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The genetic architecture of skull shape has been extensively studied in mice and the
results suggest a highly polygenic and additive basis. In contrast few studies have
explored the genetic basis of the skull variability. Canalization and developmental stability
are the two components of phenotypic robustness. They have been proposed to be
emergent properties of the genetic networks underlying the development of the trait
itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice
to investigate the genetic architecture of canalization of the skull shape by implementing
a genome-wide marginal epistatic test on 3D geometric morphometric data. The same
data set had been used previously to explore the genetic architecture of the skull mean
shape and its developmental stability. Here, we address two questions: (1) Are changes
in mean shape and changes in shape variance associated with the same genomic
regions? and (2) Do canalization and developmental stability rely on the same loci and
genetic architecture and do they involve the same patterns of shape variation? We
found that unlike skull mean shape, among-individual shape variance and fluctuating
asymmetry (FA) show a total lack of additive effects. They are both associated with
complex networks of epistatic interactions involving many genes (protein-coding and
regulatory elements). Remarkably, none of the genomic loci affecting mean shape
contribute these networks despite their enrichment for genes involved in craniofacial
variation and diseases. We also found that the patterns of shape FA and individual
variation are largely similar and rely on similar multilocus epistatic genetic networks,
suggesting that the processes channeling variation within and among individuals are
largely common. However, the loci involved in these two networks are completely
different. This in turn underlines the difference in the origin of the variation at these two
levels, and points at buffering processes that may be specific to each level.

Keywords: phenotypic robustness, canalization, developmental stability, fluctuating asymmetry, shape, GWAS,
epistasis, geometric morphometrics

INTRODUCTION

In recent years, studies exploring the genetic basis of skull shape have proliferated due to advances
in high-throughput phenotyping techniques (Bromiley et al., 2014; Young and Maga, 2015)
and genomic data collection (Flint and Eskin, 2012). The study of shape is often focused on
the differences among group means, these groups being for instance species or experimental
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treatments. This approach has allowed the identification of a
large set of genes associated with variation in mean shape
in the mammalian skull (Schoenebeck and Ostrander, 2013;
Weinberg et al., 2018). In contrast, only few studies have explored
the association between genetic variation and shape variance
(Hallgrimsson et al., 2018), likely because mapping variance is
computationally more demanding [but see for example Corty and
Valdar (2018) for recent methodological advance] and requires
larger sample sizes than the mean. As a result, little is known
about the genetic basis and architecture of shape variance.

Phenotypic robustness can be defined as the ability of
an organism to buffer the impact of internal (e.g., genetic
variation) and external factors (e.g., environmental effects)
on the phenotype. It has been the subject of a vast literature
(reviewed in Debat and David, 2001; De Coster et al., 2013;
Hallgrimsson et al., 2018). Two processes have been suggested
to contribute to phenotypic robustness: developmental stability
and canalization (Zakharov, 1992; Debat et al., 2000; Gonzalez
et al, 2016). Developmental stability, defined as the ability
to buffer random developmental noise (Debat and David,
2001; Gonzalez et al., 2016), is usually assessed by fluctuating
asymmetry (FA; Palmer and Strobeck, 1986). Canalization
is defined as the ability to buffer the phenotypic effects of
mutations (i.e., genetic canalization) and the environment
(i.e., environmental canalization) [see Meiklejohn and
Hartl (2002) for a discussion]. Canalization has been
traditionally quantified by the variation among individuals
(e.g., Hallgrimsson et al., 2018).

Whether such a partition of phenotypic robustness into these
two processes is biologically justified or rather reflects a mere
methodological or semantic dichotomy is an open question.
The link between developmental stability and canalization has
been investigated in a diversity of models using geometric
morphometrics and comparing the patterns of shape variation
within and among individuals. In such studies, a similarity of
patterns of shape variation is typically considered indicative of
a similarity of developmental processes. The results obtained
have been contrasted, ranging from complete congruence to
strong divergence, and no consensus on the relative status
of developmental stability and canalization has been achieved
[e.g., Klingenberg and Mclntyre, 1998; Debat et al., 2000;
Hallgrimsson et al, 2002; Willmore et al, 2006; Takahashi
et al., 2010; Breno et al, 2011; see Klingenberg (2015) for
areview].

A large list of candidate genes has been associated with mouse
craniofacial features by either genome-wide association studies
or candidate gene experiments. The highly polygenic architecture
of skull shape is widely acknowledged but there is no consensus
regarding whether additive effects (Pallares et al., 2016; Weinberg
et al., 2018) or epistatic effects (Hallgrimsson et al., 2014) are
the predominant factors influencing skull shape. Most candidate
genes associated additively with shape have developmental roles
(Maga et al,, 2015; Pallares et al., 2015b). In contrast, studies of
developmental stability (Van Dongen, 1998; Leamy et al., 2015;
Varon-Gonzalez and Navarro, 2018) and canalization (Percival
et al., 2017) more clearly support an epistatic basis for shape
variability. Still, the knowledge of the genetic architecture of

canalization and developmental stability is scarce compared to
the amount of data on mean shape. Identifying the differences
and similarities between the genetics of developmental stability
and canalization may help to clarify their relationship.

Here we jointly investigate the genetic architecture of
mean shape, canalization, and developmental stability using a
single dataset. This approach allows the rigorous comparison
among these three aspects of shape. We use outbred mice,
thousands of SNPs, and 3D morphometric analyses of the
mouse skull shape to perform a genome-wide association
mapping. The loci associated with differences in mean skull
shape were previously published in Pallares et al. (2015b)
and the loci associated with developmental stability in Varon-
Gonzélez and Navarro (2018). We first estimate the genetic
architecture of canalization and the associated loci. Using these
data, we then address two main questions: (1) is the genetic
architecture of the skull mean shape different from that of
canalization and developmental stability? (2) Are the phenotypic
patterns and the loci involved in the regulation of canalization
and developmental stability different, indicative of different
biological processes?

