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While predicting the secondary structure of RNA is vital for researching its

function, determining RNA secondary structure is challenging, especially for that with

pseudoknots. Typically, several excellent computational methods can be utilized to

predict the secondary structure (with or without pseudoknots), but they have their

own merits and demerits. These methods can be classified into two categories: the

multi-sequence method and the single-sequence method. The main advantage of the

multi-sequence method lies in its use of the auxiliary sequences to assist in predicting

the secondary structure, but it can only successfully predict in the presence of multiple

highly homologous sequences. The single-sequence method is associated with the

major merit of easy operation (only need the target sequence to predict secondary

structure), but its folding parameters are the common features of diversity RNA, which

cannot describe the unique characteristics of RNA, thus potentially resulting in the low

prediction accuracy in some RNA. In this paper, “DMfold,” a method based on the

Deep Learning and Improved Base Pair Maximization Principle, is proposed to predict

the secondary structure with pseudoknots, which fully absorbs the advantages and

avoids some disadvantages of those two methods. Notably, DMfold could predict the

secondary structure of RNA by learning similar RNA in the known structures, which

uses the similar RNA sequences instead of the highly homogeneous sequences in the

multi-sequence method, thereby reducing the requirement for auxiliary sequences. In

DMfold, it only needs to input the target sequence to predict the secondary structure.

Its folding parameters are fully extracted automatically by deep learning, which could

avoid the lack of folding parameters in the single-sequence method. Experiments show

that our method is not only simple to operate, but also improves the prediction accuracy

compared to multiple excellent prediction methods. A repository containing our code can

be found at https://github.com/linyuwangPHD/RNA-Secondary-Structure-Database.

Keywords: RNA, secondary structure prediction, pseudoknot, deep learning, multi-sequence method,
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INTRODUCTION

RNA, the essential substance for all life, has played various roles
in a variety of biological processes, such as translation (Kapranov
et al., 2007), catalysis (Cech et al., 1981), and gene regulation
(Storz and Gottesman, 2006). RNA contains a larger number
of subunits that are called ribonucleotides, each of which is
comprised of four possible bases: adenine(A), guanine(G),
cytosine(C), or uracil(U). Under normal physiological
conditions, these bases can bind with one another through
the hydrogen-bond to form the secondary structure. Typically,
the RNA secondary structure is a set of stems that are stacked
with base pairs, while a base pair may be formed by three
possible combinations of nucleotides, including A-U, G-C, and
G-U, among which, A-U and G-C are called Watson-Crick
pairs (Watson and Crick, 1953), while G-U is referred to
as Wobble pair (Varani and Mcclain, 2000). The secondary
structure information of RNA is of vital importance, since RNA
functions largely depend on its secondary structure (Correll
et al., 1997). Hence, predicting the RNA secondary structure
is a bridge to understanding RNA functions. While the RNA
secondary structure can be directly acquired through x-ray
crystal diffraction or nuclear magnetic resonance; both of them
are highly accurate and reliable, but they are restricted by their
high price, slow and difficult operation. Therefore, it is necessary
to develop mathematical and computational methods to predict
the RNA secondary structure.

Computational methods have been used for over 40 years,
dozens of methods have been proposed to predict the RNA
secondary structure (with or without pseudoknots). These
methods can mainly be classified into two categories based on
the different prediction principles (Zhu et al., 2018): the multi-
sequence method (MPM) (Hofacker and Stadler, 1999; Knudsen
and Hein, 2003; Bernhart et al., 2008; Wilm et al., 2008) and the
single-sequence method (SPM) (Eddy and Durbin, 1994; Zuker,
2003; Mathews, 2006; Zhu et al., 2018). The MPM can derive the
secondary structure based on multiple homologous sequences
using a comparative analysis model, which is the most accurate
computational method for predicting the RNA secondary
structure. However, it cannot predict the secondary structure
when there are only some lowly homologous sequences, which
can ascribe to its high requirement for homology sequences.
The SPM can use a large number of parameters to predict
the secondary structure, such as thermodynamic model (Zuker,
2003; Mathews, 2006) and statistical learning model (Eddy and
Durbin, 1994; Zhu et al., 2018), and it can achieve favorably
high accuracy of prediction results when those parameters are
comprehensive and accurate. Unfortunately, the comprehensive
and accurate parameters can hardly be obtained for different
types of RNA through biological experiments or mathematical
statistics, and the insufficient parameters may result in the low
prediction accuracy in some RNA.

Abbreviations: MPM, Multi-sequence method; SPM, Single-sequence method;

IBPMP, Improved Base Pair Maximization Principle; CSCP, Candidate stems

combination principle; PCR, Prediction complementary region.

