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Gene expression profiles potentially hold valuable information for the prediction of

breeding values and phenotypes. In this study, the utility of transcriptome data for

phenotype prediction was tested with 185 inbred lines of Drosophila melanogaster

for nine traits in two sexes. We incorporated the transcriptome data into genomic

prediction via two methods: GTBLUP and GRBLUP, both combining single nucleotide

polymorphisms (SNPs) and transcriptome data. The genotypic data was used to

construct the common additive genomic relationship, which was used in genomic

best linear unbiased prediction (GBLUP) or jointly in a linear mixed model with a

transcriptome-based linear kernel (GTBLUP), or with a transcriptome-based Gaussian

kernel (GRBLUP). We studied the predictive ability of the models and discuss a concept

of “omics-augmented broad sense heritability” for the multi-omics era. For most traits,

GRBLUP andGBLUP provided similar predictive abilities, but GRBLUP explainedmore of

the phenotypic variance. There was only one trait (olfactory perception to Ethyl Butyrate in

females) in which the predictive ability of GRBLUP (0.23) was significantly higher than the

predictive ability of GBLUP (0.21). Our results suggest that accounting for transcriptome

data has the potential to improve genomic predictions if transcriptome data can be

included on a larger scale.

Keywords: GRBLUP, transcriptome, phenotype prediction, Drosophila melanogaster, epistasis

INTRODUCTION

Prediction of genetic values has been a key problem in quantitative genetics. Since Meuwissen et al.
(2001) published the landmark article, which uses whole genome single nucleotide polymorphisms
(SNPs) to modify the traditional prediction of breeding values using family relationship, the
concept of “genomic selection” has revolutionized animal and plant breeding. A number of
statistical approaches have been applied in practice, such as genomic best linear unbiased prediction
(GBLUP) (VanRaden, 2008), ridge regression (Whittaker et al., 1999), or the “Bayesian Alphabet”
(Gianola et al., 2009; Gianola, 2013). These approaches utilizing genome-wide SNP data have
been used to increase the genetic progress of breeding programs by increasing predictive accuracy
of breeding values, reducing generation intervals or shortening the breeding cycles. In plant
line breeding, genomic prediction focuses on breeding values in early generations of a breeding
program, while the genomic prediction of phenotypes may be attractive when estimating the
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commercial value of cultivars (Crossa et al., 2017). Broad sense
heritability is the relevant genetic parameter for phenotypic
prediction, which is defined as the ratio of genetic variance
over the phenotypic variance. It reflects all genetic contributions
to a population’s phenotypic variance including additive and
non-additive effects such as dominance and epistasis. It was
demonstrated that epistasis explains noticeable fractions of
variation in human gene expression (Brown et al., 2014). One
of the critically important issues for phenotypic prediction and
the estimation of broad sense heritability is how to model
non-additive effects. There is plenty of literature illustrating an
improved prediction of phenotypes when using non-additive
relationships (Crossa et al., 2010; Martini et al., 2016; Forsberg
et al., 2017; Gao et al., 2017). However, epistatic effects can
arise from various interactions between alleles or genotypes at
different loci. For more than two genes, higher order interactions
may be included, which makes the estimation of epistatic
effects very difficult by using typically parametric regression
methods. Another problem for the prediction of phenotypes
is that from DNA sequences to phenotypes there are complex
biological processes that may affect the phenotypes. Even with
complete whole sequence information, genomic prediction may
not capture multiple interactions between genes and downstream
in the biological regulation. The inclusion of additional layers
of omics data in the prediction machinery may provide a
partial solution for this problem, since for instance transcriptome
data may be “closer” to the phenotype, and since an epistatic
interaction on the genotype level may be captured by an
additive effect on -for instance- the transcriptome level. In
the context of defining the respective broad sense heritability
for the combination of genotypic data and omics data, the
classical concept only covers the proportion of genetic factors
including additive or dominance effects and interactions (Lush,
1940). We discuss the concept of “omics-augmented broad sense
heritability” to be used in the context of the prediction of
phenotypes not only based on effects at the genome level, but
also accounting for effects of downstream biological regulation
captured by omics data.

