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The imputation from lower density SNP chip genotypes to whole-genome sequence
level is an established approach to generate high density genotypes for many individuals.
Imputation accuracy is dependent on many factors and for small cattle populations
such as the endangered German Black Pied cattle (DSN), determining the optimal
imputation strategy is especially challenging since only a low number of high density
genotypes is available. In this paper, the accuracy of imputation was explored with
regard to (1) phasing of the target population and the reference panel for imputation, (2)
comparison of a 1-step imputation approach, where 50 k genotypes are directly imputed
to sequence level, to a 2-step imputation approach that used an intermediate step
imputing first to 700 k and subsequently to sequence level, (3) the software tools Beagle
and Minimac, and (4) the size and composition of the reference panel for imputation.
Analyses were performed for 30 DSN and 30 Holstein Frisian cattle available from the
1000 Bull Genomes Project. Imputation accuracy was assessed using a leave-one-out
cross validation procedure. We observed that phasing of the target populations and the
reference panels affects the imputation accuracy significantly. Minimac reached higher
accuracy when imputing using small reference panels, while Beagle performed better
with larger reference panels. In contrast to previous research, we found that when a low
number of animals is available at the intermediate imputation step, the 1-step imputation
approach yielded higher imputation accuracy compared to a 2-step imputation. Overall,
the size of the reference panel for imputation is the most important factor leading to
higher imputation accuracy, although using a larger reference panel consisting of a
related but different breed (Holstein Frisian) significantly reduced imputation accuracy.
Our findings provide specific recommendations for populations with a limited number
of high density genotyped or sequenced animals available such as DSN. The overall
recommendation when imputing a small population are to (1) use a large reference panel
of the same breed, (2) use a large reference panel consisting of diverse breeds, or (3)
when a large reference panel is not available, we recommend using a smaller same
breed reference panel without including a different related breed.
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INTRODUCTION

Imputation from lower density SNP chip genotypes to whole-
genome sequencing level is a practical, cheap and fast method
to generate high density genotypes for many individuals. While
imputing, missing values of lower density genotypes of a target
population are inferred using a reference panel consisting of
genotypes from higher resolution data. The variety of existing
methods for imputation is large (Marchini and Howie, 2010),
from the many software tools available for imputation we used
Beagle (Browning and Browning, 2016) and Minimac (Das et al.,
2016) which exploit haplotype patterns for imputation.

In cattle breeding, most animals from breeds with limited
population sizes currently are genotyped with low density (3 k
or 10 k) or medium density (50 k) SNP chips, but rarely
with high density (700 k) SNP chips and far less animals are
whole-genome sequenced. Therefore, most imputation studies
have been performed in breeds such as Holstein Friesian (HF),
where a relatively high number of high density genotyped or
whole-genome sequenced animals are available. For example,
the 1000 Bull Genomes Project1 offers a large reference panel
including many HF animals on sequence level that can be
used for imputation within the same breed (Brøndum et al.,
2014; van Binsbergen et al., 2015; Pausch et al., 2017).
However, imputation to higher density is especially challenging
in populations where only a low number of high density
genotypes or sequence data is available. One such population
is the endangered German Black Pied cattle (DSN, “Deutsches
Schwarzbuntes Niederungsrind”) which is considered to be
one of the founder breeds of German HF (Porter, 1991). The
population of DSN consists of about 2000 pure-bred animals
and only 30 of them were whole-genome sequenced, while
many 50 k genotypes are available for this breed. Thus, finding
an optimal imputation strategy for such small populations is
necessary in order to obtain high quality imputed genotypes for
further analyses.

Most importantly, the accuracy of imputation has to
be sufficiently high to allow for reliable conclusions in
further analyses, such as genome-wide association studies and
identification of causal DNA variants (Li et al., 2009; Marchini
and Howie, 2010). Several factors are known to influence the
accuracy of imputation: It was shown that the imputation
accuracy improved by increasing the number of animals in the
reference panel for imputation and also if the reference panel was
composed of close relatives of the target population (Sargolzaei
et al., 2014; van Binsbergen et al., 2014; Pausch et al., 2017;
Wang and Chatterjee, 2017). Furthermore, a 2-step imputation
strategy that first imputes from an initial lower density to an
intermediate higher density and afterwards to the desired density
was reported to provide more accurate imputation compared
to direct imputation to the desired density (VanRaden et al.,
2013; van Binsbergen et al., 2014; Kreiner-Møller et al., 2015).
Nevertheless, for breeds consisting of a limited number of
individuals there is no recommended strategy for reaching
optimal imputation accuracy.