Pseudoknots have been shown in numerous studies to possess
biological functions, which is thereby important to predict
the secondary structure with pseudoknots. This paper aims to
predict the RNA secondary structure with pseudoknots, which
have been discovered in various RNA types, such as transfer-
messenger RNA, ribosomal RNA, and viral RNA. Moreover,
pseudoknots have been recognized to be involved in regulating
translation, splicing, and ribosomal frame shifting (Brierley
et al., 2007). Hence, predicting the RNA secondary structure
with pseudoknots is closer to the natural structure, which
contributes to a better understanding of RNA functions. To
the best of our knowledge, very few tools have combined
the merits of both MPM and SPM in predicting the RNA
secondary structure with pseudoknots. Therefore, a new method
is proposed in this paper to predict the RNA secondary structure
with pseudoknots based on the Deep Learning and Improved
Base Pair Maximization Principle (IBPMP), which is called
“DMfold.” DMfold combines the advantages of both MPM and
SPM while avoiding the disadvantages of them. For instance,
similar to MPM, DMfold could use the known structure of
RNA to help predict the secondary structure; meanwhile, unlike
MPM, DMfold would use similar sequences instead of the
highly homologous sequences, which reduces the requirement
for auxiliary sequences and improve the algorithm availability.
Similar to SPM, DMfold only needs to input the target sequence
to predict the secondary structure, but it would use the deep
learning model to automatically exact the RNA features that
could avoid insufficient features and improve the prediction
accuracy, which is different from SPM.

DMfold is a single model, which simultaneously using known
structural data from multiple of families as learning and training
data, to predict the secondary structure with pseudoknots of
several different RNA. The secondary structure of RNA could
be regarded to be composed of three types pseudoknot-free
substructures (Danaee et al., 2018), each of which is represented
by different types of symbols. Hence, the structural data of
RNA can be transformed into dot-bracket sequences. Before
the prediction process of DMfold, the structural data should be
transformed into dot-bracket sequences (Danaee et al., 2018).
Subsequently, the RNA sequences and dot-bracket sequences
are used as the input and label in DMfold, respectively. After
processing of RNA data, DMfold would use a deep learning
model composed of encoder and decoder to complete the
prediction from RNA sequences to dot-bracket sequences.
Thereafter, DMfold would employ the IBPMP to obtain three
pseudoknot-free substructures through selecting and combining
the stems in the prediction dot-bracket sequences. Finally, the
secondary structure with pseudoknots could be predicted by
combining those substructures.

MATERIALS AND METHODS

Data Collection and Processing
The original data used in this paper is same as the recent literature
(Ward et al., 2017), which comes from the public database of
Mathews lab. The dataset comprises 3,975 known RNA primary
sequences and structure pairs. The sequences and structure
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pairs of 5sRNA, tRNA, tmRNA, and RNaseP are selected as the
experimental data. Details of data usage can be found inTable S1.
The following steps are employed to transform the raw data into
mature data.

Data Cleaning
The tool of CD-HIT (The word_length is 10 and threshold is 1.0)
(Fu et al., 2012) is adopted to remove the duplicate data and then
coding to remove the data that contains the unknown bases.

Structure Format Conversion
As structural data is the non-sequence data, the original structure
data format is transformed into the dot-bracket format (Danaee
et al., 2018), which contains seven symbols. Figure 1 represents
the transform regular between the original RNA secondary
structure and dot-bracket sequences.

After these two steps, the clean RNA sequences and dot-
bracket sequences could be obtained, which are used as the input
and label in DMfold.

Method
The Prediction Unit (PU) and Correction Unit (CU) are created
as the two parts of DMfold. PU is a sequence to sequence
Deep Learningmodel, which uses three-layer bidirectional LSTM
(TBI-LSTM, which the dimension of the initial vector in each
direction is 1∗300) (Sutskever et al., 2014) as the encoder and
four fully connected layer (FFCL) as the decoder to complete
the prediction from RNA sequences to dot-bracket sequences. As
there are some errors in the prediction results of PU, CU must
be used to modify the prediction results and output the correct
prediction dot-bracket sequence for each of RNA sequence.
Specifically, CU could accomplish the task of modification and
output the final prediction secondary structure based on IBPMP.
Figure 2 displays the architecture of “DMfold.” As could be
seen, DMfold first adopts the one-hot encoding to transform

FIGURE 1 | RNA structure can be decomposed into three pseudoknot-free

substructures. Each color represents a substructure. There are three types of

parentheses and a dot in the figure. The brackets represent the paired bases,

the dots represent unpaired bases. Each pair of brackets corresponds to a

separate substructure, and the edges, which represent the base pairs, are

nested in a substructure.

each of base into a vector (1∗8). (Table 1 presents the rules of
transformation between bases and one-hot vectors). Afterwards,
DMfold could use those vectors (1∗8) as the input of encoder,
in which each vector (1∗8) is encoded into a vector (1∗600)
containing the context information. Subsequently, the decoder
could map the vector (1∗600) to a secondary structure symbol,
which employs the one-hot vector of the real symbol as the
label (Table 2 shows the rules of transformation between dot-
bracket symbols and one-hot vector). After all bases in an RNA
sequence has been predicted by PU, the prediction results are
then processed by CU and the prediction secondary structure
with pseudoknots is output.