Recently, several studies have proposed to exploit
transcriptome data as explanatory variables for prediction
of traits. Other than nuclear DNA-based SNP data, gene
expression levels are affected by several factors, like choice
of tissue, time of sampling and experimental conditions, and
using only gene expression data in prediction of phenotypes
may not be as robust as using SNP markers. Utilizing both
genomic marker information and gene expression data could
be a promising option. Modeling gene expression data as a
predictor into genomic prediction is expected to explain more
epistatic variance or complex biological regulation processes
and potentially increases predictive accuracy. González-
Reymúndez et al. (2017) integrated whole-omics data (including
whole-genome gene expression profiles) into breast cancer
prediction, and demonstrated that omics and omic-by-treatment
interactions explain a sizable fraction of the variance of survival
time, and further suggested that whole-omic profiles could
be used to improve prognosis prediction accuracy among
breast cancer patients. Guo et al. (2016) showed that gene

expression levels provided reduced predictive abilities compared
to those based on genetic markers. When combing gene
expression data with SNPs, the predictive abilities are either
greater than or comparable to those with GBLUP alone. When
comparing marker genotype to gene expression data to predict
resistance of soybean plants to the pathogen Phytophthora
sojae, Loh et al. (2011) found that the latter performed better
than genotype markers alone. Zarringhalam et al. (2018)
obtained robust phenotype predictions from gene expression
data using differential shrinkage of co-regulated genes. Kang
et al. (2017) developed a biological network-based regularized
artificial neural network model for prediction of phenotypes
from transcriptomic measurements in clinical trials, which
significantly improved the robustness and generalizability of
predictions to independent datasets. Moreover, different types
of omics data have been used for hybrid prediction in Maize
(Westhues et al., 2017; Schrag et al., 2018).

Reproducing kernel Hilbert space regression (RKHS), a semi-
parametric prediction method, was introduced by Gianola et al.
(2006) to the field of animal breeding. It was promoted as
an alternative option to capture the complicated interactions
between genes. Jiang and Reif (2015) illustrated that the
Gaussian kernel models interaction effects implicitly. More
importantly, RKHS provides a simple framework to incorporate
information on pedigrees, markers, or any other form of data
characterizing the genetic background of individuals (de los
Campos et al., 2009). Hu et al. (2015) used RKHS for evaluating
the utility of methylation information in prediction of plant
height, and demonstrated that epigenetic variation accounted
for 65% of the phenotypic variance. In the present study,
we used five kernel-based methods: GBLUP, TBLUP, RKHS,
GTBLUP, andGRBLUP. Genomic best linear unbiased prediction
(GBLUP) using SNP data is set to be a benchmark model.
TBLUP and RKHS are used for transcriptomic prediction,
where the first uses a linear kernel and the latter uses a
Gaussian kernel. Moreover, we define GTBLUP (combining
GBLUP and TBLUP) and GRBLUP (combining GBLUP and
RKHS) utilizing both transcriptome data and whole-genome
sequence data.

Drosophila melanogaster is a widely used model organism
for biological research in genetics, physiology, microbial
pathogenesis, and life history evolution, and it has been
demonstrated that the architecture of Drosophila quantitative
traits is dominated by extensive epistasis (Huang et al., 2012).
Making use of Drosophila omics data stands a chance to
capture the prevalent epistasis for phenotype prediction. The
Drosophila melanogaster Genetic Reference Panel (DGRP) is a
community resource for analysis of population genomics and
quantitative traits. It consists of more than 200 fully sequenced
inbred lines derived from the Raleigh population, USA (Mackay
et al., 2012). We used whole-genome SNP data and gene
expression data of 185 Drosophila inbred lines from DGRP in
this study. The objective was (1) to combine transcriptome data
with whole-genome sequence data for genomic-transcriptomic
prediction using GTBLUP and GRBLUP, (2) to assess whether
GTBLUP and GRBLUP can capture substantial proportions of
phenotypic variances explained by transcriptome data, and (3)
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to test whether accounting for transcriptome data can improve
phenotype prediction.

MATERIALS AND METHODS

Data
Whole-Genome Sequence Data
The Drosophila melanogaster Genetic Reference Panel (DGRP)
is a community resource for analysis of population genomics
and quantitative traits. It consists of 205 fully sequenced inbred
lines derived from 20 generations of full sibling inbreeding of
a single outbred population in Raleigh, North Carolina, USA
(Mackay et al., 2012). Whole genome sequence data of all lines
were downloaded from the DGRP2 website. SNPs called with a
call rate of less than 95% orminor allele frequency (MAF) smaller
than 0.01 and individuals with a call rate less than 95% were
excluded. In total, 2,863,909 SNPs of the 185 Drosophila lines
for which transcriptome data were also available were used for
this study. Beagle 4.0 (https://faculty.washington.edu/browning/
beagle/b4_0.html) was used for the imputation of missing SNP
genotypes (Browning and Browning, 2013).

