilla populations (Supplemental Table 2).

DISCUSSION

Over the years, Gorillas, with dwindling population size and
increasingly reduced and restricted distribution in the wild, are
faced with serious threats for their survival. As a consequence,
conservation of wild as well as captive gorillas and preservation of
unique gorilla gene pools has garnered a lot of attention in recent
years. The gorilla breeding programs that affords to increase
genetic diversity in order to avoid inbreeding depression, have
been restricted by insufficient information about the ancestry of
the gorillas (Wharton, 2009; Nsubuga et al., 2010; Simons et al.,
2012; Prado-Martinez et al., 2013). Hence, the determination
of the biogeographical affiliation of gorillas can be invaluable
to foster their population level (intra-specific) management and
preservation of unique gorilla gene pools.

In this study we sought to compare three strategies previously
used for AIMs determination, namely Infocalc algorithm
(Paschou et al., 2007; Kosoy et al., 2009), Wright’s FST (Tian
et al., 2007; Kidd et al., 2011; Nievergelt et al., 2013), and Smart
Principal Component Analysis (SmartPCA) (Patterson et al.,
2006) with a novel ADMIXTURE based approach (Alexander
et al., 2009) to delineate an AIMs panel that can reproducibly
capture the genomic ancestry of gorillas at the population level
and aid in identification of gorillas at the individual level.
To this end, we developed the first AIMs panel for gorillas

containing 1,531 SNPs that were common to at least three out
of four AIMs-determining approaches. Our results indicate that
this AIMs panel can recapitulate the ancestry information of
query gorillas with high precision and can help in population
level identification of gorillas, which can be monumental in
the preservation of unique gorilla gene pools and selection of
individuals for captive breeding program.

Our AIMs panel (Consensus-1,531) consisted of 1,531 SNPs,

generated as a consensus of at least three of the four aforesaid
AIMs-determining strategies and thus likely balanced out the

limitations of each individual approach (Wilkinson et al., 2011).
Here we note that out of 1,531 SNPs, 1,359 SNPs were common
among FST, ADMIXTURE and SmartPCA and were not detected

by the Infocalc based method (Figure 2). The great extent of
overlap of top-ranked AIMs of the aforementioned strategies
indicates that these three strategies essentially captured the same
information regarding the ancestry of query gorillas. Further,
while the two worst performing approaches-SmartPCA and
FST revealed the highest number of overlapping SNPs (>26%),
Infocalc generated the highest number of exclusive SNPs (94%),
followed by ADMIXTURE (66%). These results indicates a likely
relationship between the exclusiveness of a SNP and its ability to
recapture the ancestry information.

Overall, our qualitative and quantitative analyses concur that

Consensus-1,531 could recapitulate the ancestry information of
query gorillas with high precision. While Consensus-1,531 had

the shortest median Euclidean distance from the CSS (0.032), it
appeared as the second most sensitive approach in terms of the
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mean Euclidean distance from the same (µ = 0.087) indicating
its high precision of recapitulating the ancestral information
depicted by the whole dataset. Further, quantitative assessment
reflected that the performance of Consensus-1,531 was indistinct
from the larger 10,000 SNP based datasets (p-value > 0.99)
and had the highest number of individuals (N = 9) with zero
Euclidean distances from the CSS. However, we note that while
Consensus-1,531 successfully replicated the ancestry information
of most query gorillas employed in this study, it failed to capture
the Cameroonian ancestry component for Carolyn, Delphi and
Porta and homogenously assigned them to Congo (Figure 1) and
thus appeared to be the second-most sensitive in the qualitative
assessment, falling short of the number matched Infocalc
derived panel.

Amidst the remaining approaches, we note that FST was the
poorest in capturing fine-scale population structure of query
gorillas, closely followed by the SmartPCA based approach
(Figures 1–3), suggesting the ineffectiveness of these two
strategies in recapitulating the ancestral history of gorillas. We
further note that most AIMs determining approaches employed
in this study (except FST , and SmartPCA) and their consensus
appeared to be superior to the randomly selected markers
in capturing the population structure delineated by the CSS
(Figures 1–3), advocating the usefulness of AIMs in tracing
biogeographical origin of organisms over randomized SNPs.

Here we note that the goal of this study was to develop
AIMs that can be used to tell apart various populations within
western lowland gorilla (below subspecies level). Eastern and
western lowland gorillas are considered to be different species
and are genetically so distinct from each other that they can be
differentiated throughmost markers present in the complete SNP
set (CSS). Despite our restriction in terms of sample size and data
availability, since most gorilla genomes used in this study belong
to various western gorilla populations (27 out of 31), our results
should reflect our intended outcome of deducing AIMs that can
differentiate western gorillas below subspecies level.

The quest of developing an AIMs panel for gorillas is not new.
A previous study has developed polymorphic MEIs, including
those that can be considered ancestry-informative markers and
MEIs corresponding to regions of incomplete lineage sorting
(ILS) (Hormozdiari et al., 2013). However, to the best of our
knowledge, this is the first study to have developed an AIMs panel

for gorillas, which can recapitulate their ancestry information
with high precision. With limited availability of funding, the
conservation geneticists need to draw a balance between the costs
of genotyping multiple loci and the inadequacy of information
when limited number of loci are genotyped. Comprised of only
1,531 SNPs, the gorilla AIMs panel described here, can become
a likely cost-effective solution to this problem. Our AIMs panel
can resolve the ancestry information of gorillas with highest
resolution power and can detect fine structures within gorilla
populations below subspecies level at a highly affordable cost.

CONCLUSIONS

Effective conservation of gorilla populations requires the
delineation of their ancestry information to facilitate
preservation of the population level integrity of genomic
signal and avoidance of inbreeding depression. To this end, we
have developed an AIMs panel comprising of 1,531 SNPs that
can recapitulate the ancestry information of gorillas with high
precision. Our AIMs panel can afford a cost-effective solution
to whole genome sequencing and/or large-scale genotyping of
gorillas for large-scale biogeographic analysis and conservation
genetics studies.

To the best of our knowledge this is the first AIMs panel
developed for gorillas that can bolster their efficient management
and aid in the conservation of their genetic integrity.
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