1http://www.1000bullgenomes.com/

In this paper, we investigated multiple imputation strategies
with regard to phasing of the target population and reference
panel, size and composition of the reference panel for DSN
animals as an example for small populations. We compared the
imputation tools Beagle and Minimac and a 1-step imputation
to the previously recommended 2-step imputation approach. We
used data from the 1000 Bull Genomes Project which includes
30 sequenced DSN animals and compared the analyses to a set
of 30 randomly chosen sequenced HF animals from the 1000
Bull Genomes Project in order to exclude breed-specific effects.
Results for HF are provided in the Supplementary Information.

MATERIALS AND METHODS

Genomic Data for Imputation
Whole-genome sequencing data of 2,333 Bos taurus animals
was provided as raw SNP calls and as Beagle imputed
phased SNP calls by the 1000 Bull Genomes Project (Run
6.0) (see Footnote 1) (Daetwyler et al., 2014). Additional
filtering of the dataset was performed by removing animals
which (1) had no breed information, (2) were crossbreeds,
or (3) belonged to breeds with less than 10 animals. Genetic
similarity was calculated using pairwise relative Manhattan
distances (Equation 1). Animals with high genetic similarity
(>0.99) not explained by kinship were removed from the
dataset. The resulting dataset contained 2,145 animals from
30 breeds, including 541 HF and 30 DSN animals. In the
following, we denote the set of these 2,145 animals as
“1000 bulls.”

SNPs that were not polymorphic in DSN or HF were removed
from the dataset leading to a total of 22,179,359 SNPs. SNP chip
probe sequences of both the Illumina R© Bovine50SNP chip (50 k
SNP chip) and the Illumina R© BovineHD Genotyping BeadChip
(700 k SNP chip) were remapped against the Bos taurus genome
version UMD3.1 (Zimin et al., 2009) using NCBI blastn (Altschul
et al., 1990) in order to obtain genome positions for SNPs on the
same genome version as the “1000 bulls” dataset. SNP probes that
mapped to multiple genomic locations (1,617 from the 50 k SNP
chip and 7,086 from the 700 k SNP chip) were excluded from
further analyses.

Lower density datasets serving as target populations or
reference panels for subsequent imputation were generated
in silico by downscaling the “1000 bulls” datasets to the level of the
50 k and/or 700 k SNP chip. Only SNPs were used that occurred
in sequencing data and in the remapped 50 k or 700 k SNP chip
data, respectively. After the harmonization between SNP chips
and sequencing data, the 50 k downscaled datasets consisted of
47,272 SNPs and the 700 k downscaled data of 649,124 SNPs.

Target Populations and Reference
Panels for Imputation
The 30 sequenced DSN animals from the “1000 bulls” dataset
were scaled down to 50 k SNP chip level and used as target
population for imputation. The “1000 bulls” dataset was used as
reference panel for imputation. We investigated if the number of
animals in the reference panel and the relatedness of the reference
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panel with the target population affects the imputation accuracy.
Therefore, not only the “1000 bulls” reference panel, but also a
reference panel consisting of 30 DSN was used for imputation.

Imputation Software and Accuracy
Estimation
The software tools Beagle (version 4.1, 21/01/2017) (Browning
and Browning, 2016) and Minimac3 (version 2.0.1, 06/2016) (Das
et al., 2016) were used for imputation. Beagle, a parallelized
and memory efficient software tool that uses linear interpolation
to impute ungenotyped variants, was used with its default
settings. For Minimac, a computationally efficient software
implementation of the Markov Chain Haplotyping (MaCH)
algorithm (Li et al., 2010) for genotype imputation, the GT format
parameter for estimating the most likely genotype was used.

Imputation accuracy was evaluated by leave-one-out cross
validation using the 30 sequenced DSN animals as target
population. Leave-one-out means that each to be imputed animal
was removed from the reference panel and the remaining animals
were retained in the reference panel for imputation. This was
repeated for each of the 30 DSN animals.