Prediction Unit
PU is comprised of two parts: encoder and decoder, among
which, the encoder is responsible for encoding the context-
dependent bases into vectors (1∗600) with context information,
while the decoder is responsible for decoding those vectors
(1∗600) into the secondary structure symbols corresponding to
those bases.

Encoder
The encoder model is built based on the LSTM architecture,
which uses the memory cells to update and replace information,
and is superior in finding and exploiting the long-range
dependencies in context. Specifically, LSTM has been successfully
applied in speech recognition (Graves et al., 2013), machine
translation (Cho et al., 2014), and sequence to sequence learning
(Sutskever et al., 2014). Figure S1 illustrates a single LSTM
memory cell. As could be observed from the figure, some self-
parameterized control gates are used to access, write and clear
the cell. One advantage of using the gates to control information
flow in the memory cell is that the gradient would be trapped in
the cell, which could prevent from banishing too quickly, and it
is a critical problem in the RNN model. The LSTM memory cell
could be implemented as follows:

iṫ = σ (wxi+ whiht−1+ wciCt−1+ bi)

ft = σ (wxf xt+ whf ht−1+ wCfCt−1+ bf )

ct = ftCt−1+ ittanh(wxcxt+ whcht−1+ bc)

Ot = σ (wxoxt+ whoht−1+ wcoCt + bo)

ht = Ottanh(Ct)

where σ is the logistic sigmoid function, while i, f, o, and c are the
input gate, forget gate, output gate and cell vector, respectively,
and all of them are at the same dimension as the hidden vector
h (The dimension is 1∗300). Meanwhile, w denotes the weight
matrices and the b indicates the bias vectors.

In this paper, the RNA sequences are considered as long-
distance context-dependent sequences. Hence, it is necessary to
access both past and future features for each base in the task of
predicting from the RNA sequences to the dot-bracket sequences.
In DMfold, a three-layer BI-LSTM model is used as the encoder,
which consisted of both forward and backward networks. The
forward LSTM processed the RNA sequences from left to right,
whereas the backward LSTM processed in the reverse order.
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FIGURE 2 | The schematic diagram of DMfold Architecture, which contains two parts: PU and CU. PU is a deep learning model, mainly responsible for predicting the

input RNA sequences as dot-bracket sequences. CU is mainly to correct the prediction dot-bracket sequences and output the prediction secondary structure.

Therefore, two hidden state sequences could be obtained, one

from the forward network
(−→
h1 ,
−→
h2 , . . . ,

−→
hn

)

, and the other

one from the backward one (
←−
h1 ,

←−
h2 , . . . ,

←−
hn ). Moreover, the

encoder could concatenate the forward and the backward hidden
state of each input vector, resulting in hm =

[−→
hm ;

←−
hm

]

. In this

way, the encoding vector (1∗600) of each input vector (1∗8) could
be obtained. Figure S2 is a schematic diagram of the encoder.
After inputting a vector (1∗8), the feature of multi-layer BI-LSTM
could be used to encode the input vector (1∗8) with its context
information into a vector (1∗600).

Decoder
It is necessary to map the vector (1∗600) to an RNA secondary
structure symbol after a base is encoded to a vector (1∗600).
In this paper, a four-layer fully connected neural network is
proposed to accomplish the mapping work. Figure S3 shows the
architecture of the decoder, consisting of one input layer, two
hidden layers, and one output layer. The numbers of nodes in
each layer are 600, 1024, 512, and 7, respectively. In the network,
ReLU is used as the activation function, while the vector (1∗600)
is used as the input. The fully connected neural network could be

TABLE 1 | The rules of transformation between bases and One-Hot vectors

(Details can be found in Supplementary Materials).

Input base One-Hot encoding

A 10000010

U 00101000

G 01000010

C 00100100

N (padding base) 00000000

implemented as follows:

y=ReLU(wx+b)

where ReLU is the activation function, w is the weight matrices, b
is the bias vectors. x and y are the input and output between any
two layers.

There are seven nodes in the output layer, each of the node
contains an output value, and the largest value is set as 1, whereas
the other nodes are set as 0, which correspond to the one-
hot vector of dot-bracket symbols. Hence, the result of each
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TABLE 2 | The rules of transformation between dot-brackets and One-Hot

vectors (Details can be found in Supplementary Materials).

