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Circular RNAs (circRNAs) are an emerging class of RNA species that may play a critical
regulatory role in gene expression control, which can serve as diagnostic biomarkers
for many diseases due to their abundant, stable, and cell- or tissue-specific expression.
However, the association between circBRNAs and atrial fibrillation (AF) is still not clear.
In this study, we used RNA sequencing data to identify and quantify the circRNAs.
Differential expression analysis of the circRNAs identified 250 up- and 126 down-
regulated circRNAs in AF subjects compared with healthy donors, respectively. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
of the parental genes of the dysregulated circRNAs indicated that the up-regulated
parental genes may participate in the process of DNA damage under oxidative stress.
Furthermore, to annotate the dysregulated circRNAs, we constructed and merged the
competing endogenous RNA (ceRNA) network and protein-protein interaction (PPI)
network, respectively. In the merged network, 130 of 246 dysregulated circRNAs were
successfully characterized by more than one pathway. Notably, the five circRNAs,
including chr9:15474007-15490122, chr16:75445723-75448593, hsa_circ_0007256,
chr12:56563313-56563992, and hsa_circ_0003533, showed the highest significance
by the enrichment analysis, and four of them were enriched in cytokine-cytokine
receptor interaction. These dysregulated circRNAs may mainly participate in biological
processes of inflammatory response. In conclusion, the present study identified a set
of dysregulated circRNAs, and characterized their potential functions, which may be
associated with inflammatory responses in AF. To our knowledge, this is the first study
to uncover the association between circRNAs and AF, which not only improves our
understanding of the roles of circRNAs in AF, but also provides candidates of potentially
functional circRNAs for AF researchers.

Keywords: circular RNAs, atrial fibrillation, ceRNA network, PPI network, inflammatory responses

INTRODUCTION

Atrial fibrillation (AF) is one of the most common arrhythmias, which is closely associated with
poor life quality, stroke, heart failure, and elevated mortality (Chu et al., 2013; Lang et al., 2014).
The number of individuals with AF worldwide in 2010 was estimated to be about 33.5 million
(Chugh et al., 2014). The prevalence of AF varies regionally according to previous reports, ranging
from 0.1% in India (Kaushal et al., 1995) to 1-2% in Europe and North America (Go et al., 2001;
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Krijthe et al., 2013) and 4% in Australia (Middleton et al,
2002). The prevalence and incidence of AF have been reported
to be higher in European ancestry than non-Europeans (Go
et al., 2001; Ball et al., 2013). The occurrence and development
of AF are significantly associated with multiple risk factors,
including aging (Chugh et al,, 2014), male sex (Ball et al,
2013), ethnicity (Rodriguez et al., 2015), cigarette smoking
(Ball et al., 2013), alcohol consumption (Ball et al., 2013),
obesity (Rahman et al, 2014), hypertension, left ventricular
hypertrophy (LVH), coronary artery disease (CAD) (Schnabel
et al., 2009), heart failure (HF) (Wang et al., 2003), and valve
disease (Rahman et al., 2014).

With the development of high-throughput technologies, such
as microarray, next generation sequencing, and mass-spectrum
based proteomics, our understanding of the AF pathogenic
mechanisms at different levels has been greatly improved.
Previous studies (Uemura et al., 2004; Pei et al., 2010; Li
et al., 2011; Yao et al., 2015; Mase et al., 2017) used a variety
of means to uncover potential molecules responsible for the
pathogenesis of AF. For example, genome-wide association
studies (Benjamin et al., 2009; Ellinor et al, 2010, 2012;
Sinner et al, 2014; Christophersen et al.,, 2017; Low et al,
2017) have identified at least 30 loci associated with AFE
which expand the diversity of genetic pathways implicated in
AF and provide novel molecular targets for future biological
investigation. Furthermore, transcriptome analysis is one of
the most utilized approaches to study human diseases at the
mRNA level (Casamassimi et al., 2017). It has been used to
define the atrial mRNA expression in different types of AF (e.
g., postoperative, chronic, and paroxysmal) (Kim et al., 2003,
2005; Ohki et al., 2005; Deshmukh et al., 2015). In addition
to transcriptome analysis, mass-spectrometry-based proteomics
has matured into a broadly applied analytical tool over the
past decade (Aebersold and Mann, 2016). Mayr et al. (2008)
and Zhang et al. (2013) performed proteome analyses in left
and right human atrial appendages with persistent AF and
found 17 and 223 differentially expressed proteins compared
to patients with sinus rhythm. These studies suggest that the
pathogenesis of AF is multifactorial, and highlight the association
between increased inflammatory burden and the presence and
future development of AF (Kourliouros et al., 2009). However,
the increased morbidity of AF suggested that some specific
pathogenic mechanisms have not been fully understood.

