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Pathway and network approaches are valuable tools in analysis and interpretation of
large complex omics data. Even in the field of rare diseases, like Rett syndrome,
omics data are available, and the maximum use of such data requires sophisticated
tools for comprehensive analysis and visualization of the results. Pathway analysis with
differential gene expression data has proven to be extremely successful in identifying
affected processes in disease conditions. In this type of analysis, pathways from different
databases like WikiPathways and Reactome are used as separate, independent entities.
Here, we show for the first time how these pathway models can be used and integrated
into one large network using the WikiPathways RDF containing all human WikiPathways
and Reactome pathways, to perform network analysis on transcriptomics data. This
network was imported into the network analysis tool Cytoscape to perform active
submodule analysis. Using a publicly available Rett syndrome gene expression dataset
from frontal and temporal cortex, classical enrichment analysis, including pathway
and Gene Ontology analysis, revealed mainly immune response, neuron specific and
extracellular matrix processes. Our active module analysis provided a valuable extension
of the analysis prominently showing the regulatory mechanism of MECP2, especially on
DNA maintenance, cell cycle, transcription, and translation. In conclusion, using pathway
models for classical enrichment and more advanced network analysis enables a more
comprehensive analysis of gene expression data and provides novel results.

Keywords: pathway analysis, WikiPathways, Reactome, Rett syndrome, network analysis, RDF, topology, active
subnetworks

1. INTRODUCTION

In a diseased state, many molecular processes in the human body are affected and dysregulated.
Performing pathway analysis on molecular data sets comparing healthy vs. diseased subjects is
immensely effective in finding affected pathways and it enables researchers to study the underlying
processes in detail, to reveal possible disease mechanisms. While standard enrichment methods
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have limitations and pathways are analyzed independently with
their arbitrary process boundaries (Khatri et al., 2012), the
pathway models themselves are very interesting from a network
science perspective. These models contain detailed information
about biological molecules and their interactions with one
another, which can be visualized and analyzed using network
biology tools (Kutmon et al., 2014). The detailed models of these
biological processes are collected in online pathway databases
like WikiPathways (Slenter et al., 2017) and Reactome (Fabregat
et al,, 2017). The availability of pathway models in the structured
and semantic Resource Description Framework format (RDF)
creates the possibility to integrate all pathway models into one
large network and therefore incorporate the relations and overlap
between them (Waagmeester et al., 2016). By removing artificial
boundaries, this will enable us to study the systemic effects of
diseases, such as Rett syndrome, using network biology methods.
Specifically, we can look for subnetworks, even if not present in
pathways as found in pathway databases, which reflect modules
of differential biological activity.

Rett syndrome (MIM: 312750, Rett, 1966) is a rare genetic
disorder, caused in most patients by a loss of function mutation
in the MECP2 gene (Amir et al, 1999). The accompanying
MECP2 protein is multifunctional and acts as an epigenetic
repressor, transcriptional repressor, and transcriptional activator.
MECP2 binds DNA on methylated CpG islands and is involved
in several regulatory activities: attracting histone deacetylases
(HDAC1), increasing packing density of DNA, repressing and
in specific genes also activating gene expression, and due
to its phosphorylation sites, MECP2 activity is sensitive to
intracellular signaling (Chunshu et al, 2006; Ehrhart et al,
2016). Due to its regulatory role, many downstream genes
are affected in case of loss of function, resulting in a broad
range of symptoms including moderate to severe intellectual
disability, gait problems, stereotypic movements, dystonia,
scoliosis, epileptic seizures, and sleep problems (Hagberg et al.,
2002; Neul et al, 2010). In the past 10 years, omics data
analysis on the level of genome, transcriptome, or proteome
saw an increase in importance, to analyse and understand
the holistic impact of MECP2, respectively, the impact of an
impaired MECP2. Shovlin and Tropea (2018) recently reviewed
the available transcriptomics studies on Rett syndrome and
came to the conclusion that the most researched impact of
MECP2 dysfunction lies with dendritic connectivity and synapse
maturation, mitochondrial dysfunction, and glial cell activity.
Recent pathway analysis results of single and integrated studies
identified changes in intracellular signaling, including EIF2
(eukaryotic translation initiation) signaling, cytoskeleton, and
cell metabolism including mitochondrial function (Bedogni et al.,
2014; Ehrhart et al.,, 2018) .