Dot-bracket symbols One-Hot encoding

( 1000000

) 0000001

. 0001000

[ 0100000

] 0000010

{ 0010000

} 0000100

N (padding symbols) 0000000

FIGURE 3 | The mean accuracy and loss of training and testing in the 10-fold

cross-validation experiments, in which the brown and green curve represents

the accuracy of training and testing, and the red and blue curve represents the

loss of training and testing.

base is 1000000, 0000001, 0001000, 0100000, 0000010, 0010000,
or 0000100.

PU training and testing
The clean data is divided into three sub-sets: including (1) pure
testing set containing 10% of all the clean data that is untouched
during the learning phase; and (2) the training set and validation
set, which are created by the 10-fold cross-validation for the
remaining clean data. As the RNA sequences and Dot-Bracket
sequences vary in length, and they should be intercepted or
padded to have the same length. For those sequences with the
length of <300, “N” is padded to those sequences until the
length is equal to 300. Meanwhile, the remaining sequences are
intercepted from the beginning into multi sub-sequences that
contain 300 bases. The overlap length between two consecutive
sub-sequences is 200. Finally, “N” is padded to the sub-sequences
with the length of <300, and the same length sequences are used
to train and test PU.

In PU, the cross-entropy loss (CEL) is employed to quantify
the training errors and the goal is tominimize CEL. The complete
training details are given below:

(1) A normal distribution with a standard deviation of 0.1 initial
all weights and biases is used.

(2) The dropout (the value is 0.9 in the encoder and decoder,
respectively) function is used to prevent overfitting.

(3) The Back-Propagation through Time (BPTT) algorithm is
employed to compute the gradient, while the Adaptive
Moment Estimation Optimizer algorithm is utilized to reduce
the gradient.

(4) Subsequently, PU is trained for a total of 50 epochs at a
learning rate of 0.002. After each epoch, the learning rate decay
is used to reduce the learning rate.

As PU is a deep learning model, the 10-fold cross-validation is
employed to verify the stable performance of PU. In each fold
experiment, 50 epochs are trained, and the loss and accuracy of
each epoch are recorded for both the training set and the testing
set. Figure 3 shows the average loss and accuracy at each epoch in
the 10-fold cross-validation experiments. As could be observed,
after the 40th epoch, the test loss and accuracy are tending to
be stable, with the highest testing accuracy of 87.8%, indicating
that PU could successfully complete the prediction from RNA
sequences to dot-bracket sequences.

Correction Unit
After an RNA sequence has been predicted by PU, those
prediction results of the padding bases are removed and
the multiple sub-sequences prediction results are spliced. The
processed prediction results are the input of CU. Typically, the
RNA secondary structure could be considered as a combination
of stems and loops (Sakakibara et al., 2007), each stem contains
two complementary regions: 5′ complementary region (5′-
CR) and 3′ complementary region (3′-CR), and each loop is
comprised of multiple unpaired bases. Hence, according to
different substructure, the continuous “1000000,” “0100000,”
or “0010000” represent the prediction 5′-CR (5′-PCR) in the
prediction results; whereas the continuous “0000001,” “0000010,”
or “0000100” stand for the prediction 3′-CR (3′-PCR) in the
prediction results, and the continuous “0001000” indicates the
prediction loop in the prediction results.

According to different types of pseudoknot-free substructures,
PCRs could be divided into three sets, each set contains all the
5′-PCRs and 3′-PCRs of a pseudoknot-free substructure, such as
all continuous “1000000” and “0000001” in a set, all continuous
“0100000” and “0000010” in a set, and all continuous “0010000”
and “0000100” in a set. In CU, the IBPMP is employed to
find the optimal compatible stem combinations for each set,
which represent the prediction pseudoknot-free substructures.
Then, those three pseudoknot-free substructures are combined
to obtain the prediction secondary structure with pseudoknots.

Some definitions and operation
Matrix: An n×n upper triangular matrix is created to store all the
potential maximal stems for each RNA sequence (n represents the
sequence length), in which the specific row and column stand for
the corresponding nucleotides in the sequence. For example, row
i and column j represents the ith and jth nucleotides, respectively.
Accordingly, a position in the matrix that could form a base pair
would then be marked as 1; otherwise, it would be denoted as 0.
Each of themaximal stem represents a diagonal line in theMatrix.
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Stem: For an RNA sequence, if two disjoint areas could be
paired reversely to form m continuous base pairs, then those m
continuous base pairs are deemed as a stem. A stem could be
expressed as a triplet stm = (S,E, L), among which, S and E
are the subscripts that are the closest to the 5′ end and 3′ end,
respectively, whereas L represents the length.

Compatible: For any two stems in the RNA sequence stm1 =

(S1,E1, L1) and stm2 = (S2,E2, L2), if (E1 < S2) or (E2 < S1) or
(S1+L1−1 < S2 and E2−L2+1 < E1 ) or (S2+L2−1 < S1 and
E1−L1+1 < E2), then stem1 is compatible with stem2; otherwise,
those two stems are incompatible.