MATERIALS AND METHODS

Mouse Samples

We analyzed 692 Carworth Farms White outbred mice,
whose main feature is a lack of population structure (Parker
et al, 2014). This dataset was previously used to map
the genetic architecture of skull shape variation (Pallares
et al, 2015b), and both genomic and morphometric data
are publicly available (Pallares et al., 2015a). The genomic
data correspond to the allele dosage for a set of 79,787
genomic markers once all markers with a maximum genotype
probability lower than 0.5 or a minor allele frequency
lower than 2% were discarded. The phenotypic dataset is
composed of 44 3D landmarks (17 pairs and 10 unique
landmarks located on the mid sagittal plan) recorded on
each skull. For a detailed description of the data collection
process, we encourage readers to visit the original publication
(Pallares et al., 2015b).

Quantification of Skull Shape Variation
and Phenotypic Robustness

Mean shape and inter-individual shape variation (canalization)
were assessed using the symmetric component of shape variation:
the 132 coordinates of the 44 3D landmarks were submitted to a
full Procrustes superimposition with object symmetry (Dryden
and Mardia, 1998; Mardia et al., 2000; Klingenberg et al., 2002)
leading to symmetric variation spreading on 3 x 17 + 2 x 10 -
4 = 67 dimensions. A principal component (PC) analysis was
run on the Procrustes coordinates to remove all null dimensions.
This set of PCs embedded the full symmetric variation observed
among individuals. Analyzing these variables was thus equivalent
but computationally more efficient than working with the
complete set of 132 coordinates.
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An individual measure of canalization was computed as
the distance from each individual shape to the expected mean
shape given the allele dosage at some focal SNP. To obtain this
individual measure of canalization, we first estimated the effect of
the focal SNP on mean shape using a multivariate linear model
between the shapes and the genotypes y; ~ Ny (m;, S) where, for
a locus with an additive effect, m; = p + a;o with a; is the allele
dosage, a the g-dimensional additive effect, and S the residual
variance-covariance matrix (Maga et al, 2015; Navarro and
Maga, 2016; see Figure 1). This first step was required because we
are interested in the variation around the population mean shape
and many alleles associate with changes in mean (Ronnegard and
Valdar, 2011). To understand why mean shape changes need to be
taken into account for estimating the individual deviation, let us
consider a simple hypothetical situation: imagine a given genetic
marker for which one-third of the individuals are homozygous
for one allele and two-third are homozygous for the alternative
allele. Because of such unbalance, the population mean shape
would be closer to the shape average of the majority genotype
than to the shape average of the minority genotype. A simple
estimation of shape variance based on distances from each
individual to the population mean would thus be misleading: the
individual shape distances would be systematically larger for the
minority genotype than for the majority genotype, leading to an
artifactual linear association between the marker and the shape
variance. The effect of gene dosage upon mean shape should thus
be accounted for in any estimation of shape variance.

Once the effect of the focal marker on the mean shape
was inferred, we estimated the distance from each individual
shape to the predicted genetic effect for mean shape as: d; =

\/ (o, — mi)‘D*I(yi — m;). The shape variance was thus assessed

as the dispersion of the individual shapes around the predicted
mean shape for their genotype. Taking D equals to identity matrix
I; leads to the Euclidean distance. The use of distances assumes
that the potential QTLs affect the amount of population variation
but not the direction of that variation. To alleviate the potential
implications of ignoring the direction of variation, we estimated
Mahalanobis distances taking D equals to the residual variance
covariance matrix § with elements sj = (n — 1)™' D7 (i —
mij)' (i — my) (Klingenberg and Monteiro, 2005). This distance

allows accounting for the anisotropic variation typical of
mammalian skull (Klingenberg, 2013), weighting more heavily
the deviations that are in the directions of least variation at the
population level.

Genome-Wide Association Scans

Although the relatedness among individuals is standardized in
the mapping population used here (Pallares et al., 2015b), we
applied a linear-mixed model in order to control for population
structure (Speed and Balding, 2015). We estimated a genomic
relatedness matrix with a leave-one-chromosome-out approach,
a method designed to reduce the loss of power associated
with the inclusion of SNPs in both the relatedness matrix
and the linear model (Listgarden et al, 2012; Cheng et al,
2013). This matrix of genomic relatedness was then used to
estimate the variance components and a phenotypic covariance
matrix, which in turn helped to correct both genotypic (allele
dosages) and phenotypic data for each chromosome. Corrected
genotypic and residual distance data were then fitted in a linear
model, which now had uncorrelated errors among individuals
(Nicod et al., 2016).

Mean Shape

Genome-wide association mapping were run on the 67 PC from
the symmetric shape to estimate which loci contribute additively
to the mean shape variation. Such an association should be
assessed preferentially using a multivariate model because the
effect of loci generally does not align with the PCs (Maga
et al., 2015) and loci with a large multivariate effect may only
weakly participate to all PCs because of the projection. Such an
approach can be quite challenging because of the large number of
covariances to be estimated. Despite the potential large drop in
power, genome scans with univariate mixed model on individual
PCs found numerous genomic markers additively associated to
the skull mean shape (Pallares et al., 2015b). In the following, we
used these published results as an estimate of the genetic basis for
mean shape variation. We should nevertheless keep in mind that
additional loci may also contribute in a sizeable part to the mean
shape variation and that epistasis was not specifically searched for
in that study.
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FIGURE 1 | Test for genotype-specific variance. The dashed line corresponds to an additive model, the gray lines to the model integrating an epistatic interaction
with the genetic background. Here, beside an epistatic interaction of the locus A with the background B on the mean phenotype, the genotype AA shows an
increase in residual variance in the B2 background (left panel). This effect is captured with the epistatic modeling of the residual distance (right panel).
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Canalization

The association tests estimated whether there are loci [ associated
with the average distance from each individual to the population
mean shape given the locus genotypes m; = n! Z?:l a;jo; (ie.,
whether individuals that are on average further away from
the population mean m; carry specific alleles and vice versa):
d; ~ N(d + ajy;, 0?), where y; is the additive effect of the
locus I on the distance (Figure 1). This model looks for loci
affecting environmental variance and therefore contributing to
environmental canalization (Wagner et al., 1997).

Developmental Stability

The individual estimations of canalization used here are
equivalent to the individual measures of FA calculated in a
previous study (Varén-Gonzilez and Navarro, 2018), where the
genetic architecture of developmental stability was estimated
from the asymmetric component of shape variation.