In this study, we aim to investigate the molecular changes
in Rett syndrome patients using a network-based approach
by integrating existing pathway models from WikiPathways
and Reactome into one large network and identifying disease-
affected submodules that show differential gene expression.
We will compare the results with standard enrichment
analysis methods, including pathway and Gene Ontology
analysis, and expect that the identified disease modules will

also contain interactions in pathways not found through
those methods.

2. MATERIALS AND METHODS

Dataset

The publicly available dataset studying the transcriptome in
human brain tissue of Rett syndrome patients and healthy
controls from the Gene Expression Omnibus (GEO) was used
(GEO:GSE75303). The original study was published by Lin et al.
(2016). The dataset contains transcriptome data obtained with
Mlumina HumanHT-12 V4.0 expression beadchips. The samples
were taken postmortem from human frontal and temporal cortex
of three Rett syndrome patients (MECP2 mutations ¢.378-2A>G,
c.763C>T, c.451G>T) and three age-, gender-, and ethnicity-
matched controls.

Raw and normalized data as well as study metadata were
obtained (GEO:GSE75303) and subjected to quality control,
including signal distribution and sample grouping analyses, using
plotting functions from ArrayAnalysis.org (Eijssen et al., 2013).
No samples were excluded for further analysis. The provided
normalized data on GEO was filtered to remove all probes
with a detection p-value of 1 for all samples, indicating overall
absence of expression. Thereafter, the limma package for R
(version 3.30.13, Ritchie et al, 2015) was used to compute
differential expression between Rett patients and controls for
the frontal and temporal cortex samples separately. For each
probe, this results in estimates of the fold change and p-value
significance between the patient and control groups. Probes were
re-annotated with Ensembl gene identifiers based on Ensembl
build 91 using the BridgeDbR package (version 1.16.0, Leemans
et al., 2018) with the Hs_Derby_Ensembl_91.bridge database
(van Iersel et al., 2010).

Enrichment Analysis

We performed pathway analysis with PathVisio (version 3.3.0,
Kutmon et al, 2015) and Gene Ontology (GO) analysis with
GO-Elite (version 1.2, Zambon et al., 2012).

For GO analysis with GO-Elite, the input gene lists for
frontal and temporal cortex contained all significantly changed
genes (p-value < 0.05) with an absolute fold change cutoff
of 1.5. Ensembl identifiers of all measured genes in the
datasets were provided as the background list. Number of
permutations was set to 2,000. Pruned GO-term results (i.e.,
GO terms for which genes in subterms that were found to
be significant were removed) were filtered based on Z-score
(> 1.96), permuted p-value (< 0.05) and a minimum number
of changed genes of five.  Pathway analysis was performed
on a combined human pathway collection from all curated
WikiPathways pathways including the Reactome pathway set
(in total 903 pathways, October 2018 release). Differential gene
expression was mapped to genes on the pathway diagrams using
the Hs_Derby_Ensembl_91.bridge identifier mapping database.
Thereafter, pathway statistics was performed on differential gene
expression for temporal and frontal cortex using the following
criteria to select only significantly differentially expressed genes
(absolute fold change cutoff of 1.5 and p-value < 0.05):
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(log2FC < -0.58 OR log2FC > 0.58) AND p-value < 0.05.

The resulting ranked pathway list was filtered based on Z-score
(> 1.96), permuted p-value (< 0.05), and minimum number of
changes (positive) genes of five.

Pathway-Based Network Construction
Biological pathway models are small sub-networks describing
specific biological processes. Connecting and integrating
pathway models in one large network enables us to use
network biology tools and approaches to study and investigate
the network.