Rate: After multiple (>1) PCRs have been performed to search
for the optimal combination of stems, the usage rate of those
PCRs should be calculated according to the stems. Firstly, those
PCRs should be divided into two categories, including 5′-PCR
and 3′-PCR, with the number bases of H and G, respectively. For
the combination stems, the number of bases in 5′-CR and 3′-CR
which contained in 5′-PCR and 3′-PCR are counted as h and g,
respectively. Besides, the usage rates of 5′-PCR and 3′-PCR are
calculated according to the following formulas: 5′-Rate = h/H
and 3′-Rate= g/G, respectively, while that of all PCRs is recorded
as Rate= (5′-Rate+ 3′-Rate)/2.

Extend: When extending the stems in a combination, those stems
are first located to the corresponding positions of Matrix before
they are extended using the maximal stems. The extension parts
of each stem would not overlap with other stems; meanwhile,
those extension parts of any two stems would not overlap.

IBPMP
For each of the PCRs set, the original Base Pair Maximization
Principle (Eddy, 2004) would be used to search for the longest
combination of stems if all PCRs are completely correct.
Unfortunately, there are always some errors in the set, so the
IBPMP instead of the original principle is used to find the
optimal compatible stem combinations, which might not the
longest stem combination. The difference between IBPMP and
original principle could mainly be reflected in two aspects. On
the one hand, different from the original principle by which
stems could be formed in all complementary regions (Eddy,
2004), the new principle stipulates that stems only could be
produced between 5′-PCR and 3′-PCR (the relationships between
the 5′-PCR subscripts i and j, and the 3′-PCR subscripts p and
q follow the order of i<j<p<q). On the other hand, unlike
the original principle in which all the stems are selected in
the RNA sequence simultaneously as the candidate stems and
each stem has the same priority to find the longest compatible
stem combination (Eddy, 2004), the new principle selects the
candidate stems in multiple steps, and different priorities are
used in each step to combine the candidate stems. Noteworthily,
the time and space complexities of IBPMP are greatly reduced
compared with the original principle. Figure 4A is the procedure
of IBPMP.

The candidate stems combination principle (CSCP) is the key
of IBPMP, which stipulates that a longer stem is associated with
a higher priority, and those stems would be combined based on

the priority of candidate stems from high to low (Those stems
with the same priority would be combined simultaneously).
Figures 4B,C shows the principle of CSCP, which Figure 4B

is the procedure of CSCP and Figure 4C is an example. As
could be observed in Figure 4C, each node contains a “C” set,
which represents the optimal combination of the node. Of them,
the “C” in the root node stand for the initial set (might be
empty), while the other “C” are generated layer-by-layer by
adding several new stems to the “C” in their parent nodes,
the new stems are not only compatible between themselves
but also compatible with all stems in their parent nodes. In
addition, the “C” contained in the lowest layer leaf nodes stand
for the optimal compatible combination results. When all the
candidate stems of the same priority are combined, all the
random combinations of those stems would be generated first,
with the number ranging from 1 to O (O represents the number
of those stems). Later, the compatible longest stem combinations
would be selected, and each of stem is compatible with all the
stems in their father nodes. Finally, all the selected combinations
are added to “C” of their compatible father nodes, respectively,
and different sub-nodes would then be generated with new
“C.” Such as (shown in Figure 4C), seven stem combinations,
including (S4), (S5), (S6), (S4, S5), (S4, S6), (S5, S6), and (S4, S5,
S6), would first be produced when S4, S5, and S6 are combined.
Then, those compatible longest stem combinations would be
selected, and each of stem is compatible with all stems in B or
C. Finally, (S4, S6) is selected as the new stem combination,
and S4 and S6 are later added to “C” in node B to generate
node D.

There are two kinds of candidate stem selection and
combination in each step, among which, the first kind of
selection is to select all the stems among multiple PCRs as the
candidate stems to produce the first kind of stem combinations
based on CSCP. If the first kind of stem combinations could
satisfy the conditions of the current step, then collect all the
appropriate stems in those combinations (The secondary kind of
selection) as the candidate stems. Afterwards, all the secondary
selection stems would be used to produce the secondary kind
of stem combinations based on CSCP, which stand for the
optimal results of each step. The details of each step are
presented below:

The first step: Firstly, all PCRs are randomly combined,
and each of the combinable result involves n (n ≥ 2) PCRs.
Afterwards, results containing the PCRs that could not form the
stems would be removed; for instance, the minimum subscript
PCR is 3′-PCR or the maximum subscript PCR is 5′-PCR. For
each of the remaining combinable result, the bases of 5′-PCRs
and 3′-PCRs in the rows and columns of Matrix are located,
respectively. All the stems in all fixed areas are collected (The
first kind of collection) as the candidate stems, and the subscripts
of 5′-PCR i and j as well as those of 3′-PCR p and q follow the
order of i<j<p<q. For example, if some bases contained in a
5′-PCR have the subscripts from ith to jth, and some contained
in 3′-PCR have the subscripts from pth to qth, then the ith to
jth rows and pth to qth columns in Matrix would be located,
and all the stems of the area would be collected in the case of
i<j<p<q. Based on the collected candidate stems, CSCP (the
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FIGURE 4 | The principle diagram of IBPMP. (A) is the procedure of IBPMP, which contains two parts: initialization and algorithm section. In the initialization, the

procedure processes the prediction results of PU as the input of CU. In the algorithm section, it obtains the prediction secondary with pseudoknots. See below for

details of FirstStep, SecondaryStep, and ThirdStep. (B) The procedure of CSCP, which contains two parts: initialization and algorithm section. In the initialization, it

collects all stems and set priority for them. In the algorithm section, it obtains the optimal stem combinations. (C) is an example of the CSCP.

initial “C” is empty) is used to obtain the first kind of optimal
stem combinations and to compute the rate. If the rate is 1,
then all the appropriate stems would be collected (The secondary
kind collection). After processing all the remaining combinable
results, all the collected stems are the candidate stems of the

step. Secondly, the CSCP (the initial “C” is “OptimalSet,” which
is an empty set before the first step) is also employed to obtain
the secondary kind of optimal stem combinations “OptimalSet.”
Finally, the PCRs that have formed stems would be removed. The
above operation would be repeated, the initial value of n is 2, and
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each of epoch operation is increased by 1 until the value of n
approaches to 4.

The secondary step: Firstly, all the remaining PCRs are
randomly combined, and each of the combinable result contains
two PCRs. Then, the results containing PCRs that could not
form stems would be removed. For each of the remaining
combinable result, the bases of 5′-PCRs and 3′-PCRs would be
located in the rows and columns of Matrix, respectively. All the
stems in the fixed areas are then collected (The first kind of
collection) as the candidate stems, and the subscripts of 5′-PCR
i and j as well as those of 3′-PCR p and q follow the order of
i<j<p<q. Based on the collected candidate stems, CSCP (the
initial “C” is empty) is used to obtain the first kind of optimal
stem combinations and to compute the rate. If one single usage
rate (5′-Rate or 3′-Rate) is 1, then all the appropriate stems
would be collected (The secondary kind of collection). After
processing all the remaining combinable results, all the collected
stems represent the candidate stems of the step. Secondly, the
CSCP (the initial “C” is “OptimalSet”) is also utilized to obtain
the secondary kind of optimal stem combinations “OptimalSet.”
Finally, the PCRs with the single usage rate of 1 would
be removed.

The third step: In this step, all the remaining PCRs are
randomly combined first of all, and each of the combinable result
contains two PCRs. Then, the results containing PCRs that could
not form stems would be removed. For each of the remaining
combinable result, the bases of 5′-PCRs and 3′-PCRs would be
located in the rows and columns of Matrix, respectively. Then,
all the stems in the fixed areas would be collected (The first kind
collection) as the candidate stems, and the subscripts of 5′-PCR
i and j as well as those of 3′-PCR p and q follow the order of
i<j<p<q. Subsequently, the CSCP (the initial “C” is empty) is
employed to obtain the first kind of optimal stems combination
and to compute the rate. All the appropriate stems would be
collected (The secondary kind of collection) as the candidate
stems if the usage rate is >0.6. After processing all the remaining
combinable results, all the collected stems are the candidate stems
of the step. Secondly, the CSCP (the initial “C” is “OptimalSet”)
is then used to obtain the secondary kind of optimal stems
combination “OptimalSet.”

Repeating the above operation allows to obtain the prediction
pseudoknot-free substructures of each PCRs set, and those
substructures are then randomly combined to produce the final
stem combinations, each of which only contains one substructure
of each PCRs set. Additionally, the final stem combinations
would also be extended to get the prediction secondary
structure with pseudoknots. Eventually, the prediction structure
would be transformed into the dot-bracket sequences and
output them.

Performance Measurement
For the same RNA, the prediction structures of some methods
contain pseudoknots and some don’t contain pseudoknots.
Since the pseudoknots are formed by the intersection of stems
and the non-pseudoknot structures are formed by nested
stems. Therefore, we can calculate the accuracy of the base
pairs to represent the accuracy of prediction structures. So

that, the prediction structures can be compared between
different methods.