We defined two significance thresholds (5% and 10%)
from the distribution of maximum negative logjo p derived
from 1000 permutations of the corrected residual distances
(Churchill and Doerge, 1994). Analyses were run in R version 3.4
(R Core Team, 2013).

Marginal Epistasis Scan for Canalization

The marginal epistasis test' (Crawford et al., 2017) was applied
to the distance data to test for epistatic effects among genomic
regions in association with shape variance. The advantage
of the marginal epistasis test is that it first fits a linear
model for each genomic marker with a variance component
representing epistatic variance of that marker with all the rest
of the markers and then only the best-fitting markers are
tested in pairwise comparisons. This first selection circumvents
the intractable number of pairwise comparisons for all the
markers. In our case, markers with a p < 107% in the
Davies method were selected for further pairwise evaluation.
The marginal epistasis tests were computed on Mahalanobis
distances from the overall mean shape (ie., m; = w in the
equations above) because they look simultaneously at a large
number of genotypes. In contrast, and similarly to the additive
genome scan, pairwise interactions were corrected for the
effect on the multivariate genotype means and then ran on
residual Mahalanobis distances. The interactions were considered
significant when p < 0.001. Because our data do not show
any significant effect of relatedness among individuals and the
epistasis test is relatively robust against it (Crawford et al,
2017), no correction for population structure was applied.
Only first-order epistasis was considered for two practical
reasons. First, the inclusion of higher-order interactions would
exponentially increase the number of potential interactions and
their complexity. Second, these estimations would be increasingly
data-hungry. Our sample comprises many individuals with one
specific combination of just two markers but comparatively
few individuals sharing specific combinations of many markers.
This sample reduction for certain estimations would increase
the relative importance of inaccuracies in our measures of

Uhttps://github.com/lorinanthony/MAPIT/

developmental stability or canalization, affecting the reliability of
the results.

Investigating Gene Ontology and

Representing Genetic Networks

Our sample presents less linkage disequilibrium than other
populations of mice (Nicod et al, 2016). Therefore, for a
given marker we defined its associated candidate genes as
all the genes closer to it than 200 kb. This window size
would correspond to a correlation among markers (i.e., linkage
disequilibrium) of about 0.6. For each marker found in
a significant interaction we collected all of its overlapping
candidate genes annotated in the Mus musculus reference
genome (version m38.92) in Mouse Genome Informatics (Blake
et al., 2017) and Ensemble (Yates et al., 2016). When no protein-
coding genes were found, we reported other genomic elements,
i.e., RNA genes, processed transcripts, and pseudogenes. Markers
overlapping the same list of genes were merged in a single
genomic region.

We obtained two reference gene lists in the MGI HMDC
database searching for “Craniofacial” and “Growth/Size/Body”
(http://www.informatics.jax.org/humanDisease.shtml; accessed 4
April 2018). Once redundancies between lists and human-
specific genes were removed, we were left with 1044 and 2829
genes for “Craniofacial” and “Growth/Size/Body” categories,
respectively. Then, we assessed the over-representation of
candidate genes within the two lists with Fisher’s exact tests
(Fisher, 1935).

Based on the results from the marginal epistasis test, we
built a network to reflect the significant pairwise interactions
among genomic markers associated with shape variance. To
illustrate the role of each candidate gene we classified them
as “Craniofacial” or “Growth/Size/Body” depending on the
reference gene list in which they appear. The rest of protein-
coding genes were labeled as “Other” and regulatory candidate
genes as “Regulatory.” Hub scores, power, and betweenness
centralities of the genomic regions in the epistatic network
were computed to check for candidate genes with important
roles within the networks and therefore to look for major
epistatic controllers. Kleinberg’s hub centrality scores are the
principal eigenvector of A x t(A), where A is the adjacency
matrix (Kleinberg, 1999). It is therefore a measure of the
node’s connectivity. The betweenness centrality of a node,
estimated as the number of times the shortest path between
all possible pairs passes through that node, is correlated to the
hub score, as the more connected one node is (hub score)
the more paths will pass through it (betweenness). Finally,
the power centrality for each candidate gene is estimated with
the Bonacich’s (1987) approach: the algorithm computes the
importance of a given node as a function of the number of its
first and second-degree connections. A hub will be considered
more important if it has many adjacent connections that are
relatively isolated than if it is just another node within a
complex and highly connected network. Positive values represent
a cooperative relation with its connections, so the hub would
be more powerful as its connections would also become more
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powerful; negative values are typical of antagonistic relationships.
These measures were computed using the igraph package’
(Csardi and Nepusz, 2006).

Estimating and Comparing the Patterns
of Shape Variation

Based on the same mouse population and phenotypic and
genomic data used here, previous studies have mapped the loci
contributing to skull mean shape (Pallares et al., 2015b) and those
contributing to skull shape FA (Varén-Gonzédlez and Navarro,
2018). Given that the three studies use not only the same mouse
sample, but also the same genomic markers and overall approach
to deal with population structure, the comparison between the
results is unbiased and straightforward.

Estimating G and E Matrices
The additive genetic covariance matrix (G matrix) corresponds
roughly to the crossproduct of the frequency-weighted additive
effects of all causal loci (Kelly, 2009). G was estimated from
the genomic relatedness matrix using a linear mixed model on
the symmetric component of shape variation and implemented
in the sommer R package (Covarrubias-Pazaran, 2016). The
patterns of shape variation described by G result from the
interplay of additive genetic variance and the buffering effects
of genetic canalization. The linear mixed model also provided
the residual variance-covariance matrix E which results from
the interplay between the non-additive genetic variance (part of
the genetic variance not accounted for in the estimation of G),
environmental variance, and the buffering effects of genetic and
environmental canalization.