We used the WikiPathways RDF from October 2018 release
(Waagmeester et al., 2016) to retrieve information about all
interactions in the pathway models of two major pathway
databases, WikiPathways and Reactome. With this network
approach, the pathway models are not treated as independent
modules, but they are integrated on an interaction level,
which enables linking information from different pathways
based on their shared participants and thus bringing related
interactions closer to each other. As shown in Figurel,
each interaction is represented by an interaction node in the
network with edges to all participant nodes (either source,
target, or participant). For each interaction, it is recorded
in which pathway or pathways the interaction is present.
By connecting all the retrieved interactions, a large network
representing all human pathway models was created. The
SPARQL query language was used to retrieve the relevant data.
The scripts to generate the constructed network are available on
GitHub  (https://github.com/wikipathways/wprdf2cytoscape).
Interactions with at least two annotated interaction participants
(gene product, metabolite, complex) are included. Gene

products have unified Ensembl (Zerbino et al., 2017) identifiers,
metabolites have either Wikidata (Mietchen et al., 2015), ChEBI
(Hastings et al., 2015) or HMDB identifiers (Wishart et al., 2017),
and complexes have Reactome identifiers. A list of frequently
occurring small molecules (Supplementary Table 1), e.g., HT,
H,0, ATP, were removed from the network to prevent inclusion
of paths with no specific biological relevance. Such small
molecules tend to create artificial hub nodes simply because e.g.,
ATP is used/produced in a lot of metabolic reactions.

Active Module Analysis

The constructed network was loaded into Cytoscape (version
3.7.0), a network analysis and visualization tool (Shannon et al.,
2003). Differential expression analysis data (log2 fold changes
and p-values) for both frontal and temporal cortex were added
as node attributes to the network.

The Cytoscape app jActiveModules (version 3.2.1, Ideker
et al., 2002) was used to identify active submodules in the
large network that show significant changes in expression. These
subnetworks are freed from the artificial pathway boundaries
of conventional pathway models found in WikiPathways and
Reactome. The following parameters were used to find active
submodules: p-value as the node attribute, number of modules
was set to five, overlap threshold of 0.8, and search strategy with
a search depth of two.

Tools and Settings

e Dataset: Normalized data from GEO, plotting functions
from ArrayAnalysis.org, limma package for R (version
3.30.13), BridgeDbR package (version 1.16.0) with
Hs_Derby_Ensembl 91.bridge database.

-

GeneProduct 2 GeneProduct 4
Complex
participant participant
source participant
Pathway 3
M 1
Pathway 2 Stimulation
target GeneProduct 3
source
target source
Conversion Catalysis
GeneProduct 1
b Pathway 1

FIGURE 1 | WikiPathways network structure. Every interaction is represented as a node in the network with links to all participants. If the interaction is directed, the
information about source and target nodes is added as an edge attribute. The nodes represented as small, red rounded rectangles are interactions, blue circles
represent gene products and green diamonds embody metabolites. Interactions that share certain participants, such as GeneProduct 1, are brought close together in
the resulting network even if they are from different pathways, such as Pathway 1 and 3.
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e Enrichment analysis: PathVisio (version 3.3.0) and GO-Elite

(version 1.2).

e Pathway-based network construction:
Github
(https://github.com/wikipathways/wprdf2cytoscape)

e Active module analysis: Cytoscape  (version
jActiveModules app (version 3.2.1)

Script available on

3.7.0),

3. RESULTS
Gene Expression

The total number of probes measured was 37,707 from which
29,024 could be linked to Ensembl identifiers. After merging
multiple probe identifiers for the same Ensembl identifier,
19,023 unique gene identifiers remained. Differential gene
expression analysis revealed 1,953 in the frontal cortex and 2,436
significantly changed genes in the temporal cortex samples of
RETT syndrome patients vs. controls. Only 221 in frontal and
341 of the significantly changed genes in temporal cortex had
a more than 1.5-fold increase or decrease in expression (|log2
fold change| > 0.58). In both brain regions, more genes were
down-regulated in Rett syndrome patients than up-regulated,
see Table 1, which matches with findings from the original
publication (Lin et al., 2016).