To estimate the accuracy of the prediction results for
DMfold and other methods, the indexes of sensitivity (SEN)
and positive predictive value (PPV) are commonly used (Seetin
and Mathews, 2012), among which, SEN could measure the
ability to find the positive base pairs, while PPV could measure
the ability of not folding false positive base pairs. To be
specific, SEN and PPV could be defined by equation (1) and
(2), respectively.

SEN=TP/(TP+FN) (1)

PPV=TP/(TP+FP) (2)

where TP (true positive) is the number of matched bases that are
correctly predicted, FN (false negative) is the number of existing
matched bases that are not predicted, and FP (false positive) is
the number of matched bases that are incorrectly predicted.

Generally, the requirements of SEN and PPV could not
be satisfied simultaneously when comparing the accuracy of
those prediction results. Therefore, the F-score (Yonemoto
et al., 2015) is used to comprehensively evaluate the prediction
results, which is harmonic mean of SEN and PPV. Specifically,
the value of F-score [can be defined by equation (3)] ranges
from 0 to 1, 0 indicates that the prediction structure has
no common base pair with the real structure, whereas 1
suggests that the prediction structure is the same to the
real structure.

F− score= 2 ∗ ((SEN + PPV) / (SEN ∗ PPV)) (3)

RESULTS

In this section, the prediction results of our method would be
presented and our method would be compared with several
excellent methods, including mfold (Zuker, 2003), RNAfold
(Zuker and Stiegler, 1981), cofold (Proctor and Meyer, 2013),
Ipknot (Kengo et al., 2011), and Probknot (Bellaousov and
Mathews, 2010). Among those methods, mfold, RNAfold, and
cofold could predict the pseudoknot-free secondary structure,
while Ipknot and Probknot could predict the secondary structure
with pseudoknots. Therefore, those comparison methods include
methods for predicting pseudoknots and pseudoknots-free,
which can compare the performance of our method more
comprehensively. In this paper, the prediction results of multiple
methods are compared in two aspects: performance and structure
visualization. The performance comparison is mainly to test the
accuracy of predicting base pairs, while the structure visualization
comparison is mainly to testing which results is closer to the
natural structure. To facilitate comparison among methods, the
structure with the highest value of F-score would be selected as
the prediction structure when an RNA sequence is predicted by
a method.

Performance Comparison
In this paper, data in the Testing set is classified according to
the RNA family, and the prediction results are compared among
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different families. When calculating the parameters (SEN, PPV,
and F-score) of DMfold, the values of those parameters in each
fold experiment are obtained, which represent the means of
all the RNA sequences in different families. Accordingly, the
means of those parameters in 10-fold cross-experiments stand
for the prediction parameters of DMfold. When calculating
the parameters (SEN, PPV, and F-score) of other methods, all
parameters of each RNA sequences would be obtained, and the
mean parameters in different families represent the prediction
parameters of other methods.

Table 3 compares the prediction results of our method and
other methods on tRNA and 5sRNA, which represent of the
short RNA sequences with the length of 70–200. It could be
obviously seen that the SEN, PPV, and F-score of DMfold are
higher than those of the other methods in terms of tRNA and
5sRNA. Therefore, DMfold is superior to other excellent methods
for short RNA sequences.Table 4 compares the prediction results
of our method and other methods on tmRNA and RNaseP, which
represent the long RNA sequences that are 300–500 in length. It
could be discovered that the parameters of SEN, PPV, and F-score
of DMfold are higher than those of other methods in tmRNA.
SEN and F-score in RNaseP of DMfold are at the common level,
but PPV is optimal, suggesting that the prediction results of
DMfold in RNaseP are associated with the least proportion of
false positive bases. These two tables have verified that DMfold
could effectively predict the secondary structure of both short and
long RNA sequences.

Structure Visualization Comparison
Since the function of RNA is highly correlated with the shape
of its secondary structure, we compare different methods
by observing the visualization maps. First, a tRNA molecule
(tRNA_tdbR00000143-Asterias_amurensis-7602-His-QUG) is
randomly selected in the testing set, and the prediction results of
those six methods are obtained. Then use the forna tool (Gruber
et al., 2015) to get the visualization maps of those prediction
results. Figure 5 shows the visual representation of the real
and prediction structures. As shown, the DMfold structure and
the real structure have four branches on the bifurcation loop,
forming the typical clover shape of tRNA, which is the key
to transport amino acids. The prediction structures of mfold,
RNAfold, cofold, and ProbKnot lack a branch in bifurcation
loop, which can seriously affect the function of tRNA. The IPknot
method only successfully prediction two branches, which is also
seriously inconsistent with the real structure. Although the
structure predicted by our method is not completely correct, it is
the closest to the natural structure compared to other methods.
Therefore, our method is more conducive to the study of RNA
function. See the Supplementary Materials for the visualization
comparison of the other three families (Figures S4–S6).