Because of the large dimensionality of the shape data, we used
a block strategy to process first PC1 to PC10 (accounting for
62.3% of the total variance), which were estimated simultaneously
together with their correlations, and then a second block from
PC11 to PC67 (in average 0.66% of the total variance), which
was modeled with diagonal variance components (i.e., with
covariances set to zero) and allows to fit independently these 51
additional PCs. This strategy represents a compromise between
an ideal but intractable solution estimating every dimension
simultaneously and an efficient but formally incorrect approach
assuming a complete match between genetic and phenotypic
PCs, an assumption that is, in most cases, unrealistic. Another
option would have been factor analysis (Meyer, 2009; Runcie and
Mukherjee, 2013). This approach does not enforce any genetic
correlations between phenotypic directions to zero, but rather
forces the genetic variation to spread on a limited number of
traits. While this could be relevant for some phenotypes, it may
not be appropriate to inherently multivariate shapes, which show
heritable variation in almost all directions (e.g., Klingenberg et al.,
2010; Navarro and Maga, 2016).

Estimating P and FA Matrices
We investigated the patterns of shape variation at two more
levels: the global phenotypic variation present in the sample

Zhttp://igraph.org

as the phenotypic covariance matrix P and the stochastic
component of shape variation with the covariance matrix of
shape FA. P and FA covariance matrices were estimated from
the superimposed Procrustes coordinates of the symmetric and
asymmetric components of skull shape, respectively (Klingenberg
et al, 2002). P results from the interplay between genetic
and environmental influences on the phenotype and the
buffering effect of canalization (i.e., genetic and environmental
canalization). Similarly, the covariance matrix of shape FA
results from the interplay between stochastic developmental
noise affecting the two sides independently, and the buffering
effect of developmental stability.

The heritability of shape was assessed with the general
multivariate heritability formula: k> = GP~! (Lande, 1979). The
main directions (i.e., eigenvectors) of the GP~! matrix display
shape features with the highest heritability. Therefore, these
eigenvectors represent the shape changes that can potentially
respond more rapidly to selection when the additive variance
is high (Klingenberg and Leamy, 2001). These axes have been
sometimes referred to as lines of evolutionary least resistance
in the literature (Schluter, 1996), although this may not be
relevant in absence of additive effects (Uller et al., 2018) as
gene interactions should be taken into account to predict
selective responses.

Matrix Comparisons

As G and P mostly differ by the environmental component
of variation, included in P but not G, comparing them can
tell us whether the environmental effects on shape variation
fundamentally differ from those of genetic differences. Besides,
comparing G and P is of interest in the context of evolutionary
studies of selection: it has been suggested that P could be used
as a surrogate for G, in cases where the estimation of G is not
tractable (in non-model species for example). The validity of such
an approach depends on the similarity between G and P, often
assumed but seldom assessed (Bégin and Roff, 2004).

Comparing P and FA matrices has been used as an
indirect test of the relationship between canalization and
developmental stability: similar patterns of shape variation would
be indicative of a similarity in the processes generating them
(e.g., Klingenberg and McIntyre, 1998; Debat et al., 2000; Breuker
et al., 2006). Canalization appears nonetheless more adequately
measured after controlling for genetic and environmental
variation (Hallgrimsson et al., 2018). Environmental variation
is not controlled in our design besides randomization across
individuals, and non-additive variance components are not
estimated but in any case E appears more adequate than P to
measure and compare canalization to developmental stability.
E precisely describes the patterns of the shape variation that is
used in the additive genome scan but it differs from the residual
variation used in the epistasis tests where this non-additive
variation was modeled.

There are many methods and metrics, more or less redundant,
that allow comparing matrices (e.g., Teplitsky et al., 2014; Roff
et al, 2012). A global distinction can be made between (1)
methods deriving a single measure of global similarity (e.g.,
distances, correlations), which may or may not be sensitive to
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scaling and orientation, (2) methods based on the individual
spectral decomposition of each matrix (e.g., comparison of
the first eigenvectors), which can be very sensitive to the
orientation, and (3) methods based on a common spectral
decomposition (e.g., Krzanowski’s subspace analysis), which
capture the overall similarity together with a decomposition of
the matrix divergences. Subspace analyses [Krzanowski (1979);
see Aguirre et al. (2014) for a recent application to G matrices]
are much more informative than single metrics and are not biased
by differences in orientation, contrary to comparisons based on
individual spectral decomposition, which might be misleading
because of trivial rank-order permutations or rotations of axes.
Covariation patterns can indeed be globally similar despite the
occasional lack of a strict match between PCs.

To assess similarities among patterns of covariation, we first
computed the Krzanowski subspace of the set of the four matrices
M;:{P, G, E, FA} matrices. In addition to the overall simplicity
of the estimations, this method uses the data contained in the
covariance matrices and does not require further assumptions.
The common subspace among the four covariance matrices is
found with a simple equation: H = Z€:1 AjAl, where A; is a
matrix with a subset of the eigenvectors of M; as columns. For
the eigenvalues A of H less than p (here p = 4, the number of
matrices to compare), at least one population cannot be inferred
from a linear combination of the eigenvectors of M; defining
the subspace. We can estimate how similar the corresponding
eigenvector by of H is to each population’s subspace with the
angle §; = cos_l{(biA,-Afbk)o's}. This estimation was obtained
using the evolqg R package (Melo et al., 2016).

For comparison with earlier studies (e.g., Debat et al,
2000), we also computed overall similarity measures based
on distances, correlations, and differences in integration.
We then checked for a strict similarity of the main
axis of variation computing the angles among the first
eigenvectors. The overall distance among the four covariance
matrices was measured as their pairwise Euclidean distance
dE(Si, Sj) = ||Si — Sj|| = \/trace{(Si — S]-)f(S,- — Sj)}, where S,’ is
the sample covariance, symmetric, and positive semi-definite
(Dryden et al, 2009). This distance is one of the possible
measures applied in morphometrics (Klingenberg, 2013).
We also computed matrix correlations based on element-
wise correlations (Klingenberg and Mclntyre, 1998). Both
Euclidean distances and matrix correlations were based on
the upper-triangular parts of the matrices only (including the
block diagonal) because the off-diagonal elements would have
appeared twice otherwise (Klingenberg and Mclntyre, 1998).
Significance of matrix correlation was tested by 10,000 random
permutations of the landmarks. Triplets of xyz-coordinates
were permuted together to preserve their association at
each landmark.