Imputation accuracy between observed and imputed
genotypes was accessed for the number of SNP variants
i = 1, . . . , n on sequence level using three measurements
to allow for comparisons to other studies: (1) Percentage of
correctly imputed genotypes (percent identity), (2) Pearson’s
correlation coefficient r (Druet et al., 2010; Brøndum et al.,
2014; van Binsbergen et al., 2014; Pausch et al., 2017), and
(3) relative Manhattan distance dM (Zhang and Druet, 2010),
which corresponds to the percentage of correctly imputed alleles.
Relative Manhattan distance was calculated as described in
Equation 1:

dM =

1−
∑n

i=1
∣∣observed genotypesi − imputed genotypesi

∣∣
2n

(1)

Genotypes were coded as 0, 1, and 2 corresponding to
homozygous reference allele, heterozygous, and homozygous
alternative allele, respectively, whereas the reference allele was
determined based on the UMD3.1 reference genome.

The results and corresponding figures in this study
are presented using the relative Manhattan distance, and
measurements calculated using the percent identity and
correlation are provided in the Supplementary Tables 2–5.
Please, note that the results and conclusions are robust with
respect to the imputation accuracy measurements used.

To reduce runtime and computational resources, leave-one-
out cross validation was performed for chromosomes 1 to 5 out
of the 29 autosomes of the Bos taurus genome. The results are
consistent with results obtained when all autosomes were used
(data not shown).

Phasing Strategies of Target and
Reference Datasets
The imputation accuracy was tested with regard to different
phasing strategies of the target population and reference panel.

Reference panels were phased with Beagle 4.1 (Browning
and Browning, 2007) or Eagle 2.3.4 (Loh et al., 2016). The
Beagle phased reference panel was provided by the 1000
Bull Genomes Project. The Eagle phased reference panel was
generated from the raw SNP calls of the 1000 Bull Genomes
Project. For consistency, the raw dataset was filtered to include
only SNPs that are also in the Beagle phased reference
panel, and SNPs were subsequently phased using Eagle. The
target populations consisting of 30 DSN cattle were generated
from the reference panels by downscaling them to 50 k
level. Three different target populations on 50 k level were
used for imputation: An unphased target population, a target
population phased with Beagle, and a target population phased
with Eagle.

The effect of phasing on the imputation accuracy was
evaluated using chromosome 1. Since the highest imputation
accuracy was found when the target population and reference
panel were phased with Beagle, Beagle phased data was used for
subsequent analyses.

Statistical significance of the imputation accuracy with respect
to phasing of the target population and of the reference panel was
assessed using the following ANOVA model:

Imputation accuracy =
Phasingtarget population + PhasingReference panel (2)

ANOVA was performed separately for each target population
(DSN, HF), imputation software (Beagle, Minimac), and
composition of the reference panel (30 DSN or “1000 bulls”).
p-values < 0.05 were considered significant.

Imputation Approaches
To investigate the effect of the imputation approach on the
imputation accuracy, we compared the 1-step versus the 2-step
imputation approach (Figure 1). In the 1-step approach, the
target population that was downscaled to 50 k level was imputed
to sequence level. In the 2-step approach, the target population
was first imputed from 50 to 700 k level using a reference panel
that was scaled down to 700 k level and subsequently from 700 k
to sequence level using a reference panel on sequence level.

Statistical significance of imputation accuracy between
software tools (Beagle and Minimac), imputation approaches
(1-step imputation, 2-step imputation), and reference panels (30
DSN, 1000 bulls) was assessed using pairwise t-tests for each
target population (DSN, HF) separately. p-values < 0.05
after multiple testing correction using Bonferroni were
considered significant.

Imputation Performance for HF Animals
To exclude any breed-specific effects on the results, the phasing
and imputation approaches were tested also for a set of 30
randomly chosen HF animals from the “1000 bulls” dataset. The
30 HF cattle were used either on 700 k or sequence level as a
reference panel or downscaled to 50 k as a target population.
Every procedure performed for the 30 DSN target population
was also performed for the target population consisting of 30
HF animals. Results using the 30 HF target population were
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FIGURE 1 | Imputation strategies for the 1- and 2-step imputation approaches. While in the 1-step imputation the genotypes are directly imputed from 50 k to
sequence level, in the 2-step imputation the genotypes are first imputed from 50 to 700 k level after which imputation is performed to sequence level. Either the 30
DSN or the “1000 bulls” reference panel were used for imputation. Genotypes that were scaled down to 50 k or 700 k level are labeled with “∗”. Similar colors refer
to genotypes of the same 50 k (gray), 700 k (blue) or sequence (orange) level.

consistent with the DSN population and are provided in the
Supplementary Information.