Transcriptome Data
The abundances of RNA products of 18,140 genome-wide
annotated genes and novel transcribed regions (NTRs) in 185
DGRP lines was quantified using Affymetrix Drosophila 2.0
genome-tiling arrays, with two biological replicates for each sex.
Since the correlation coefficient between the two replicates on
average across all lines reached 0.95, we randomly chose one
replicate for this study. The mated 3- to 5-d-old flies were
collected between 1:00 and 3:00 p.m., and RNA was extracted
from the flies homogenized with 1mL of QIAzol lysis reagent
(Qiagen) and two 0.25-in ceramic beads (MP Biomedical).
For details on fly husbandry, RNA extraction, RNA sequence
annotation and quality control see (Huang et al., 2015).

Phenotype Data
In total, nine traits, which were measured on females and
males separately were used: startle response (STR), starvation
resistance (STV), alcohol sensitivity and tolerance (AST), food
intake (FI), and olfactory perceptions to five chemical odorants:
olfactory perceptions to 2-Heptanone (OP2H), Methyl Salicylate
(OPMS), l-Carvone (OPIC), 1-Hexanol (OP1H), Ethyl Butyrate
(OPEB). These phenotypes are line means or medians of repeated
measurements in different ways, and are treated as response
variables in our statistical model. For startle response (starvation
resistance), there were on average 40± 4 (52± 11)measurements
for females, and 40 ± 4 (52 ± 11) measurements for males,
the line medians were taken in several replicates for each trait
(Mackay et al., 2012). The line mean of AST was calculated from
two replicated measurements for each sex per line (Morozova
et al., 2015). The line mean of food intake was measured from
six replicate assays per sex per DGRP line (Garlapow et al.,
2015). For olfactory perceptions to five chemical odorants, the
average of 10 measurements was calculated as the response
score of each individual trial and the averages of 10 trials on
the same genotype and sex were recorded as the line means

(Arya et al., 2015). The line means and variances are shown
in Table 1.

Availability of Supporting Data
The whole genome sequence data, gene expression data of 185
DGRP lines, and phenotype data of nine traits are available
on Drosophila melanogaster Genetic Reference Panel (DGRP,
http://dgrp2.gnets.ncsu.edu).

Statistical Models
To remove the gender effect in prediction, we performed
the subsequent analyses with female and male data
separately. Predictions of phenotypes were done with
three basic approaches and two combined methods. The
basic approaches were genomic BLUP (GBLUP) to predict
phenotypes using genotype data, transcriptomic BLUP
(TBLUP) predicting phenotypes using transcriptome data
with a linear kernel, and RKHS predicting phenotypes
using transcriptome data with a Gaussian kernel (Gianola
and van Kaam, 2008). The combined methods, integrating
genomic and transcriptome data, were GTBLUP (combining
GBLUP and TBLUP) and GRGLUP (combining GBLUP
and RKHS).

GBLUP
As a baseline, we used SNP data of 185 Drosophila lines
to conduct the benchmark GBLUP (VanRaden, 2008). The
statistical model for GBLUP is

y = 1µ + g+ e, (1)

where g∼N(0,Gσ 2
g ) and e∼ N(0, Iσ 2

e ) are vectors containing
random breeding values and residual effects, respectively and
where µ is the overall mean. The genomic relationship matrix

G was calculated as G = ZZ′

26pi(1−pi)
(VanRaden, 2008), where pi

denotes the minor allele frequency (MAF) of marker i. Moreover,
Z denotes the MAF adjusted marker matrix with entries (0−2pi)
and (2− 2pi) for genotypes AA and aa, respectively.

TBLUP
In this approach, transcriptome data of the 185 Drosophila lines
were used as predictor variables. The statistic model is:

y = 1µ + t + e (2)

where t∼N(0,Eσ 2
t ) is a transcriptomic line effect. The

corresponding variance-covariance matrix is E = RR′

which is a linear kernel calculated from an n × m matrix R

of standardized gene expression levels from n lines and m genes.
The standardization of gene expression levels was conducted by

calculating rij =
xij−xj
sj

, where xij is the expression level of gene j

in line i, xj is the mean expression level of gene j across all lines,
and sj is the standard deviation of gene expression level of gene j.
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TABLE 1 | Line means (M) and variances (V) of phenotypes and heritability estimates for the nine traits in males and females.