Recently, there is growing evidence that non-coding
RNAs, including microRNAs, small nucleolar RNAs and long
non-coding RNAs, play important roles in occurrence and
development of diseases (Shi et al., 2013; Ruan et al., 2015; Yi
et al,, 2018). Furthermore, circular RNAs are emerging as a new
type of regulatory molecules that participate in gene expression
control and disease progression (Han et al, 2018). In AF,
circRNA-associated ceRNA networks revealed that dysregulated
circRNAs (hsa_circRNA002085, hsa_circRNA001321) in non-
valvular persistent atrial fibrillation (NPAF) may be involved in
regulating hsa-microRNA (miR)-208b and hsa-miR-21 (Zhang
et al., 2018). Moreover, bioinformatics analysis provides a novel
perspective on circRNAs involved in AF due to rheumatic heart
disease and established the foundation for future research of the

potential roles of circRNAs in AF. To uncover the association
between circRNAs and AF, we performed an integrative
analysis of circRNAs, and identified dysregulated circRNAs in
lymphocytes of AF. The functions of the dysregulated circRNAs
were annotated by network-based Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis,
which highlighted several circRNAs participating in biological
processes of inflammatory response.

MATERIALS AND METHODS

Data Collection and Format Conversion
RNA sequencing data of 6 cases with AF and 6 healthy donors
were downloaded from Sequence Read Archive (SRA)' database
(Leinonen et al., 2011) with an accession number SRP093226
using SRA Toolkit (Leinonen et al., 2011) version 2.9.2>, which
was released by previous study (Yu et al., 2017). The downloaded
files with SRA format were converted to paired-end FASTQ files
by fastq-dump with the option -split-files.

RNA Sequencing Data Analysis

The RNA sequencing data were analyzed by two pipelines. For the
gene expression quantification, we mapped the RNA-seq reads
to UCSC human reference genome (hgl9)’ by samples using
hisat2 (Kim et al., 2015). The resulting SAM files were sorted by
SAMtools. Gene expression was quantified by StringTie (Pertea
et al.,, 2015) with GENCODE (Harrow et al., 2012) annotation
v19. For the circular RNA detection and quantification, we
used the BWA-mem aligner to map the RNA-seq reads to
UCSC human reference genome (hg19). The circular RNAs were
predicted and quantified by CIRI-2 with GENCODE (Harrow
et al., 2012) annotation v19.

Identification of Highly Reliable Circular

RNAs Using RNA-seq Data

To identify the circular RNAs, we filtered the circRNAs with
more than 5-read counts in more than two samples. Moreover,
the threshold of the average ratio of junction reads supporting
circRNAs was also set to 10%.

Differential Expression Analysis

The count-based expression was used to identify differentially
expression genes and circRNAs by DESeq2 (Love et al., 2014),
a differential expression analysis based on the negative binomial
distribution. The gene and circRNA expression were normalized
to avoid the influence of sequencing depth and transcript length,
and was implemented in R package DESeq2. The differentially
expressed genes/circRNAs were identified at the threshold
P-value < 0.05 and fold change > 2 or < 1/2. The up- or down-
regulation status was determined based on the fold change for
each gene/circRNA.