RESULTS

Phasing of the Target Population and
Reference Panel Affects Imputation
Accuracy
When imputing the DSN target population with the “1000 bulls”
reference panel from 50 k to sequence level, significant differences
in imputation accuracy were observed with regard to different
phasing strategies (Figure 2 and Supplementary Table 1). While
imputing with Beagle, the best mean imputation accuracy was
reached when the target population was unphased (ANOVA
p-value = 1.0E-07), regardless whether the reference panel was
phased using Beagle (94.0%) or Eagle (93.9%). Imputation
accuracy decreased by around 0.3% when the target population
was phased with Beagle or Eagle compared to being unphased
(t-test p-value = 5.7E-08). Also the imputation with Minimac
showed significant differences with regard to the phasing of the
target population (ANOVA p-value = 1.5E-24) and reference
panel (ANOVA p-value = 3.1E-31) (Supplementary Table 1). The
highest mean imputation accuracy (93.0%) was observed when
the target population and the reference panel were both phased
with Beagle (Figure 2 and Supplementary Table 2). In contrast
to the imputation with Beagle, Minimac showed the lowest mean
imputation accuracy when an unphased target population was
used (92.1%).

Using the 30 DSN reference panel, imputation with Beagle
showed no difference in accuracy for different phasing strategies
of the target population and reference panel (Supplementary
Tables 1, 2 and Supplementary Figure 1). However, using the
30 DSN reference panel did not change the Minimac results,

albeit the imputation accuracy was lower (mean accuracy 93.0%
for “1000 bulls” reference panel compared to 91.5% for 30 DSN
reference panel).

The imputation results for the target population consisting
of 30 HF animals are consistent with the findings using the
30 DSN as target population (Supplementary Tables 1, 2
and Supplementary Figures 2, 3). Therefore, we are confident
that the results obtained are independent of the breed under
investigation.

Since the imputation accuracy for target populations and
reference panels that were both phased with Beagle showed
the overall best performance, independent of the imputation
software used, we decided to use data phased using Beagle for
further analyses.

Beagle Achieves Higher Imputation
Accuracy Using a Large Reference Panel
A higher mean imputation accuracy was reached with Minimac
(91.0%) compared to Beagle (90.6%, t-test p-value = 1.3E-04)
when the 30 DSN reference panel was used for the imputation
of the DSN target population from 50 k to sequence level
(Figure 3 and Supplementary Table 3). In contrast, when
imputing using the “1000 bulls” reference panel, Beagle (93.2%)
showed significantly better performance compared to Minimac
(92.4%, t-test p-value = 8.0E-27).

The same results were observed for the target population
consisting of 30 HF using the “1000 bulls” reference panel
for imputation (t-test p-value = 8.6E-22) (Supplementary
Table 3 and Supplementary Figure 4). Different from the DSN
target population, no difference was found between Beagle and
Minimac when using the 30 HF reference panel for the HF
target population.

Overall, the accuracy of imputation is higher when using a
bigger reference panel even if it consists of diverse breeds which is
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Korkuć et al. Optimal Imputation in Small Populations

FIGURE 2 | Comparison of different phasing strategies. The target population consisting of 30 DSN animals was either unphased (red), phased with Beagle (blue) or
phased with Eagle (green), while the “1000 bulls” reference panel was phased with Beagle (left panel) or Eagle (right panel). Imputation was performed using Beagle
(top panel) or Minimac (bottom panel) from 50 k to sequence level and imputation accuracy was calculated as relative Manhattan distance. Imputation with Beagle
showed the best accuracy when using an unphased target population. The highest accuracy for imputations with Minimac was observed when both the target
population and reference panel were phased with Beagle.

the case in the “1000 bulls” reference panel (92.8% for DSN target
population, 94.1% for HF target population) compared to using
a small reference panel of animals from the same breed (90.8%
for DSN target population, 91.1% for HF target population)
regardless of the imputation software (Supplementary Table 3).