Female Male

Traits M V Ĥ2
G

Ĥ2
GT

ĥ2
GR

M V ĥ2
G

Ĥ2
GT

Ĥ2
GR

r

STR 28.75 ± 0.44 40.29 0.703 0.739 0.842 28.29 ± 0.50 41.22 0.701 0.749 0.801 0.958

STV 60.61 ± 0.89 159.06 0.898 0.943 0.948 45.65 ± 0.67 90.39 0.805 0.807 0.903 0.684

AST 17.36 ± 0.28 14.03 0.943 0.944 0.972 16.49 ± 0.24 10.45 0.730 0.923 0.978 0.685

FI 0.99 ± 0.04 0.36 0.566 0.545 0.908 1.02 ± 0.05 0.50 0.989 0.988 0.980 0.674

OP2H 3.10 ± 0.04 0.28 0.819 0.823 0.840 3.04 ± 0.04 0.28 0.258 0.299 0.616 0.760

OPMS 3.40 ± 0.03 0.15 0.586 0.605 0.839 3.32 ± 0.03 0.17 0.385 0.361 0.673 0.582

OPIC 3.50 ± 0.03 0.20 0.525 0.520 0.750 3.39 ± 0.03 0.21 0.851 0.853 0.925 0.697

OP1H 2.30 ± 0.04 0.28 0.520 0.565 0.748 2.34 ± 0.04 0.28 0.362 0.536 0.635 0.794

OPEB 3.51 ± 0.03 0.18 0.462 0.673 0.848 3.57 ± 0.03 0.16 0.694 0.719 0.833 0.594

ĥ2
G
denotes the SNP-based genomic heritability calculated with GBLUP; Ĥ2

GT
denotes the SNP and gene expression data-based broad sense heritability calculated with GTBLUP;

Ĥ2
GR

denotes the SNP and gene expression data-based broad sense heritability calculated with GRBLUP. r denotes the phenotypic correlation between female and male phenotypes

across lines.

Reproducing Kernel Hilbert Space Regression

(RKHS)
Analogously, to the previously described approaches, the
statistical model was:

y = 1µ + v + e (3)

where v∼N(0,Kσ 2
v ) is a random effect measured by

transcriptome data with K being the genetic covariance
matrix (Gianola et al., 2006). We chose the Gaussian kernel to
calculate the genetic covariance between lines by

Kij = k
(

ri, rj
)

= exp

(

−

∥

∥ri − rj
∥

∥

2

h

)

(4)

Here, h is a bandwidth parameter, which controls how fast
the covariance function drops as points get further apart.
The vector ri gives the vector of standardized expression
levels of line i across all genes, and rj is the vector of
standardized expression levels of line j across all genes. The
bandwidth parameter h was chosen using a grid search approach
under cross-validation, aiming at finding a suitable value that
maximized the predictive correlation within a model setting
(Jones et al., 1996; Gianola and Schön, 2016).

GTBLUP
In GTBLUP, transcriptome data was integrated into genomic
prediction. SNP data and transcriptome data of 185 Drosophila
lines were treated as predictor variables. The prediction
model was:

y = 1µ + g+ t + e (5)

where all variables are defined as described above.

GRBLUP
The statistical model for GRBLUP can be expressed as

y = 1µ + g + v + e (6)

The only difference between GTBLUP and GRBLUP is that in
GRBLUPwe replace t∼N(0,Eσ 2

t ) of GTBLUPwith v∼N(0,Kσ 2
v )

of RKHS. AgainK is the genetic covariancematrix constructed by
the Gaussian kernel (4) and the optimum bandwidth parameter
h is found by grid-search and cross-validation.

Estimation of the Omics-Augmented Broad
Sense Heritability Based on the Between
Line Effects
The omics-augmented broad sense heritability was defined as the
proportion of phenotypic variance explained by whole genome
SNP markers and other omics data,

Ĥ2
o =

σ̂ 2
g + σ̂ 2

omics

σ̂ 2
g + σ̂ 2

omics + σ̂ 2
e

(7)

where σ̂ 2
g denotes the proportion of additive genetic variance

explained by the whole genome SNP markers and σ̂ 2
omics denotes

the variances explained by one or several omics data layers which
can be the transcriptome, proteome, metabolome, epigenome,
metagenome etc.