Gene Ontology Analysis

Gene Ontology overrepresentation analysis identified 39 and
50 biological processes as altered in frontal and temporal
cortex, respectively (Supplementary Tables 2, 3). Summarizing,
neuron specific and immune system-related processes were
found to be enriched in both brain regions for Rett syndrome
patients. In temporal cortex, additionally, regulation of
translational initiation (GO:0006446) and an extracellular
matrix/cytoskeleton-related process (GO:0007229) were found
to be enriched. Interestingly, the microglia relevant complement
factors C1QB and C1QC were found in the enriched GO classes
defense response (GO:0006952) and immune effector process
(GO:0002252).

TABLE 1 | Differentially expressed genes in frontal and temporal cortex.

Pathway Analysis

Pathway analysis was performed in PathVisio for both brain
regions separately. Overrepresentation analysis revealed
18 and 21 pathways altered in the datasets for frontal and
temporal cortex, respectively (Z-score > 1.96, minimum
five changed genes), see Figure2. Interestingly, -eight
pathways were altered in both frontal and temporal cortex.
Similar to the results of the GO analysis, several immune
system-related and extracellular matrix/cytoskeleton-related
pathways were found to be enriched. Additionally, calcium
channel related processes including muscle contraction
pathways were found in both brain regions. Although
muscle contraction pathways are not expected in brain
tissue samples, the overlapping differentially expressed genes
were mostly ion channels and signaling cascade proteins
also highly relevant for neurons. Supplementary Figure 1
shows the heatmap with a more lenient filter (Z-score >
1.96, minimum three changed genes). Figure 3 is an example
pathway visualization for a pathway that has a high Z-score in
both tissue types, Microglia Pathogen Phagocytosis Pathway
(Hanspers and Slenter, 2017).

Pathway-Based Network Construction

From the 903 pathway models in the WikiPathways and
Reactome collection, 860 pathways contained 27,410 unique
interactions. On average, a pathway contained 35 interactions
(min = 1, max = 510, median = 22). Interestingly, 3,264
interactions occur multiple times but only 2,103 interactions are
present in more than one pathway. As an example, one of the
highest occurring interactions is the complex binding of the three
subunits of the I« B kinase complex which plays an important role
in the propagation of cellular response to inflammation (Hécker
and Karin, 2006) and is present in 25 different pathways.

The resulting network consists of 48,639 nodes and 106,137
edges. The network consists of one major component (46,756
nodes) and 427 smaller components with each less than
twenty nodes. The network contains 8,643 gene products, 2,704
metabolites and 9,882 complex / group nodes. Most common
interaction types are directed interaction (13,572), complex /
group participation (5,298), catalysis (4,787), inhibition (1,185),
and conversions (896).

Temporal cortex down-regulated

Temporal cortex not changed Temporal cortex up-regulated

Frontal cortex 88 44 1
down-regulated \Li \L - \LT
Frontal cortex 171 18,576 55
not changed —\l/ —T
Frontal cortex 3 62 23
up-regulated Ti/ T TT

133 and 88 genes were significantly down- and up-regulated in frontal cortex, respectively. Two hundred sixty-two and 79 genes were significantly down- and up-regulated in temporal
cortex, respectively. Eighty-eight genes are down-regulated, and 23 genes are up-regulated in both brain regions. Only four genes show different expression patterns. The following

filtering criteria were used: p-value < 0.05 and absolute log2 fold change > 0.58.
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FIGURE 2 | Pathway analysis results for frontal and temporal cortex data. Pathways are clustered in this heatmap based on their Z-scores. Pathways with a high
Z-score (>1.96) contain significantly more changed genes than expected and are considered pathways of interest. An asterisk next to the Z-score value indicates
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Active Module Analysis

Active modules were calculated using the jActiveModules app.
The top five modules with the highest active paths scores were
identified for both comparisons, frontal and temporal cortex. The
modules for frontal cortex contained between 300-350 nodes
and 560-1,020 edges. The top modules for temporal cortex
tended to be smaller ranging from 230-290 nodes and 450-1,000
edges. Figures 4, 5 show the highest-ranked module for frontal
and temporal cortex, respectively. Gene expression changes are
visualized as node color and significance is indicated by the
node border color. All modules only contained gene products; no
metabolites were found. The complete submodule analysis results
for both datasets can be found in Supplementary Data 1 (zip file
containing two Cytoscape session files).