DISCUSSION

In this paper, a new method is proposed to solve the problem
of predicting the RNA secondary structure with pseudoknots.
Actually, computational methods have been used for over 40
years to predict the secondary structure of RNA. Although many

TABLE 3 | The comparison between DMfold and other methods on 5sRNA and

tRNA.

Method tRNA 5sRNA

SEN PPV F-score SEN PPV F-score

mfold 0.741 0.708 0.722 0.708 0.675 0.690

RNAfold 0.708 0.634 0.667 0.613 0.550 0.579

Cofold 0.627 0.595 0.609 0.578 0.548 0.562

IPknot 0.787 0.775 0.774 0.485 0.555 0.512

Probknot 0.745 0.635 0.683 0.562 0.538 0.548

DMfold 0.934 0.946 0.937 0.928 0.930 0.927

The bold value is the maximum of each column.

TABLE 4 | The comparison between DMfold and other methods on tmRNA and

RnaseP.

Method tmRNA RNaseP

SEN PPV F-score SEN PPV F-score

mfold 0.558 0.518 0.536 0.656 0.605 0.624

RNAfold 0.470 0.433 0.448 0.564 0.499 0.526

Cofold 0.358 0.329 0.342 0.518 0.481 0.495

IPknot 0.463 0.495 0.476 0.587 0.640 0.604

Probknot 0.457 0.410 0.431 0.583 0.531 0.551

DMfold 0.630 0.830 0.706 0.547 0.728 0.619

The bold value is the maximum of each column.

prediction methods have been proposed, only a few of them
can predict the RNA secondary structure with pseudoknots,
since it is an NP-hard problem (Rivas and Eddy, 1999).
In the traditional computational methods, the prediction of
pseudoknots will greatly add to the algorithmic complexity.
Hence, many methods would not predict pseudoknots or would
only predict some common pseudoknots for the sake of reducing
the algorithmic complexity (Rivas and Eddy, 1999). Different
from the traditional computational methods, our method
transforms the pseudoknots problems into the pseudoknots-free
problems, which could predict the RNA secondary structure
with all kinds of pseudoknots in a reasonable complexity.
More importantly, it can be found in the results section,
our prediction results are closer to the natural structure.
Hence, our method is more beneficial to study the function
of RNA.

The novel of our method is that first combines the Deep
learning and IBPMP to solve the problem of predicting the
secondary structure with pseudoknots. Unlike the traditional
computational methods using MPM or SPM to predict the
secondary structure, our method has taken full use of the
advantages of those two main methods. Our method uses the
auxiliary sequence to help predict RNA secondary structure
and uses the Deep Learning model to automatically extract
RNA features without using the energy or statistical parameters
in the traditional computational methods. Compared with
MSM, only the target sequence is needed in our method as
the input, which has greatly simplified the method operation.
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FIGURE 5 | The visualization results of multiple methods and real structure. Green bases represent the stem. Red bases represent the bifurcation loop and unpaired

single chain. Blue bases represent the hairpin loop. Yellow bases represent the interior and bulge loop.

Besides, compared with SPM, our method could effectively break
through the restriction of parameter insufficiency in traditional
computational methods.

Moreover, in order to improve the credibility of our method,
the 10-fold cross-validation experiments are employed to train
and test our method, and both short and long RNA are included
in the experimental data. As could be discovered from the
results section, the prediction accuracy of our method in short
RNA sequences is greatly improved relative to that of the other
methods. In long RNA sequences, the accuracy of our method is
not as good as that in short RNA sequences, but the prediction
results are also improved. Two reasons may be responsible for
such phenomenon; on the one hand, the topology of short RNA
sequences is simple and existing data can support short sequences

learning and predicting; on the other hand, the topology of long
RNA sequences is complex and the existing long sequences are
insufficient to support the learning and predicting. These results
indicate that the accuracy of our method on long RNA sequences
remains to be further improved with the accumulation of known
structural data.

The improved prediction accuracy can be due to that different
RNA in the different microenvironment. Hence, these differences
in microenvironment may result in RNA folding along different
rules, indicating that the traditional computational methods
taking the common folding rules are not favorable for predicting
the multi-type RNA secondary structures, especially those with
pseudoknots. On this basis, our method learning from different
types of RNA and predicting the similar RNA structure, which
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could effectively avoid the low prediction accuracy caused
by single rules. Compared with the traditional computational
methods, our method is more suitable for predicting the multiple
different types of RNA secondary structure.

Our method is associate with many advantages, nonetheless,
it is also inevitably link with certain limitations. Because our
method contains a deep learning model, it needs a large number
of similar RNA with known structures to learn features for
different types of RNA. Therefore, the prediction accuracy might
be reduced in the presence of insufficient similar sequences, so
the use space of our method is partly limited. Despite some
limitations in the use space of our method, the use space is
promising to be gradually growing along with the increase in the
number of secondary structures found.
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