(1) SNP-based genomic narrow sense heritability for

GBLUP (ĥ2G).
The SNP-based genomic narrow sense heritability is defined as

the proportion of phenotypic variance explained by SNP marker
effects. This SNP-based heritability is calculated as

ĥ2G =
σ̂ 2
g

σ̂ 2
g + σ̂ 2

e

(8)

(2) SNP and gene expression data-augmented broad sense
heritability for GTBLUP (Ĥ2

GT) and GRBLUP (Ĥ2
GR)

The proportion of phenotypic variance explained by SNP data
and gene expression data in GTBLUP (Ĥ2

GT) is calculated as

Ĥ2
GT =

σ̂ 2
g + σ̂ 2

t

σ̂ 2
g + σ̂ 2

t + σ̂ 2
e

(9)
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and in GRBLUP (Ĥ2
GR) are calculated as

Ĥ2
GR =

σ̂ 2
g + σ̂ 2

v

σ̂ 2
g + σ̂ 2

v + σ̂ 2
e

(10)

The variance components σ̂ 2
g , σ̂ 2

t , σ̂ 2
v , σ̂ 2

e from models (1), (5),
and (6) were estimated from the entire data sets, using the R
package “regress” (Clifford and McCullagh, 2014), which also
provided predictions of random effects.

Comparison of Predictive Abilities
The different approaches were assessed using 20 replicates of
a 5-fold cross-validation (Erbe et al., 2013). Predictive abilities
were defined as the Pearson’s correlation coefficients between
predicted genetic values and observed phenotypes in the test
sets. The final predictive ability of each model was the mean of
the predictive abilities across 100 estimates. Overall predictive
abilities among the five models implemented in the study were
compared using a Tukey’s honest significant difference test
(Tukey, 1949).

RESULTS

Estimation of “Omics-Augmented Broad
Sense Heritability” Based on the Between
Line Effects and Variance Components
Genomic heritabilities obtained with model (1) ranged from
0.25 to 0.99 and are generally high. On average across

all traits, they are slightly higher for females (ĥ2
Gf

=

0.66 ± 0.059 ) than for males (ĥ2Gm = 0.63 ± 0.081)
(see Figure 1 and Table 1). It should be noted, though,
that these values pertain to the average performance of
many replications of inbred individuals, and thus should not
be compared to narrow sense heritability estimates on an
individual base.

In GTBLUP and GRBLUP, we integrated transcriptome data
into genomic prediction. The only difference between these two
methods is that two different kernels were used to construct
the relationship matrix based on transcriptome data. For the
SNP and gene expression data-augmented heritability, Ĥ2

GR was

higher than Ĥ2
GT for almost all traits and in both sexes (Table 1).

Only the trait FI did not show this pattern for males. Across all
traits, Ĥ2

GR had a mean of 0.85 ± 0.050 for females and 0.81

± 0.080 for males compared to Ĥ2
GT 0.71 ± 0.025 for females,

and 0.69 ± 0.049 for males. Compared to GTBLUP, GRBLUP
captured more genetic variance explained by gene expression
data for some traits, especially for some traits with relatively low
SNP-based genomic heritability h2G, such as FI, OPMS, OPIC,
OP1H, and OPEB in females and AST, OP2H, OPMS, and
OP2H in males.

Overall Predictive Ability
The predictive abilities of the nine traits obtained with the
5 statistical models for females and males are shown in
Figure 2 and Supplementary Table 1. GBLUP as the reference
method provided predictive abilities ranging from 0.162 ±

0.012 to 0.240 ± 0.013 in females and from 0.095 ± 0.015
to 0.325 ± 0.013 in males across all traits. For GBLUP, the
proportion of phenotypic variance explained by SNP data and
genomic predictive abilities were highly positively correlated.
The correlation coefficients were 0.731 and 0.885 for females
and males, respectively. Transcriptome-based prediction alone
was not accurate for most traits: observed predictive abilities
were 0.001 ± 0.013 to 0.182 ± 0.011 for females, and 0.036
± 0.014 to 0.107 ± 0.014 for males with RKHS and −0.035
± 0.011 to 0.165 ± 0.014 for females and −0.113 ± 0.013
to 0.13 ± 0.015 for males with TBLUP. The correlation
between female and male predictive abilities with RKHS and
TBLUP were low with correlation coefficients of 0.077 and
−0.189, respectively.