The highest ranked active module for frontal cortex contains
303 nodes (79 interactions and 224 gene products) and 568
edges, see Figure 4. Two hundred and ten of the gene products
are measured in the dataset and 112 are changed significantly
(p-value < 0.05). Twelve gene products have an absolute log2
fold change > 0.58. The subnetwork contains eight significantly
down-regulated genes (blue rounded rectangles) including two
F-Box genes, FBOX32 and FBXOY, involved in phosphorylation-
dependent ubiquitination. The subnetwork contains five
significantly up-regulated genes (red rounded rectangles) with

diverse roles. The genes identified as hubs in the active module
network of frontal cortex are two gene products which are not
measured in the dataset, RPS27A and UBAS52. Both are involved
in protein degradation via 26S proteasome, ubiquitination,
translation, and DNA excision repair. In the central part of
the network, the ribosomal proteins including RPL14, RPL29,
and RPL3 form a cluster. This cluster is connected via PPP2CA
and PPP2RIA, two phosphatases involved in cell cycle, DNA
replication and transcription, to a cluster of centrosomal proteins
including CEP78, CEP57, and CEP131. The module combines
interactions from 47 unique pathways (Supplementary Table 4)
including class I MHC mediated antigen processing and
presentation (WP3577), non-sense-mediated decay (WP2710),
cell-cycle related pathways (WP1859, WP1775, WP1858,
WP2772), and eukaryotic translation elongation and initiation
(WP1811, WP1812).

The highest ranked active module for temporal cortex
contains 238 nodes (84 interactions and 154 gene products)
and 457 edges, see Figure5. The module partially overlaps
with the module found for frontal cortex. One hundred
and fourty three of the gene products are measured in
the dataset and 137 are changed significantly (p-value <
0.05). Twenty-nine gene products have an absolute log2
fold change > 0.58. The module contains 24 significantly
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gene expression change in the frontal cortex is shown. In the right half of the gene boxes, the gene expression in the temporal cortex is shown. The blue colors

represent down-regulation of the gene in Rett syndrome patients (negative log2 fold change), while the red shades visualize the up-regulated genes. The darker the
color, the stronger the effect. Green borders indicate significance of the change (p-value < 0.05). Gray colored nodes are not annotated or measured in the dataset.

NCKAP1L
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Microglia

down-regulated genes (blue rounded rectangles) including
several ubiquitin conjugating enzymes (UBE2EI, UBEZ2E3)
and translation initiation factors (EIF4A2, EIF4H, EIF4G2).
Only five significantly up-regulated genes are found in the
subnetwork (red rounded rectangles) but the distance between
them is large. This subnetwork contains similar hub nodes as
in the frontal cortex subnetwork including RPS27A, UBA52,
and PPP2RIA. Additionally, NCBP2 and NCBPI, proteins
involved in RNA processing, play an important role in the
subnetwork. The module combines interactions from 51 unique
pathways (Supplementary Table 5) including transcription /
translation (WP1889, WP1906, WP1812), cell cycle (WP1859,
WP1775, WP4109), and immune response (WP3577, WP2658)
related processes.