The structure of the four matrices was further compared
based on their degree of integration. Integration describes the
strength of covariation among shape variables: the stronger the
integration, the higher the variance that can be explained by a
single linear combination of the shape variables (i.e., the first
eigenvector). The strength of integration can thus be estimated
by the unequal distribution of variance across dimensions of

the shape space (i.e., decrease of eigenvalues; Wagner, 1984).
We assessed integration accordingly as the ratio of the first two
eigenvalues (referred to as the eccentricity, Jones et al., 2003).

Finally, we assessed the similarity of the patterns of maximal
variation by estimating the angles among the first eigenvectors.
Significance testing was achieved by comparing these angles
to a set of 100,000 random angles of the same dimensionality
(Klingenberg and MclIntyre, 1998).

Shape spaces for FA and symmetric shapes are in orthogonal
subspaces (Klingenberg et al., 2002) and unpaired landmarks
were therefore discarded before comparisons. Comparisons
between matrices derived from the symmetric shapes were also
based on half configuration: one half of the paired configuration
plus the unpair landmarks, as the paired landmarks would have
appeared twice otherwise.

RESULTS

Canalization Is Associated With an
Epistatic Network

No association was found between genetic markers and shape
variance when the additive genetic scan was used (Figure 2).
In contrast, the epistasis test identified a preliminary set of 118
genomic markers (p < 107°) to be explored further in pairwise
analyses. The genetic architecture of skull shape canalization thus
appears purely epistatic.

From the 15 markers that best associate with the general
epistatic variance (p < 10~7), three overlapped with genes known
to contribute to craniofacial variation, five with genes having
an effect on growth, and seven with other protein-coding genes
(Table 1). Although only two of the markers (rs216241249 and
rs29531435) seemed to overlap regarding their best candidate
gene, these 15 best-associated markers did not appear equally
spread across the genome (four markers in chromosome 17 and
two in chromosomes 2, 12, and 14).

In the second step of the epistasis test, where specific pairwise
interactions were associated with shape symmetric variance, 385
pairwise interactions involving 111 genomic markers (80 when
the markers with equal sets of candidate lists were merged)
showed significant associations. These significant genomic
markers overlapped with 893 candidate genes, 413 of which were
protein-coding genes. Fisher’s exact test showed a significant
over-representation of craniofacial genes (p = 2.1 x 107°) as
well as growth genes (p = 3.07 x 10~*) among these significant
interactions. For example, one marker detected in the three most
significant pairwise interactions was found overlapping with
Rapgef2, a gene involved in abnormal size and neural features
(Wei et al.,, 2007). From the significant 111 markers, 30 were
classified as “Craniofacial,” 33 as “Growth,” 43 as “Other;” and
5 as “Regulatory.” These proportions were similar even after
merging regions that overlapped: out of 80 markers 16 were
classified as “Craniofacial,” 23 as “Growth,” 36 as “Other,” and 5
as “Regulatory” (2 = 1.68, p = 0.64).

Among the genomic markers appearing in significant pairwise
interactions, 10 appeared in more than 16 interactions (Figure 3).
Two of these highly connected markers overlapped with genes
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TABLE 1 | Top-associated SNP in marginal epistasis genome scan (p < 109).

SNP Chr Pos (Mb) P Candidate genes Role
cfw-2-105373402 2 105.37 423 x 10710 Wit Growth/size/body
rs27267349 2 134.53 <10-10 Hao1/Tmx4 Other
rs220408352 4 153.84 <1010 A430005L14Rik/Dffo/ Cep104/Lrrc47/Smim1/Ccdc27 Other
rs108441213 8 19.98 1.58 x 1010 Gm31371 Other
cfw-9-31091829 9 31.09 2.48 x 10710 St14 Craniofacial
cfw-11-118979964 11 118.98 5.89 x 10710 Cbx2 Craniofacial
rs257536585 12 44.95 <1010 Stxbp6 Other
rs224184036 12 108.10 9.23 x 10710 Setd3 Growth/size/body
rs6258161 14 18.39 <10-10 Nr1d2/Rpl15/Nkiras1/Ube2e1/Ube2e2 Other
rs32308587 14 93.62 4.25 x 10710 Pcdh9 Other
rs32065990 15 26.22 8.22 x 10710 March11 Other
cfw-17-30673769 17 30.67 <10-10 Btbd9 Growth/size/body
cfw-17-32460913 17 32.46 8.02 x 10~ 10 Brd4 Craniofacial
rs29531435 17 32.94 437 x 10710 Cyp4afi4 Growth/size/body
rs216241249 17 32.96 4.20 x 10710 Cyp4f14 Growth/size/body
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involved in craniofacial features, Tnf (20 interactions) (Alayan
et al., 2007) and Ddr1 (17 interactions) (Dullin et al., 2007). The
Tnf gene is indeed near Hspla, which encodes for the chaperon
protein Hsp70: a protein that has been suggested to play a role
in canalization in Drosophila (Takahashi et al., 2010). Two other
of these markers were also overlapping growth genes as Rapgef2
and Cyp4f14 (Blake et al., 2017). The latter is the most connected
candidate gene when we merged the genomic markers with the
same candidate gene lists. Within this reduced list of genomic
markers we also found Tnf and Haol/Tmx4 (Visel et al., 2004;
Masuda et al., 2009), as well as other new candidate genes as Brd4
(Houzelstein et al., 2002), Kras (Hernandez-Porras et al., 2014),
or Plcb1 (Ballester et al., 2004).

The analysis of the network obtained from the pairwise
interactions showed different features among the epistatic

candidate genes (Figure 4). Rapgef2 and Hspla had the largest
hub scores, so they showed the largest connectivity within
the network. Because hub scores and betweenness centrality
are correlated, these two candidate genes also had very high
betweenness centrality, although Hspla showed the lowest hub
score and the highest betweenness centrality among the two.
Ddrl and Haol also showed very high centrality although
relatively low hub scores: these genes might not interact much
but they might interact with other genes that do interact a
lot and therefore both Ddrl and Haol may regulate important
hubs. The power centrality is different, and candidate genes
as Zfp808 and A430005L14Rik (on the positive side) or
Smco2 (Blake et al., 2017) and Notch3/Brd4 (on the negative
side) (Karst et al., 2010) showed high power centrality but
low hub scores. We should note also Setbpl (Piazza et al,
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betweenness.