Except for one trait (OPEB) in females, there was no
significant difference of predictive abilities between GRBLUP and
GBLUP. For the trait OPEB in female, GRBLUP (0.23 ± 0.012)
gave a higher predictive ability thanGBLUP (0.208± 0.012). Both
GRBLUP (female 0.21, male 0.187) and GBLUP (female 0.205,
male 0.184) provided better predictive abilities on average in all
traits than GTBLUP (female 0.187, male 0.156) for female and
male. It is worth noting that predictive abilities between males
and females for all models were found to be remarkably different
for six out of nine traits (AST, FI, OP2H, OPMS, OPIC, OP1H).
In females, the predictive abilities of three models (GBLUP,
GTBLUP and GRBLUP) varied slightly among all nine traits
with a range between 0.139 ± 0.012 (OP1H in GTBLUP) and
0.24 ± 0.013 (STV in GRBLUP), while in males the predictive
abilities of these three models have a more significant variation
ranging from 0.045± 0.014 (OPMS inGTBLUP) to 0.326± 0.014
(FI in GRBLUP). The correlation coefficient between predictive
abilities in females and males across all traits and models is 0.623
(Figure 3). The correlation coefficients between heritabilities

ĥ2G, Ĥ
2
GT , Ĥ

2
GR and predictive abilities for GBLUP, GTBLUP,

GRBLUP across all traits and both sexes are 0.823, 0.821, and
0.832 respectively (Figure 4). The bandwidth parameter h in the
Gaussian kernel varied dramatically from 0.7 to 270,000, and
choosing the right value had great impact on predictive abilities
of RKHS and GRBLUP.

DISCUSSION

Previous Drosophila genomic prediction studies have shown
that there is a high degree of genotype by sex interaction in
some traits. Ober et al. (2012) showed that given the significant
sex by line interaction variance in starvation resistance, the
prediction is more accurate in females than in males (0.254
vs. 0.203), and in chill coma recovery time the predictive
ability is very low for female and zero for male. It has
also been found that 42% of the Drosophila transcriptome
is genetically variable between males and females, including
the NTRs (Huang et al., 2015). We also found expression
patterns to be clearly separated between males and females (see
Supplementary Figure 1) and thus we performed all analyses on
females and males separately in order to remove the gender effect
in prediction.
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FIGURE 1 | Percentages of variance components of GBLUP, GTBLUP, and GRBLUP for nine traits for females (left) and males (right). e is the residual; t is the

transcriptomic line effect in GTBLUP; v is the transcriptomic line effect in GRBLUP, and g is the additive genetic effect captured by SNP data.
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FIGURE 2 | Predictive abilities for nine traits with five statistical models in females and males.

Omics-Augmented Broad Sense
Heritability
Yang et al. (2010) showed that 45% of the variance for human
height can be explained by considering all SNPs simultaneously
when using GBLUP to estimate the narrow sense heritability,
the proportion of phenotypic variance due to additive genetic
variance. Two explanations for the “missing heritability” were
provided: (1) the causal variants each explain such a small
amount of variation that their effects do not reach stringent
significance thresholds, or (2) the causal variants are not in
complete linkage disequilibrium (LD) with the SNPs that have
been genotyped. Speed et al. (2012) argued that GBLUP may
not be capable to provide unbiased estimates of the genomic
heritability, and a main reason is that in the computation of
the G matrix the LD between SNPs and QTL is ignored. Kim

et al. (2017) proposed that the main problem of estimating
genomic heritability does not reside in the manner the G matrix
is computed, but rather in the use of massive numbers of
markers that are in LD with QTL. Since there is probably
no complete linkage disequilibrium between SNPs and all
causal variants, which e.g., also can be structural variants,
using SNP data may not provide accurate estimates of narrow
sense heritability. Narrow sense heritability estimates play a
key role in predicting or assessing the effectiveness of artificial
selection in that they provide a way to measure the extent
to which additive genetic variance is related to phenotypic
variance in a specific population (Visscher et al., 2008). However,
for the prediction of phenotypes, the concept of broad sense
heritability is more useful than the concept of narrow sense
heritability, because it reflects all the genetic contributions to
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FIGURE 3 | The correlation between predictive abilities in females and males

across nine traits and five statistical models. r denotes the Pearson correlation

coefficient between female and male predictive abilities across all traits and all

statistical models. The red line denotes a standardized major axis regression

line.