4. DISCUSSION

MECP2 is a multifunctional protein which is involved in
several transcriptional inhibitory and activational processes.
MECP2 was generally regarded as a repressor, however its
role as genetic activator has also been confirmed (Chahrour
et al, 2008). In previous studies, a loss of function in

MECP2 due to a mutation has been found to influence a
variety of pathways and biological processes, including pathways
related to not only neuron development and function, but
also to the immune system, transcription, and translation
related processes (which were identified mainly by transcriptome
analysis, Colantuoni et al., 2001; Bedogni et al., 2014; Ehrhart
et al,, 2018; Shovlin and Tropea, 2018). The affected pathways
identified with our study closely match the results previously
found by Ehrhart et al. (2018), in which human brain tissue
data of Rett syndrome patients (published by Deng et al,
2007) was analyzed. The expression of the MECP2 protein
itself is not significantly affected in this dataset (minor,
insignificant down regulation, log2 fold change of -0.1, in both
brain regions).

The original study by Lin et al. (2016) from which the dataset
analyzed in this paper was acquired, focused on the significant
down-regulation of certain complement system factors in Rett
syndrome (C1QA, C1QB, C1QC). Complement system factors
are produced generally in liver, however their expression was
also found to be changed in stimulated microglia. Furthermore,
there is emerging evidence that C1Q factors are involved in
several non-immunogenic activities, such as synaptic pruning in
microglia (Kouser et al., 2015).

Frontiers in Genetics | www.frontiersin.org

February 2019 | Volume 10 | Article 59


https://www.wikipathways.org/instance/WP1889
https://www.wikipathways.org/instance/WP1906
https://www.wikipathways.org/instance/WP1812
https://www.wikipathways.org/instance/WP1859
https://www.wikipathways.org/instance/WP1775
https://www.wikipathways.org/instance/WP4109
https://www.wikipathways.org/instance/WP3577
https://www.wikipathways.org/instance/WP2658
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Miller et al.

Active Subnetworks in Rett Syndrome

of the pathways providing more than six interactions.

FIGURE 4 | Top-ranked active module for frontal cortex data. The highest-ranked subnetwork contains 303 nodes and 568 edges. It contains 13 significantly
changed genes (rounded rectangles) when applying the same cutoff as for enrichment analysis (absolute log2 fold change > 0.58). Other measured gene products
are visualized as circular nodes. Blue fill color indicates down-regulation while red indicates up-regulation. The darker the color, the stronger the effect. Gray hexagons
are gene products not measured in the data set. The very small, gray nodes represent interaction nodes. These were combined from 47 different pathways, with none

'Legend

log2FC

= p-value < 0.05

4

As expected, our pathway and GO analysis revealed a
substantial number of immune system related pathways to
be affected in Rett syndrome frontal and temporal cortex
tissue samples. Inflammatory processes have been identified
previously in Rett syndrome patients, mouse models and in vitro
systems, and are suspected to contribute to the development
of Rett syndrome (De Felice et al, 2016; Ehrhart et al,
2018). Figure2 shows many of affected pathways in both
frontal and temporal cortex, with similar results found by GO
analysis. Interestingly, no complement system or transcription
/ translation related pathways show up (except Microglia
Pathogen Phagocytosis Pathway, which includes C1Q factors).
Only seven of the 31 pathways found through pathway analysis
contribute interactions to the active modules identified for
frontal and temporal cortex. The modules mainly contained
interactions from transcription / translation and cell cycle

related pathways, which were not found with the classical
enrichment analysis. These processes were also previously
found in transcriptome pathway analysis of Rett syndrome
(Bedogni et al., 2014; Ehrhart et al., 2018). Not surprisingly,
the subnetworks do not contain metabolic reactions. Only
metabolites connecting at least two genes affected by MECP2
would be present in an active subnetwork. The enrichment
analysis did not show any metabolic processes that are affected,
which is in line with the manifestation of Rett syndrome.
Overall, the regulatory effects of MECP2, especially on DNA
maintenance, cell cycle, transcription, and translation, is more
prominently shown in the active modules, while immune
system related responses are more present in pathway analysis.
Importantly, the active module approach does not replace
analyses like classical enrichment analysis but augments it.
When running the active module analysis on the same
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pathways providing more than six interactions.