2018) which presented high power centrality and average
hub score.

The Genomic Markers for Mean Shape,
Canalization, and Developmental
Stability Are Different

In a previous study, Pallares et al. (2015a) detected 17 loci
additively associated with the skull mean shape that explained
about 45% of the total phenotypic variance. For developmental
stability, Varon-Gonzalez and Navarro (2018) did not detect any
additive effect but rather a large number of loci epistatically
associated with FA. From these two studies, it appears that the
mean shape and its developmental stability do not share the
same genetic architecture nor the same loci (Varon-Gonzalez and
Navarro, 2018).

None of the significant epistatic markers associated with
canalization were common to mean shape or developmental
stability. Indeed, when instead of the genomic markers

we compared the genomic regions associated with each
significantly associated marker (see the section “Materials
and Methods,” Investigating Gene Ontology and Representing
Genetic Networks), we only obtained 11 common protein-
coding candidate genes between canalization and developmental
stability: Arhgef4 (Blake et al., 2017), Chd5 (Diez-Roux et al.,
2011), Kcnab2 (Perkowski and Murphy, 2011), Nphp4 (Won
et al., 2011), Plekhg3 (Diez-Roux et al.,, 2011), Sptb (Bernstein,
1980), Churcl (Diez-Roux et al., 2011), Fntb (Blake et al., 2017),
Rabl5 (Blake et al., 2017), Max (Hspa2) (Shen-Li et al., 2000), and
Gpx2 (Diez-Roux et al., 2011).

Despite this overlap, the structure of the epistatic networks
was very different: the common protein-coding genes did not
show similar hub scores and connectivity (Figure 4). For FA, the
candidate genes Mecom (Hoyt et al., 1997) and Pabpc6 (Diez-
Roux et al, 2011) have the highest hub scores and very high
betweenness centrality, equivalently to Rapgef2 and Hspla for
canalization. We should note that Mecom and Setbp1, which have
high power centrality in the canalization network, are thought
to interact in a positive feedback loop (Piazza et al., 2018).
The candidate genes that showed the highest and lowest power
centrality within the FA network, Egfr (Miettinen et al., 1999),
Gab2 (Wada et al., 2005), and Tratl (Kolsch et al., 2006) on the
positive side and Gng5 (Moon et al., 2014), Kcnmb2 (Martinez-
Espinosa et al., 2014), and Elmol (Blake et al., 2017) on the
negative side, were not shared by the canalization network either.

Genetic, Phenotypic, and FA Covariance

Matrices Are Mostly Similar

The analysis of the GP™! matrix showed that heritability is spread
across many directions of the shape space (Figure 5b). Most of
these directions (91%) showed heritability higher than 0.2 and a
third of them (21 dimensions) accounted for more than 1% of
the total additive variance. This means that these directions are
actually operational for selection since they present substantial
additive genetic variance.

The main patterns of variation appeared very similar among
all matrices: the Kraznowski subspace analysis returned almost
perfect A values for about half of the subspace (A1_5 > 3.99 and
Di_11 > 3.90, which must be compared to a maximum value
of 4; Figure 5c). For these dimensions, the angles 0 between
the subspace eigenvectors and the individual matrices were very
small (d1—5 < 5° and Jd1—11 < 14°) showing the very good
agreement between the variation described in the subspace and
each reduced matrix (Figure 5d). The D value dropped afterward
due to the divergence of the FA matrix, its ¢ angles deviating
more, until reaching a value of 3 at dimension 22 over the
24 possible dimensions. When FA was excluded, the maximum
D value (here 3) was obtained for all dimensionalities. These
results suggest very similar patterns of variation among the first
matrices eigenvectors, but then a marked difference of FA when
the dimensionality becomes larger.

Analyses based on overall similarities between matrices
suggested that FA is quite different (Table 2). Both the Euclidean
distance and the element-wise matrix correlation supported this.
Including the unpaired landmarks did not affect the comparison
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of the PGE matrices. P and FA matrices showed similar
eccentricity (P = 1.80 and FA = 1.78), while the G matrix showed
a more spherical shape (1.17) and E was intermediate (1.34). The
greater sphericity of G is apparent beyond the two first PCs with
a slower decreasing of the proportion of variance explained by
each PC for this matrix than for P, E, and FA (Figure 5a). When
the midline landmarks were added, G appeared more similar to P
(2.85 and 2.69, respectively) and more concentrated than E (2.18)
and FA was even more concentrated (3.76).

The comparison of the angles between the first eigenvectors
yielded striking differences: P, G, and E eigenvectors were more
similar than random vectors (Table 2) but this was not the case
with the FA vector, which was no more similar to P, G, and E
vectors than to random vectors. This result was partly due to
a rank-order permutation between the first PCs as the angles
between FA PC1 and PC2 from P, G, and E (74.2, 55.8, and 67.5°,
respectively) are smaller than those observed between the PCls,
and the vectors are significantly more related to each other than
two random vectors. The matches are nonetheless not perfect and
it thus appears more adequate to consider several PCs altogether
to get a less biased comparison of the patterns of shape variation.

Krzanowski subspace analysis should be favored over other
methods: by estimating shared linear combinations it handles
many of the possible trivial transformations that could arise
between matrices and bias the comparison. Overall, we thus
report a very strong congruence between the patterns of shape
variation as described by the different matrices, and in particular
between individual variation and FA within a large subspace,
despite the limited similarity across major axes (PCs). The
congruent pattern of shape changes shared across these axes (i.e.,
the eigenvectors of the subspace H) corresponds mainly to an
expansion of the posterior part of the skull (Figure 6).

DISCUSSION

Skull shape is a polygenic multivariate trait associated with a
vast number of genes and regulatory elements contributing to
craniofacial and growth developmental pathways. Despite the
large amounts of non-linear dynamics and epistasis in these
pathways (Hallgrimsson et al., 2014) loci acting additively were
detected (Pallares et al,, 2015b). In this study, we found that
developmental stability and canalization of skull shape are also
influenced by a large number of genes, a set significantly enriched
for protein coding genes known to contribute to craniofacial
diseases, but contrary to mean shape, they present an entirely
epistatic genetic architecture. The genetic networks underlying
the two components of phenotypic robustness are strikingly
different, as they share very few candidate genes. Developmental
stability and canalization however showed very similar patterns
of phenotypic variation.

