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A recent focus of computational biology has been to integrate the complementary

information available inmolecular profiles as well as inmultiple network databases in order

to identify connected regions that show significant changes under different conditions.

This allows for capturing dynamic and condition-specific mechanisms of the underlying

phenomena and disease stages. Here we review 22 such integrative approaches for

active module identification published over the last decade. This article only focuses on

tools that are currently available for use and are well-maintained. We compare these

methods focusing on their primary features, integrative abilities, network structures,

mathematical models, and implementations. We also provide real-world scenarios in

which these methods have been successfully applied, as well as highlight outstanding

challenges in the field that remain to be addressed. The main objective of this review is to

help potential users and researchers to choose the best method that is suitable for their

data and analysis purpose.

Keywords: active module, active subnetwork, subnetwork identification, data integration, PPI network, network

analysis

1. INTRODUCTION

From human society to cellular activity, collaborative interactions, i.e., small units working in
concert to accomplish certain functions, are an essential part of life. In complex multicellular
organisms, their survival and health depend on the integrated activity of billions or trillions of
cells organized into organ systems. Even in a single cell, the smallest structural and biological unit
of life, fundamental processes, from DNA replication and energy production, to intercellular and
intracellular signaling, often involve multiple biochemical reactions and molecular interactions
taking place at multiple levels (transcriptomics, epigenomics etc.).

In order to have a good understanding of cellular functions at the systems-level, one needs to
correctly identify and interpret all functional interactions of DNA, RNA, and proteins of organisms
of interest (Szklarczyk et al., 2010). In turn, this has lead to the development of knowledge bases
of functional modules and large networks of intermolecular interactions and pathways. Biological
networks, which are graphical representation of genes, proteins, DNAs, RNAs, or even small
miRNAs and their functional interactions, are rapidly accumulated in public databases, including
HPRD (Keshava Prasad et al., 2008), DIP (Salwinski et al., 2004), KEGG (Kanehisa et al., 2017),
Reactome (Croft et al., 2014), and many other curated interactome networks developed for human
and model species (Harbison et al., 2004; Stelzl et al., 2005; Yu et al., 2008; Ravasi et al., 2010).
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Many computational approaches have been developed to mine
such interactome networks in order to better understand cellular
processes and disease mechanisms (Spirin and Mirny, 2003).
Topological modules (Girvan and Newman, 2002), within
which nodes are well-connected and the interactions are more
concentrated compared with those outside, are among the
most intensively studied research areas. However, as functional
interactions are annotated in static experimental conditions,
network databases alone fail to account for the dynamic nature
of biological systems and thus fail to provide a full representation
of cellular interactions.

Recently, with the advancement of high-throughput
technologies, biological data of different kinds have rapidly
accumulated in public repositories. Taken alone, molecular
data only represents a snapshot of biological systems and often
fail to elucidate biological mechanisms. When projected onto
biological networks, however, molecular profiles and expression
changes have the potential to reflect the perturbation of complex
cellular network and thus allow for comprehensive monitoring
of biological systems (Cowen et al., 2017; Yi et al., 2017). A
recent focus of computational biology has been to integrate the
complementary information available in molecular profiles as
well as in multiple network databases in order to identify active
modules, i.e., well-connected subnetworks that are significantly
perturbed under different conditions (Mitra et al., 2013). These
approaches have been widely applied and proven to be powerful
in elucidating biological mechanisms of underlying physiological
and disease phenotypes (Chuang et al., 2007; Bapat et al., 2010;
Qiu et al., 2010; Zhang and Ouellette, 2011; Shafi et al., 2019).

In this document, we categorize and review 22 such
subnetwork identification methods based on the following
criteria: their availability and user interface, the type of input
the method requires, subnetwork seeding and construction,
and statistical approaches used to assess the significance of the
identified subnetworks. We classify these approaches into six
different categories according to the techniques used to traverse
the global network in order to construct the active subnetworks.
In section 2, we discuss the availability, implementation, types
of experimental input and reference network databases that the
surveyed methods use. In section 3, we categorize and compare
the methods according to the way they traverse and expand
the subnetwork. In section 4, we include real-world scenarios
in which the surveyed methods were successfully applied. In
section 5, we discuss the limitations of current knowledge bases
and outstanding challenges in method development. In section 6,
we systematically recapitulate the 22 approaches by highlighting
their key characteristics and differences. We also provide detailed
descriptions for individual methods in Supplementary Material.