'https://www.ncbi.nlm.nih.gov/sra
Zhttp://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/
3http://www.genome.ucsc.edu
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GO and KEGG Enrichment Analysis

The Gene Ontology (GO) and KEGG enrichment analysis
was implemented at WEB-based Gene Set Analysis Toolkit
(WebGestalt) (Wang et al, 2017). The Gene Ontology
(Ashburner et al., 2000) biological processes and KEGG pathways
(Kanehisa et al., 2017) were selected as the functional database.

Protein-Protein Interaction Analysis

The Search Tool for the Retrieval of Interacting Genes/ Proteins
(STRING) (Szklarczyk et al., 2017) online software* was used to
assess the interactions. The interactions of the proteins encoded
by the differently expressed genes were searched using STRING
online software.

MiRNA Target Prediction

The miRNA binding sites of circRNAs were predicted by Miranda
(Betel et al., 2008) with option -strict. We selected default
options for other parameters. The miRNA-mRNA interactions
were extracted from MiRTarBase (Chou et al., 2018). Together
with the reverse co-expression analysis of miRNA and mRNA,
miRNA and mRNA interaction pairs were predicted.

Competing Endogenous RNA Prediction
The competing endogenous RNAs (ceRNAs) function by
competing for miRNAs with mRNAs. The number of
miRNAs shared by each circRNA and mRNA pair should
be significantly higher. For each mRNA-circRNA pair, Fisher’s
exact test was used to estimate the significance of shared
miRNAs (P-value < 0.0001).

Functional Annotation of circRNAs

The protein-protein interaction (PPI) and ceRNA network were
merged and visualized using Cytoscape software’. The function of
circRNAs were predicted by the KEGG pathway (Kanehisa et al,,
2017) enrichment analysis performed on the genes connected to
these circRNAs within one node in the merged network.

Statistical Analysis

The statistical analyses, such as hierarchical clustering
analysis and Fisher’s exact test, were implemented in R
programming software®.

RESULTS

Identification of circRNAs in
Lymphocytes From Atrial Fibrillation and

Healthy Donors

We collected RNA sequencing data of 6 cases with atrial
fibrillation and 6 healthy donors from SRA’ database with an
accession number SRP093226 (Yu et al., 2017) (see section

*https://string-db.org
>http://www.cytoscape.org
Chttp://www.r-project.org/
“https://www.ncbi.nlm.nih.gov/sra

“Materials and Methods”), the RNA libraries of which were
constructed by rRNA-removal protocol and could be used to
identify circular RNAs (circRNAs). As described in the previous
study, two and three male samples were collected in AF and
healthy controls, respectively. Moreover, all samples did not
have smoking habits and alcohol abuse. Particularly, the average
age of AF patients was about 62 years old, which was slightly
older than that of healthy controls. The analysis of sequencing
data allowed for identifying 52,024 circRNAs in total, of which,
28,384 were identified in both atrial fibrillation and healthy
donors (Figure 1A). Among these identified circRNAs, we
observed that 13,899 were curated by a circRNA database,
circBase® (Glazar et al., 2014). Moreover, we also found 13,733
and 9,907 circRNAs to be specific to the atrial fibrillation and
healthy donors, respectively (Figure 1A). Genomic annotations
revealed that these circRNAs were mostly originated from the
exons (77%), followed by introns (13%) and intergenic regions
(10%), suggesting that a considerable portion of circRNAs
were circularized at unannotated splicing sites in lymphocytes
(Figure 1B). The ratio of circRNAs transcribed from the sense
strands was close to 0.5, indicating that there was not strand-
preference in circRNA biogenesis (Figure 1C). In addition, we
also examined the distribution of circRNAs expression levels in
each sample, and observed that most of circRNAs were expressed
at low levels (Figure 1D). However, there were also about 25%
circRNAs in each sample that were expressed at a higher level
(> 30 read count, Figure 1D).