a population’s phenotypic variance including additive and non-
additive effects, which provides upper limits to estimates of
transmissible genetic variance (Lush, 1940; Stoltenberg, 1997).
Nevertheless, as mentioned, even if all SNPs were used, only
part of the genetic effects can be captured. The inclusion of
additional layers of genomic information in the prediction
machinery may provide a partial solution for this problem.When
DNA information is transcribed into RNA and then expressed
as protein products, abundance of gene expression products is
one of the intermediate layers in this process. We assume that
the missing additive variance in estimation of narrow sense
heritability by using SNP data, and some non-additive effectsmay
be captured by the gene expression data. In this case, utilizing
both SNP data and gene expression data to estimate broad
sense heritability can be a promising approach. The classical
definition of broad sense heritability is the ratio of genetic
variance to the phenotypic variance, which implicitly assumes
that all genetic variation must be encoded at the genome level.
However, gene expression data may be inevitably affected by
some external regulation which belongs to environment effects
in terms of the classical genetic model, where the phenotype is
considered to be affected by genetic and environmental effects,
and the interaction between both. In the multi-omics era, the
input information for the phenotypic prediction machinery
is not restricted to gene or genome layer. Multi-omics data
reflecting the transcriptome, proteome, metabolome, epigenome,
metagenome etc. are increasingly exploited as input data for
the phenotypic prediction (Acharjee et al., 2016; Xu et al.,
2016). Thus, we discuss the concept “omics-augmented broad
sense heritability” for the prediction of phenotype which not
only includes the effects at the genome level (both additive
and non-additive), but also includes the effects of downstream
biological regulation captured by one or several omics layers.
In phenotype prediction this concept can help to measure

FIGURE 4 | The correlation between heritabilities ĥ2
G
, Ĥ2

GT
, Ĥ2

GR
, and

predictive abilities for GBLUP, GTBLUP, and GRBLUP across all traits and both

sexes. r denotes the Pearson correlation coefficient. The blue lines denote the

overall linear regression lines. The gray shadow denotes the 0.95 confidence

interval.

the extent to which the information in the different layers
of multi-omics data is related to phenotypic variance in a
specific population. For some traits substantially affected by
non-additivity and downstream biological regulation effects, or
with poor LD between SNPs and QTL, the estimated genomic
heritabilities may be low so that they may be inadequate as a
measure of predictive ability. In this case the omics-based broad
sense heritability may be more informative than narrow or broad
sense heritability because of the inclusion of non-additive effects

and biological regulation effects in the numerator of Ĥ
2
o, and it

can be seen as the potential upper limit of the predictive ability
of phenotypic prediction when utilizing multi-omics data. This
method was used to measure the increased heritabilities of 11
traits when incorporating gene expression and metabolic data
into phenotypic prediction inmaize, however, without discussing
the reasonability (Guo et al., 2016). It must be highlighted
that the “omics—augmented broad sense heritability” is just
available in the context of phenotype prediction, while in
the genomic prediction for breeding values this concept is of
limited usefulness because the biological regulation variance
in the numerator of Ĥ2

o is not fully heritable. The approach
should be seen as a complement or partial substitution to the
classical narrow sense heritability when using multi-omics data
to predict phenotypes.

Assessment of Predictive Abilities
Due to the transmission of genetic information from DNA
sequence to transcripts, information at the gene expression
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layer (transcriptome) is “closer” to phenotypes than genomic
information, and thus should help providing better predictions
of phenotypes than genomic information. However, unlike the
DNA sequence, the transcriptome information is not stably
inherited and measurements of transcriptome abundance are
affected by choice of tissue, time of sampling and experimental
conditions. In this study, predictive abilities of RKHS obtained
on 9 traits were relatively low (0.001 to 0.182 in female,
0.036 to 0.107 in male), and were much lower than predictive
abilities obtained with GBLUP using SNP data. A similar
result was also shown in maize, where predictive abilities of
transcriptomic prediction were always lower than the genomic
prediction when comparing both using eight statistical models
(Xu et al., 2017). RKHS and GRBLUP performed significantly
better than TBLUP and GTBLUP, indicating that RKHS with a
Gaussian should be preferred when conducting transcriptome-
based prediction.