Methodological Limits: Matrix

Comparisons and Higher Order Epistasis
Matrix Comparisons

It is conceivable that part of the incongruence among studies
investigating the relationship between canalization and DS might

be related to the fact that similarities among patterns of variation
are sometimes inferred strictly on the first few PCs (e.g,
Klingenberg and McIntyre, 1998; Debat et al., 2000). The present
study shows that the main pattern of covariance might be similar,
with a nevertheless marked divergence between the PCs (e.g.,
FA PC1 is clearly different, but the global subspace is very
similar). This is simply due to a global rotation of the axes:
considered together, they contain roughly similar information,
but they individually depict different aspects of shape variation
(i.e., the variation is differently spread over the PCs). Although
such rotation nevertheless indicates a phenotypic difference, it
can completely mask the overall similarity. On the other hand,
distances or correlation and subsequent multivariate ordination
of matrices based on such metrics (e.g., Debat et al., 2006;
Mitteroecker and Bookstein, 2009) may also be misleading
because of their over-integrative nature.

Comparisons allowing both the assessment of the overall
similarity and a hierarchical evaluation of this similarity
such as the Krzanowski subspace should systematically be
performed in conjunction with individual PCs or distance
comparisons. In the present study, the subspace analysis
indicated very strong similarities among all matrices for the
main dimensions, although FA was more divergent at higher
dimensions. This divergence could be genuine but could
also result from the greater uncertainties in FA estimation
compared to among-individual variation. Results from matrix
distances or correlations depict a similar picture of relative
similarities but miss the large common ground for the main
patterns of variation. Emphasizing the importance of such
a slight divergence would lead to consider canalization and
developmental stability as distinct. On the contrary, the overall
similarity observed among the main patterns of FA and
phenotypic covariances suggests that variation stemming from
different sources is similarly channeled throughout development
along the same lines of shape variation in adults. This
results plead for a similarity in the channeling processes
(see below).

Higher Order Epistasis

Could the discrepancy between mean, canalization and
development stability genetic networks be due to the fact that
only first-order interactions were considered? This might indeed
limit the resolution of the inferred networks: using higher
order interactions might potentially allow detecting many
additional genes and genetic interactions with connections
reflecting smaller effects. As explained in the recent omnigenic
theory (Boyle et al., 2017), pushed at its limit, this approach
would ultimately identify networks including most or even all
the genes of the genome, as all the genes are in a way or in
another related to the development of complex traits. In that
case, the direct comparison of the node networks might not
be very informative and sensible information may rather be
searched in wiring motifs for example. In practice, given the
large differences in the genome scans we have found between the
mean shape and the components of shape robustness, we would
not expect higher-order interactions to change our main results
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that large additive components are found for shape but not for
shape robustness.

Mean Shape and Shape Variability Have
Different Genetics Bases

The genetic architecture of skull shape has been extensively
studied. Although epistatic effects have been occasionally
reported when searched [e.g., Wolf et al, 2005, 2006; see
Hallgrimsson et al. (2014) for a discussion], additive effects
have been frequently found and frequently proposed to play a
significant role in shape (Pallares et al., 2014, 2015b; Maga et al.,
2015; Weinberg et al., 2018). In contrast, this study and previous
studies on FA (e.g., Leamy and Klingenberg, 2005; Burgio et al,,

2009) point at a purely epistatic genetic basis for both FA and
individual variation, suggesting a different genetic basis for the
skull mean shape and its variability.

Additive and epistatic variations are not mutually exclusive
as they refer to two statistical models and some genes can show
additive effects when they have a strong effect in their interactions
(Mackay, 2014; Huang and Mackay, 2016). Inversely, purely
additive effect on individual variance or FA could be too small
to be detected with our experimental design. In addition, the
complexity of developmental processes can mask additive signals
if for example one molecule expressed later in development
overwrites a previous phenotypic signal, a likely situation given
the non-linear properties of development (Hallgrimsson et al.,
2009; Green et al, 2017). Finally, additive effects have been

TABLE 2 | Similarities between matrices.

Half-configuration’

Half-config. + unpaired landmarks

dg (x1079) r pr o () Pa de (x107%) r Pr o () P
P-G 1.69 0.95 <0.0001 53.93 <0.0001 3.32 0.96 <0.0001 14.51 <0.0001
P-E 1.30 0.93 <0.0001 39.05 <0.0001 2.60 0.91 <0.0001 46.24 <0.0001
G-E 0.72 0.80 <0.0001 66.01 0.003 1.53 0.80 <0.0001 37.48 <0.0001
P-FA 5.30 0.64 <0.0001 81.21 0.28
G-FA 1.85 0.60 <0.0001 89.13 0.92
E-FA 1.91 0.67 <0.0001 83.99 0.46

! Similarities between matrices are computed on half configuration of the paired landmarks with or without the unpaired landmarks on the mid plan of the skull. Variation
at these unpaired landmarks is orthogonal between symmetric and asymmetric shapes and their comparison is meaningless.
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FIGURE 6 | Visualization of the shape changes associated to the first
eigenvector of the G, FA, and P matrices. Here, we present variation in three
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spaces are orthogonal, the estimation of the first eigenvector excluded the
unpaired landmarks located on the mid plane of the skull. Comparison
between FA patterns and others should be done on only one side of the skull.

found for phenotypic robustness in QTL experiments (Gonzalez
et al, 2016). The genetic architecture for mean shape and
shape variance might thus be more similar than suggested by
our results.

The contrast between the strong additive effects found in
Pallares et al. (2015a) and the fully epistatic basis detected here
for shape variance and for FA (Varén-Gonzélez and Navarro,
2018) suggests a genuine difference. The additive basis suggests
that major genes critically influence mean shape. In contrast,
the purely epistatic basis for shape variation suggests that
variation is not controlled by major buffering genes as it has
been sometimes proposed (e.g., Rutherford and Lindquist, 1998),
but rather by a large set of interacting genes that includes
previously described buffering genes (e.g., Hspla which is a

hub gene in the canalization epistatic network). These genes
would differently contribute to the expression of variance: some
probably producing variance when others reduce it. This second
view is in agreement with other experimental studies (e.g., Varon-
Gonzalez and Navarro, 2018) and theoretical work (e.g., Geiler-
Samerotte et al., 2016, 2018).