Identification of Dysregulated Genes and

circRNAs in Atrial Fibrillation

To identify the dysregulated genes and circRNAs, we performed
differential expression analysis on the gene and circRNA
expression profiles, respectively. We identified 713 up- and
994 down-regualated genes, and 250 up- and 126 down-
regulated circRNAs in atrial fibrillation compared with healthy
donors (P < 0.05 and fold change > 2 or < !/,, Figures
2A,B), respectively. The hierarchical clustering analysis of
the dysregulated circRNA expression profiles revealed that
the samples with AF could be clearly distinguished from the
healthy donors (Figure 2C), suggesting that the dysregulated
circRNAs may act as potential AF diagnostic biomarkers
in lymphocytes. Notably, we observed an up-regulated
circRNA, hsa_circ_0030569, in AF patients (P-value < 0.05
and fold change > 1), which has been reported to response
to Mycobacterium tuberculosis (Mtb) infection in human
monocyte derived macrophages (MDMs), suggesting that this
circRNA may participate in immune or inflammatory processes
(Huang et al., 2017).

GO and KEGG Analysis of the
Dysregulated circRNA Parental Genes

It has been shown in previous studies that there is a
close association between circRNAs and their parental genes
as they could affect the expression of their parental genes

Shttp://www.circbase.org/
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FIGURE 1 | Overview of the identified Circular RNAs (circRNAs) in atrial fibrillation (AF) and healthy controls. (A) The Venn diagram displays the number of circRNAs
identified in AF and healthy controls, respectively. (B) The pie chart displays the ratio and number of circRNAs originated from exonic, intronic, and intergenic regions.
(C) The number and ratio of circRNAs transcribed from sense and antisense strands. (D) The distribution of count-based circRNA expression in each sample. The
purple and green boxes represent the AF and healthy control samples, respectively.
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(Zhang et al,, 2016; Wei et al, 2017). To investigate the
functions of the parental genes of dysregulated circRNAs in
AF samples compared with normal samples, we conducted a
gene set enrichment analysis of their parental genes based on
biological processes from GO and pathways from KEGG database
(Supplementary Table S1).

Gene ontology analysis indicated that the upregulated
genes were mainly involved in the regulation of chromosome
segregation, response to radiation, cell cycle phase transition,

DNA repair, cilium organization, mRNA processing, mitotic
nuclear division, cell projection assembly, microtubule
cytoskeleton organization, and peptidyl-lysine modification
(Figure 3A). Furthermore, the downregulated genes were mainly
enriched in categories associated with the regulation of histone
modification, forebrain development, microtubule cytoskeleton
organization, chromosome segregation, protein acylation,
macromolecule deacylation, skeletal system development,
organelle localization, in utero embryonic development, and
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FIGURE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of parental genes of dysregulated circRNAs The enriched GO
terms and KEGG pathways are presented in (A-D). The pink and blue bars represent the GO terms or KEGG pathways enriched by parental genes of up-regulated
and down-regulated circRNAs, respectively.

reproductive system development (Figure 3B). These up-
regulated pathways noted above indicated that the up-regulated
parental genes may participate in the process of DNA damage
under oxidative stress.

Kyoto encyclopedia of genes and genomes pathway analysis
revealed that upregulated genes were primarily enriched in

pathways associated with RNA transport, endocytosis, cell
cycle, fanconi anemia pathway, terpenoid backbone biosynthesis,
protein processing in endoplasmic reticulum, p53 signaling
pathway, and hepatitis C (Figure 3C). In accordance with the
enriched GO terms, the up-regulated genes were significantly
enriched in pathways related to DNA damage under oxidative
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TABLE 1 | The top-five circRNAs with the highest significance level by KEGG enrichment analysis.