Since Beagle imputed genotypes overall with a higher accuracy
in comparison to Minimac, further analyses were done with
Beagle. In addition, imputation of a single animal from 50 k
to sequence level with the “1000 bulls” reference panel using
Beagle was around 24 times faster compared to the imputation
using Minimac.

1-Step Imputation Performs Better Than
2-Step Imputation
Imputing the DSN target population with the “1000 bulls”
reference panel, the highest mean accuracy of 93.2% was
observed for the 1-step imputation approach (Figure 4 and

Supplementary Table 4). For comparison, the highest mean
accuracy using the 2-step imputation approach was significantly
lower (92.1%, t-test p-value = 3.9E-34). In the 2-step imputation
approach the “1000 bulls” reference panel was used twice, once
scaled down to 700 k level used for the imputation from
50 to 700 k level (first step) and second on sequence level
for the subsequent imputation from 700 k to sequence level
(second step).

If differently sized and composed reference panels were
available for the first and second step of the 2-step imputation
approach, the imputation accuracy was significantly affected
(Figure 4 and Supplementary Table 4). If only a small reference
panel (30 DSN) was available for the first step of the 2-step
imputation approach, then using a bigger reference panel (“1000
bulls”) for the second step did not increase the overall imputation
accuracy. Hence, the mean imputation accuracies were 89.6% or
89.7% when the 30 DSN or “1000 bulls” reference panel were used
in the second step, respectively. Interestingly, when many animals
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FIGURE 3 | Imputation software comparison for the imputation of the DSN
target population. Either the 30 DSN or the “1000 bulls” reference panel was
used for imputation from 50 k to sequence level and imputation accuracy was
calculated as relative Manhattan distance. We observed a significantly higher
imputation accuracy with Beagle (orange) than with Minimac (blue) using the
“1000 bulls” reference panel (t-test p-value = 8.0E-27). The accuracy of
imputation with the smaller reference panel (30 DSN) was significantly higher
when imputing with Minimac (t-test p-value = 1.3E-04).

were available for the imputation to 700 k level (“1000 bulls”
reference panel) and only few animals for the final imputation to
sequence level (30 DSN reference panel), higher mean accuracy
was obtained in the 2-step (91.4%) compared to the 1-step
imputation approach using the 30 DSN reference panel (90.6%;
t-test p-value = 9.0E-13). The same qualitative results were
observed when comparing the 1-step versus 2-step imputation
approach for the HF target population (Supplementary Table 4
and Supplementary Figure 5).

Using a Wrong Reference Panel Can Hurt
Imputation Accuracy
Genotype imputation from 50 k to sequence level of the DSN
target population using the 30 DSN reference panel achieved
a mean imputation accuracy of 90.6%. Surprisingly, when
we added 100 additional HF animals (randomly chosen from
the “1000 bulls” reference panel) to the reference panel, we
observed a significant reduction in mean imputation accuracy
to 89.9% (p-value = 1.4E-11) (Figure 5 and Supplementary
Table 5). When continuing to add 100 HF animals (up to
500 HF animals) to the reference panel, we observed that

the imputation accuracy increased with increasing number of
HF animals in the reference panel. Nevertheless, the mean
imputation accuracy remained significantly lower compared to
the original imputation accuracy using the 30 DSN reference
panel unless 500 HF were added to the reference panel
(200 HF: 89.8%, 300 HF 90.0%, 400 HF: 90.3%, 500 HF:
90.6%). To investigate if the decrease in accuracy is also
observable when animals from various breeds were used for
imputation, we performed the same analysis now adding 100
randomly chosen animals from various breeds out of the
“1000 bulls” reference panel (Figure 5 and Supplementary
Table 5). Again, we observed a significant drop in mean
imputation accuracy when 100 additional animals from various
breeds were added, compared to using the 30 DSN reference
panel (p-value = 4.8E-06). However, the drop in accuracy was
significantly higher when adding 100 HF animals (–0.7%) than
100 animals from various breeds (–0.4%) to the reference panel
(p-value = 2.7E-08). Imputation accuracy was restored to the
level of the 30 DSN reference panel if the reference panel
contained 30 DSN and 300 animals from various breeds. We
observed the same results for the target population consisting
of 30 HF when successively adding 100 animals from various
breeds to the reference panel (Supplementary Table 5 and
Supplementary Figure 6).