Regulatory elements might play a particularly important
role in robustness (e.g., Frankel et al, 2010; Osterwalder
et al, 2018), which could contribute to the epistatic effects
detected. MicroRNAs, in particular, have been proposed to
impact robustness (e.g., Li et al,, 2009). They are important
actors of development (Hornstein and Shomron, 2006; Wu et al.,
2009; Kittelmann et al,, 2018) and, as regulators of genetic
effects, they can explain the differential effects of the same
genotypes in different genetic backgrounds (Percival et al., 2017):
e.g., by regulating protein levels in the system and therefore
reducing variance (Siciliano et al., 2013). Gene enhancers might
be duplicated to confer robustness against mutations (Frankel
et al,, 2010; Osterwalder et al., 2018) and that could explain why
epistatic patterns are overwhelmingly detected for canalization
and developmental stability.

Canalization and Developmental
Stability: (Mostly) Similar Processes
Buffering Different Sources of Variation?

Whether canalization and developmental stability correspond to
the same biological process is a longstanding question. Here
we show that, at least in the mice skull, they both rely on
a polygenic epistatic basis and present a similar phenotypic
expression, as captured by the correspondence in the patterns
of shape variation among individuals (canalization) and within
individuals (FA, developmental stability). Such a phenotypic
resemblance is expected under the assumption of a common
biological ground (Klingenberg and McIntyre, 1998; Debat et al.,
2000). Yet, the similarity does not extend to the nature of the loci
involved: skull canalization and developmental stability appear to
involve different genes. The vast majority of the candidate genes
identified were different and the network configurations (number
and position of nodes) also differed.

Empirical analysis of the developmental origin of shape
variation in mice (Hallgrimsson et al., 2009; Labonne et al.,
2014) suggests that the patterns of covariation are variable
throughout development. The similarity in the patterns of
shape individual variance and shape asymmetry reported in
this study suggests that variation is somehow constrained,
channeled during development, along the same direction of
phenotypic change. Such a channeling, that shows through
the stereotyped patterns of variation produced, regardless the
origin of the input variation, stochastic (asymmetric variation),
or genetic and environmental (among individuals variation), is
developmental robustness (Cheverud, 1982; Young and Badyaev,
2007; Hallgrimsson et al., 2009; Gonzalez et al., 2014). It suggests
that the same processes influence developmental stability and
canalization. In the same way, and keeping in mind that E
not only depicts environmental effects but also non-additive
genetic effects, the resemblance of E and G supports the view
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that genetic and environmental canalization rely on similar
developmental processes, a contentious issue (e.g., Meiklejohn
and Hartl, 2002; Siegal and Leu, 2014). Finally, the similarity
of G and P suggests that P could be a valid surrogate of G
in situations where G cannot be estimated (see discussions in
Marroig and Cheverud, 2001). It suggests that the environmental
component of shape variation included in P but not G is not
very different from the genetic component, also pointing at a
similarity of genetic and environmental canalization. Whether
these results extend to other traits, models, and even mice
populations is however unknown and any generalization should
be considered cautiously.

In this context, the fact that the genetic networks for
canalization and developmental stability are qualitatively
different is difficult to interpret. If robustness is a general
property of the developing skull similarly buffering individual
variation and asymmetry, then we might expect similar or
at least overlapping genetic architectures. Does the reported
genetic difference suggest that canalization and DS are different
processes? A difficulty is that the observed variation reflects
both the sources of variation and the developmental processes
modulating it: the difference between the two networks might
thus result either from a difference in the sources of variation
or from a difference in the developmental processes affecting
it (or both, as distinguishing the sources of variation from
the processes affecting it can be difficult). The sources of
variation are likely somewhat different within and among
individuals: specifically, developmental noise, originating in
various phenomena, including stochastic gene expression or
stochastic cellular divisions, is expected to have a higher
relative importance for FA than for individual variation, which
would in turn be dominated by processes with larger effects.
In terms of developmental processes, genes affecting genetic
or developmental noisiness [e.g., miRNA for stochastic gene
expression (Schmiedel et al, 2015)]; factors involved in the
regulation of the cell cycle for stochastic cellular variation
(Neto-Silva et al., 2009; Debat et al., 2011; Faradji et al., 2011;
Debat and Peronnet, 2013) might thus be more readily detected
in the FA association mapping than for individual variation,
thereby producing the observed difference between the networks.
Canalization and developmental stability might thus partly differ
in the processes generating and regulating some specific sources
of variation among and within individuals. The channeling effect
on shape variation might then occur at higher levels, or later
on during morphogenesis, e.g., during tissue interactions or via
the remodeling effects of mechanical demand and erase those
differences (see Hallgrimsson et al., 2009).

CONCLUSION

The genetic architecture of the skull shape canalization appears
entirely epistatic and composed by a large proportion of
craniofacial genes, as was also found for developmental stability
(Varén-Gonzélez and Navarro, 2018). In contrast, a large number
of loci are additively associated with skull mean shape in
mice (Pallares et al., 2015b) suggesting that skull shape and its

variability rely on different genetic bases. The two genetic networks
underlying canalization and developmental stability differ entirely
in the genesinvolved apparently pointing at two different buffering
processes. This fundamental genetic difference contrasts with the
similarity in the patterns of shape variation associated with these
two components of robustness. The channeling of the produced
variation within the same developmental pathways could explain
that despite originating from different loci these variations are
expressed in a similar fashion in the skull.

Canalization and developmental stability likely involve
various processes acting at various scales and times during
development. Some of these processes might be specific
to the type of variation considered and would thus be
different between developmental stability and canalization; other
processes, like bone remodeling in reaction to biomechanical
demand, might jointly alter variation both among and within
individuals, reshaping covariation patterns characteristic of
adults structures — these would contribute to both developmental
stability and canalization. Such a mix of shared and specific
processes might have contributed to the diversity of results
obtained in the literature comparing those two components of
phenotypic robustness.
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