FIGURE 5 | Top-ranked active module for temporal cortex data. The subnetwork contains 238 nodes and 457 edges. It contains 29 significantly changed genes
(rounded rectangles) when applying the same cutoff as for enrichment analysis (absolute log2 fold change > 0.58). Other measured gene products are visualized as
circular nodes. Blue fill color indicates down-regulation while red indicates up-regulation. The darker the color, the stronger the effect. Gray hexagons are gene
products not measured in the data set. The very small, gray nodes represent interaction nodes. These were combined from 51 different pathways, with none of the
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network using the dataset with permuted gene labels, the
resulting subnetworks are very different from the identified
Rett subnetworks. This basic computational validation further
strengthens our confidence that we indeed have subnetworks
specific and strongly affected in Rett syndrome patients.
The results of the permutation analysis are summarized
in Supplementary Data 2.

This was the first time the entirety of the WikiPathways
knowledgebase, including Reactome pathways, has been used
to create a comprehensive human pathway-based network for
network analysis of transcriptomics data. While the pathway
content of both databases overlaps, both resources also contain
unique information. By building a network out of pathways from
a combination of pathway databases, a more complete biological
(and therefore genome) coverage is enabled. Identifying active
modules from a large network has some major benefits, such as
the easy applicability to any gene expression dataset, ignoring
predefined boundaries used in traditional pathway diagrams, and
incorporating the relations and overlap between the pathways.
Additionally, this method does not require researchers to

predefine a certain cutoff, since genes are ranked based on
their significance.

Some considerations arose when constructing and analyzing
the network. For instance, some common metabolites like ATP,
ADP, or NADH, while biologically necessary, were excluded
from the network, since their involvement in a multitude
of interactions created links between almost every node.
Additionally, this approach is strongly depending on the a priori
input of pathway data in terms of coverage and quality. Currently,
human pathway databases contain a little over 50% of the protein
coding genes (Slenter et al., 2017), which is also a probable
number for the coverage of metabolites and interactions. Pathway
models generally contain information about directionality
of the interactions. However, available active subnetwork
analysis methods only take topology but not directionality
into account. This could strongly affect the identification of
active submodules and would be an important extension of
existing algorithms.

The active module discovery approach should be considered
as an additional step after classical enrichment analysis. In this
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study, we used human brain transcriptomics data from a study
with Rett syndrome patients, however our approach is not
unique to this application or rare diseases. These diseases are
by definition less common and often less extensively studied,
which may result in lower availability of specific pathway
models. Nonetheless, the active module approach succeeds
and shows great power for additional discoveries. While rare
genetic diseases have the advantage that the causative gene is
(usually) known, the resulting downstream consequences can
be diverse and affect a variety of pathways. By using pathway
models in an integrative network approach, further use of the
invaluable resources present in pathway databases is enabled
and subnetworks of interest can be retrieved based on the
entire body of pathways available. Using Cytoscape allows using
all available apps such as the jActiveModules app to analyse
our network. Importantly, the complete interaction network
of WikiPathways with 48,639 nodes and 106,137 edges can be
opened and analyzed in Cytoscape, despite of the network to
be too large to be visualized. The use of graph databases like
Neo4j, which already have connections available to Cytoscape
(cyNeo4j app, Summer et al.,, 2015), could be a useful addition to
the approach. Importantly, as part of the systems biology cycle,
advanced computational analyses like the one reported in this
manuscript lead to new hypotheses and ideas for experiments,
which then need to be tested and validated in a laboratory.

Conclusion

Pathway models have proven themselves as powerful tools for
biologists to describe and analyse biological processes. The
collaboration between the widely-adopted pathway databases
WikiPathways and Reactome and the availability of their data in
RDF format allowed us to integrate a large number of pathways
from both databases into one large network. This enables us
to perform advanced network analyses like active submodule
identification. By comparing classical enrichment methods with
the active submodule identification on a Rett syndrome dataset
in two different brain regions, we found that both approaches
provided valuable insights into the disease. Importantly, they
were strongly complementary and did not show the same results.
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