circRNA KEGG pathway P-value Genes

chr9:15474007-15490122 Cytokine-cytokine receptor interaction 4.97E-18 IL2RA,CCR5,CXCL10,CCR1,FASLG,CCL2,CCR2,IL5RA,IFNK,HGF, TNFSF10
chr16:75445723-75448593 Cytokine-cytokine receptor interaction 1.79E-15 IL2RA,IL5RA,IFNK, TNFSF10,FASLG,CCL2,CXCL10,CCR5,CCR2, TNFSF13B
hsa_circ_0007256 Cytokine-cytokine receptor interaction 4.09E-15 CCR5,CXCL10,CCR1,FASLG,IL2RA,CCL2,CCR2,HGF, TNFSF10
chr12:56563313-56563992 Cytokine-cytokine receptor interaction 4.44E-14 CCR5,CXCL10,CCR1,FASLG,IL2RA,CCL2,CCR2,HGF, TNFSF10
hsa_circ_0003533 RIG-I like receptor signaling pathway 4.58E-14 CXCL10,IRF7,DDX58,ISG15,FADD,CASP10,IFIH1,DHX58

stress. Downregulated genes were mainly associated with
homologous recombination, HTLV-I infection, transcriptional
misregulation in cancer, N-Glycan biosynthesis, FoxO signaling
pathway, lysine degradation, and breast cancer (Figure 3D).

Alternative Circularization of

Dysregulated circRNAs in Exonic

Regions

Alternative RNA circularization was determined only by back-
splicing sites, and therefore we inferred the gene structure
of circRNAs based on annotated transcripts. To avoid the
occurrence of fuzzy gene structure, only exonic circRNAs
were included in such analyses. We found that 24 genes had
more than two circRNA isoforms, of which, 20 produced
two isoforms, and 4 produced three isoforms (Figure 4A).
Interestingly, we also observed that six genes, including NCOAL,
ANKRD36BP2, PAPD4, PRRC2C, SCLT1, and EIF2AK1,
produced circRNA isoforms with opposite expression patterns
(Figure 4B), indicating that these expression-switched circRNA
isoforms may have opposite functions. Moreover, the expression-
switched circRNA isoforms for 5 of 6 genes did not have
overlapping exons. Exceptionally, the two circRNA isoforms,
hsa_circ_0015210 and chr1:171493960-171502100, produced by
PRRC2C, shared the 10-th exon (Figure 4C), indicating that the
differential usage of the 10-th exon was associated with AF.

Functional Annotation of circRNAs by
Integrating Potential ceRNA and PPI

Networks

To further investigate the regulatory mechanism of circRNAs, we
predicted the miRNA binding sites for each circRNA. Finally,
we predicted 43,307 miRNA-circRNA interactions by Miranda
v3.3a with a strict mode. As circRNAs could also act as ceRNAs
by competing for miRNAs with mRNAs, we also collected
322,389 experimentally validated miRNA-mRNA interactions
from MiRTarBase (Chou et al., 2018), of which, 12,930 were
miRNA/dysregulated mRNA interactions.

To construct the ceRNA network, we estimated the
significance of shared miRNAs for each circRNA-mRNA pair. We
predicted 1,025 up-regulated and 245 down-regulated circRNA-
mRNA pairs by one-tailed Fisher’s exact test (P-value < 0.0001),
involving 246 dysregulated circRNAs. Furthermore, we also
mapped the up-regulated and down-regulated protein-coding
genes to PPI network, respectively. To characterize the biological
functions of circRNAs, we merged the potential ceRNA network
with the PPI network (Supplementary Table S2), and performed