DISCUSSION

Due to their limited population size, DSN animals are not
unrelated and family relationships exist between animals, which
is a common issue in small populations. While imputing, this
relatedness positively affects the imputation accuracy from DSN
to DSN. Nonetheless, the same results were observed for 30
random unrelated HF animals showing that our findings are
robust with regard to the breed under investigation.

The investigation of different phasing strategies for target
populations and reference panels showed that phasing
significantly affected the imputation accuracy. While Beagle
performed best on unphased target populations, the highest
imputation accuracy was reached for Minimac when target
populations and reference panels were phased with Beagle.
In general, better imputation accuracies were observed if the
reference panel was phased and when phasing was performed
with Beagle.

Although, imputation using Beagle and Minimac was
described to produce similar accuracy (Browning and Browning,
2016), we observed an ambiguous performance with Beagle
imputing at higher accuracy using bigger reference panels (“1000
bulls” reference panel) while Minimac reached higher accuracy
when a small reference panel was available (30 DSN reference
panel). Furthermore, using genotype likelihoods as the output of
imputation instead of genotypes, which is possible in Minimac,
could lead to more precise and higher imputation accuracy.
Nonetheless, we believe that the general trends in imputation
found in this study should not be affected when using genotype
likelihoods. As Beagle does not include an option for estimating
genotype likelihoods, we performed all analyses using genotypes.
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FIGURE 4 | Comparison of imputation accuracy between the 1-step and 2-step imputation approach using Beagle for the DSN target population. Two reference
panels (30 DSN and “1000 bulls”) were used during the 1-step imputation from 50 k to sequence level. The same two panels were used for the first (50 to 700 k) and
the second step (from 700 k to sequence level) in the 2-step imputation approach. The imputation accuracy was calculated as relative Manhattan distance. 1-step
imputation using the “1000 bulls” reference panel provided the best mean imputation accuracy (93.2%). The colors refer to the reference panels used for the
imputation to sequence level (yellow – 30 DSN reference panel, orange – “1000 bulls” reference panel).

From literature, the 2-step imputation approach has been
suggested to be advantageous in comparison to the 1-step
imputation approach with regard to imputation accuracy
(VanRaden et al., 2013; van Binsbergen et al., 2014). Our
results agree with this when a large amount of intermediate
genotypes is available. However, for small population in which
this intermediate level is not as abundant our findings suggest
the opposite: A higher imputation accuracy was reached in the
1-step imputation approach compared to the 2-step imputation
approach. The reduced performance of the 2-step imputation is
probably caused by imputation errors from the first imputation
step (50 to 700 k) that are propagated into the second imputation
step (700 k to sequence level). For example, if around 90% of
the genotypes are correctly imputed per imputation step, the
accuracy drops after two imputation steps to 81%. Therefore, a
2-step imputation approach is only useful when a large number
of animals is available for the first step of imputation and
only a small number of sequenced animals for the second step.
Furthermore, since the current release of the 1000 Bull Genomes
Project provides a large number of sequenced animals that can
be used as reference panel (and the number of sequenced animals
will increase with time), the 1-step imputation approach should
be preferred compared to the 2-step imputation approach.

For a high accuracy of genotype imputation in small
populations, several things have to be considered. Consistent with
other studies, the imputation accuracy was positively affected
if animals of the target population and the reference panels
are closer related, e.g., are from the same breed (Ma et al.,
2013; Pausch et al., 2017). Thus, imputation accuracy was higher
when HF individuals were imputed using a reference panel
of other HF animals compared to imputation using animals
from various breeds. However, if the number of same breed
animals in the reference panel is limited (e.g., in the case
of DSN) expanding the reference panel using animals from a
related breed such as HF or from various breeds reduced the
imputation accuracy. The initial imputation accuracy obtained
when using a 30 DSN reference panel was only restored
after 17 times more HF animals or 10 times more animals
from various breeds were added to the reference panel. In
agreement with our results, other studies also showed that
the use of a multi-breed instead of a one-breed reference
panel increased imputation accuracy (Bouwman and Veerkamp,
2014; Brøndum et al., 2014; Pausch et al., 2017). This is the
result of a higher variety of haplotypes segregating in the
multi-breed reference panel that could provide a better fit to
the linkage disequilibrium existing in the target population.
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FIGURE 5 | Comparison of imputation accuracy with regard to differently sized and composed reference panels for the DSN target population. The imputation was
performed from 50 k to sequence level with Beagle using the 30 DSN reference panel and successively adding 100 HF animals or animals from various breeds (VAR)
to the initial 30 DSN reference panel. The imputation accuracy was calculated as relative Manhattan distance. We observed a decrease in imputation accuracy for
DSN when animals distant from DSN are added to the reference panel even when the size of the reference panel increased. Interestingly, the drop in imputation
accuracy was bigger when adding HF animals than when adding animals from various breeds. The intensity of the color refers to the total number of animals in the
reference panel.