For GBLUP, we found predictive ability and the phenotypic
variance component explained by SNP data to be highly
positively correlated with correlation coefficients of 0.73 and 0.89
for females and males, respectively. However, the phenotypic
variance explained by SNP data was exceedingly high (>0.8) for
some traits, such as STV, AST, OP2H in females and STV, AST,
FI, OPIC in males, while the predictive abilities for these traits
were relatively low. The reason could be the small sample size
of lines and this result was consistent with the previous study
for starvation resistance and startle response which the predictive
abilities were 0.239 ± 0.012 and 0.23 ± 0.012, respectively. Ober
et al. (2012) showed that the predictive ability could reach 0.58 if
the number of sequenced lines for training was increased to 1,000
(Ober et al., 2012).

We incorporated transcriptome data with genomic prediction
using GRBLUP which combine the standard GBLUP and the
RKHS method. From an RKHS point of view, the genomic
relationship matrix G in GBLUP can be viewed as a parametric
kernel that only captures genetic values based on an additive
genetic relationship among individuals. The Gaussian kernel
is a non-parametric kernel which may pick up genetic signals
regardless of the underlying genetic architecture. Choosing the
most suitable bandwidth parameter h can provide an optimal

σ 2
k

σ 2
k
+σ 2

e
ratio, which gives an appropriate weight to the phenotypic

variance explained by transcriptome data, leading to an
optimized predictive performance. GRBLUP can be considered
as a case of RKHS with two kernels. For the comparison between
GTBLUP and GRBLUP, the only difference between these two
methods is that two different kernels were used to construct a
relationship matrix based on transcriptome data. In GTBLUP,
we replaced the Gaussian kernel used in GRBLUP with a linear
kernel. Compared with GBLUP, the SNP and gene expression
data-based broad sense heritability H2

GT of GTBLUP was higher
than the SNP-based genomic heritability h2G of GBLUP at all 9
traits in both male and female, but GTBLUP slightly decreased
the combined predictive ability for most traits. This result
suggests that there may be an overfitting problem when using
GTBLUP to model the combined data. Xu et al. (2017) observed
an analogical result which decreased the predictive ability when

combining transcriptome data and metabolic data into genomic
prediction for six yield-related traits in maize. Compared to
GTBLUP, GRBLUP captured more genetic variance explained by
gene expression data for some traits, especially for traits with
relatively lower genomic heritability h2G in GBLUP, such as FI,
OPMS, OPIC, OP1H, OPEB in female; and AST, OP2H, OPMS,
OP2H in male. For the omics-based broad sense heritability
based on the between line effects, Ĥ2

GR was higher than Ĥ2
GT for

all 9 traits in both males and females, and GRBLUP provided
a superior predictive ability than GTBLUP across all traits.
This demonstrated that the Gaussian kernel is superior to the
linear kernel E = RRT for modeling transcriptome data in
genomic prediction.

In our result, there was only one trait (OPEB in females)
for which the predictive ability of GRBLUP (0.23) was higher
than the predictive ability of GBLUP (0.21). This indicated that
predictive ability can be improved when combining transcripts
with SNPs using GRBLUP, but it depends on the traits. For
the rest of the traits for both males and females, the SNP and
gene expression data-based heritability H2

GR was remarkably
increased compared to the SNP-based heritability h2G of GBLUP.
However, there is no significant difference in predictive ability
between GRBLUP and GBLUP, which might be caused by
the small sample size and may be changing with increased
sample sizes.

CONCLUSION

We constructed a semiparametric prediction model (GRBLUP)
with two kernels combining SNP and transcriptome data. The
parametric G kernel was used to capture the additive genetic
part, and the Gaussian kernel is a non-parametric kernel
which was used to pick up non-additive genetic effects and
biological regulation effects regardless of the underlying genetic
architecture. In our study, GRBLUP andGBLUP provided similar
predictive ability, but GRBLUP could capture more phenotypic
variance components explained by transcriptome data. The
better goodness of fit of GRBLUP in general did not translate into
a better predictive ability. It should be noted, though, that sample
size was small and gene expression was not measured at one time
point and in one specific tissue functionally linked to the trait
of interest. However, including transcriptomic data can increase
predictive ability, as was shown for the trait OLED in females.We
conclude that adding more specifically collected transcriptome
data has the potential to improve genomic predictions in larger
scale applications.
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