KEGG enrichment analysis on the genes connected to the
circRNAs within one node in the merged network. Finally,
130 of the 246 dysregulated circRNAs in the merged network
were successfully characterized by more than one pathway.
Notably, the five circRNAs, including chr9:15474007-15490122,
chr16:75445723-75448593, hsa_circ_0007256, chr12:56563313-
56563992, and hsa_circ_0003533, showed the highest significance
in the enrichment analysis, and four of them were enriched in
cytokine-cytokine receptor interaction (Table 1 and Figure 5A).
Notably, CCR5, which acted as a receptor for chemokines,
was the target of three circRNAs in the ceRNA network,
suggesting that the three circRNAs may enhance the activity of
cytokine-cytokine receptor interaction through CCR5. As shown
in Figure 5B, the pathways charactering top-ten number of
circRNAs, such as RIG-I-like receptor signaling pathway, Toll-
like receptor signaling pathway, NOD-like receptor signaling
pathway, and JAK-STAT signaling pathway, were mostly related
to inflammation, suggesting that the circRNAs enriched in these
pathways may participate in biological processes of inflammatory
response (Supplementary Table S3).

DISCUSSION

Circular RNAs are an emerging class of RNA species that
may play a critical regulatory role in gene expression control.
CircRNAs can serve as diagnostic biomarkers for many diseases
(Han et al., 2018) due to their abundant, stable, and cell- or
tissue-specific expression (Bachmayr-Heyda et al., 2015; Li et al,,
2018). However, the association between circRNAs and AF is
still not clear.

In this study, we used RNA sequencing data to identify and
quantify the circRNAs. Differential expression analysis of the
circRNAs identified 250 up- and 126 down-regulated circRNAs
in atrial fibrillation patients compared with healthy donors,
respectively (Figures 2A,B). The hierarchical clustering analysis
of the dysregulated circRNA expression profiles revealed that the
samples with AF could be clearly distinguished from the healthy
donors (Figure 2C), suggesting that the dysregulated circRNAs
may act as potential AF diagnostic biomarkers in lymphocytes.
GO and KEGG analysis of the parental genes of the dysregulated
circRNAs indicated that parental genes of dysregulated circRNAs
may participate in the process of DNA damage under oxidative
stress (Figures 3A,C). The down-regulated parental genes were
mainly associated with homologous recombination, HTLV-I
infection, transcriptional misregulation in cancer, N-Glycan
biosynthesis, FoxO signaling pathway, lysine degradation, and
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breast cancer (Figures 3B,D). To examine whether circRNA
isoforms originated from the same genes were dysregulated
in AF, we inferred the gene structure of circRNAs based on
annotated transcripts. Interestingly, among the dysregulated
circRNA isoforms, six genes, including NCOA1, ANKRD36BP2,
PAPD4, PRRC2C, SCLT1, and EIF2AKI1, were identified to
produce circRNA isoforms with opposite expression patterns,
indicating that these expression-switched circRNA isoforms may
have opposite functions (Figure 4B). Notably, the two circRNA
isoforms, hsa_circ_0015210 and chr1:171493960-171502100,
produced by PRRC2C, shared the 10-th exon (Figure 4C),
indicating that the differential usage of the 10-th exon was
associated with AF. To further annotate the dysregulated
circRNAs, we constructed and merged the ceRNA network and
PPI network. In the merged network, 130 of 246 dysregulated
circRNAs were successfully characterized by at least one pathway.
Notably, the five circRNAs, including chr9:15474007-15490122,
chr16:75445723-75448593, hsa_circ_0007256, chrl2:56563313-
56563992, and hsa_circ_0003533, showed the highest significance
in the enrichment analysis, and four of them were enriched in
cytokine-cytokine receptor interaction (Table 1). In summary,
these dysregulated circRNAs may participate in biological
processes of inflammatory response.

In this study, there also existed some limitations. Firstly,
more samples were needed considering the small sample size in
the present study. Secondly, we provided a set of dysregulated
circRNAs associated with AFE, however, further experimental
validation would be required for future verification. Moreover,
specific functions of those dysregulated circRNAs had not been
further excavated in this study. We hope to conduct further
researches with a larger samples group, to perform experimental
validation and much deeper analysis in the near future.

CONCLUSION

We identified six genes, including NCOA1, ANKRD36BP2,
PAPD4, PRRC2C, SCLT1 and EIF2AKI, producing circRNA
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