Overall, the best imputation accuracy was reached when a
very large multi-breed reference panel such as the “1000 bulls”
was used.

While most studies investigating the accuracy of imputation
use correlation (Druet et al., 2010; Brøndum et al., 2014;
van Binsbergen et al., 2014; Pausch et al., 2017), additional
measurements of the accuracy are available and used, among
them the calculation of the percentage of correctly imputed
genotypes, the relative Manhattan distance (Zhang and Druet,
2010), and other more complex assessments (van Binsbergen
et al., 2014). Correlation only describes the linear relationship
between two variables, and is not a measurement of distance,
which we believe imputation accuracy should be. The easiest
way to assess the accuracy of real versus imputed genotypes
is the calculation of the percentage of correctly imputed
genotypes. However, the calculation of the percentage of
correctly imputed genotypes does not distinguish between
different types of errors, e.g., if only one allele (observed
genotype = 0, imputed genotype = 1) or even two alleles
(observed genotype = 0, imputed genotype = 2) at a locus
are wrongly imputed. The relative Manhattan distance accounts
for these different types of errors and, therefore, should be

used when calculating imputation accuracy. Nonetheless, the
observations, findings and conclusions of this study were
consistent and independent of the measurement used to assess
imputation accuracy.

Besides, the overall low imputation accuracy, independent
of which of the three measurements for imputation accuracy
was used, is caused by the fact that for imputation only
variants were used that were polymorphic in either DSN or
HF animals. By doing this, around 50% of the variants from
the 1000 Bull Genomes Project were not considered, as they
are all genotypes that are homozygous to the reference allele
for the DSN and HF animals. If those variants would be
included into the analysis, the overall imputation accuracy
would be artificially inflated as those genotypes would be
consistent across the investigated breeds and thus always be
correctly imputed.

Mean imputation accuracy with respect to the minor allele
frequency (MAF) binned into 10% bins was investigated
for all imputations performed. Counterintuitively, imputation
accuracies tend to be higher in lower MAF bins, which the
authors assume is due to the very limited size of the target
population causing imputation accuracy to be overestimated
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at lower MAFs. Investigation of the different MAF bins on
the imputation accuracy as well as the choice of imputation
strategy showed that our results and conclusions presented
on global imputation accuracy are robust, and replicate
in almost all MAF bins. Differences in global imputation
accuracy between the different phasing strategies was very
small; for the lower MAF bins, the differences are even
smaller or not existent (Supplementary Tables 6, 7 – “Phasing
of target population and reference panel”). Regarding the
choice of imputation software, we observed that Minimac
showed slightly better imputation accuracies at higher
MAF; Beagle and Minimac perform the same for lower
MAF bins (Supplementary Tables 6, 7 – “Comparison
of imputation software”), however, this was only observed
using the 30 DSN reference panel. Considering 1-step vs. 2-
step imputation, the only difference when comparing MAF
bins to global imputation accuracy was found for MAF
bin (0, 0.1], which showed a slightly lower imputation
accuracy for the 2-step imputation approach, all other
bins show the same pattern as the global imputation
(Supplementary Tables 6, 7 – “Comparison of 1-step and
2-step imputation”).

The estimation of imputation accuracy for HF animals using
the data from the 1000 Bull Genomes Project are to a certain
degree biased. Since the current version of the 1000 Bull Genomes
Project (Run 6) comprises about 25% HF animals, the accuracy
of imputation will be better for HF animals than for other cattle
breeds using the same “1000 bulls” dataset as a reference panel
for imputation.
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