To the best of our knowledge, this is the first article that
provides such in-depth discussion and covers a large number
of tools for active subnetwork identification. A recent survey
of biological networks (Mitra et al., 2013) discussed active
network identification, among other topics, and provided a
list of tools. However, this article covers many topics and its
wide breadth means there was some limitation in the depth
to which these tools could be covered. In addition, many
of the tools listed there are outdated and/or not maintained

anymore. More recently, another survey (He et al., 2017)
focused on assessing the performance of 10 subnetwork analysis
methods using simulations. This survey, however, provides even
fewer details and discussion of each individual method. In
contrast, here we provide a comprehensive review of a total of
22 methods for active subnetwork identification, highlighting
their availability, implementation, applicable network databases,
underlying mathematical and algorithmic principles, as well as
advantages and limitations for each method. The main objective
of this review is to help potential users and researchers to choose
methods that are suitable for their data and analysis purpose.

2. SOFTWARE AND DATABASES

2.1. Availability and Implementation
Table 1 shows the 22 methods we review in this article. Although
more computational methods for subnetwork identification have
been published, we only review methods that are associated
with executable packages that can actually be used by people
other than the authors. This table provides the following
information about each tool: (i) their availability (link to the
tool), (ii) implementation (standalone package, web interface,
user interface, programming language), (iii) reference to the
original articles, (iv) citations, and (v) software license. We
believe that these details are crucial for users to know before
spending a significant amount of time to understand the software
and perform analyses.

One often thinks that the strengths of a computational
approach mostly depend on its algorithmic novelty and time and
space complexity. However, the availability and implementation
of the software have become more and more important (Nguyen
et al., 2018). Since there aremany tools available in themarket, if a
method is not well-implemented, potential users will simply pick
another tool that is ready-to-run. It is unlikely that life scientists,
who are the intended audience of these software, invest time to
learn a programming language in order to implement complex
algorithms reported in some papers. Practically, input and output
format, graphical user interface, programming language, user-
friendliness, and documentation are all important factors to be
considered. More importantly, since reproducibility has become
an outstanding issue recently, software availability and version
control are critical for quality control and for reproducing the
results reported in scientific papers (Sandve et al., 2013). For that
reason, many journals today require authors to make their code
available before publishing the paper.

At the time of this review, all of the 22 surveyed methods
are available as either a standalone package or a web-based tool.
Among these, there are 20 standalone packages and three web-
based tools (one tool has both standalone package and web-
based tool). Standalone tools are more often chosen to make
use of the computational power of users’ local machines or
servers. Some of these packages provide a friendly interface
for users to interact with. These software usually provides
interactive features for users to manipulate the network and
explore the data, which is illustrative and convenient. Some
of them, e.g., PinnacleZ, BMRF-Net, and jActiveModules, are
distributed as plugins of Cytoscape (Shannon et al., 2003) to
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make use of its friendly interactive interface in manipulating
networks. The rest provide command line interface or APIs for
users to conduct experiments. Users usually need a third-party
software to visualize the result networks such as Cytoscape. An
advantage of tools with a command line interface is that it is
easier for advanced users to integrate and embed these tools in
their automated analysis pipeline. Most standalone tools require
some administrative skills to install. Since these tools require
interactome data, users are expected to download, locally store,
and periodically update the network databases (partial or full
copy). A standalone tool usually does not require internet access
to perform analysis, which enhances the security and privacy of
the experimental data.

Web-based tools (ResponseNet, TimeXNet, and EnrichNet),
on the other hand, rely on a remote server to conduct analysis
and provide computational power and a graphical interface;
therefore, a local installation is generally not needed. Web-
based tools are more user-friendly than standalone tools;
however, they require an internet connection and a browser
for access. In terms of cybersecurity and data privacy, this is
considered a disadvantage compared to standalone tools. One
major advantage of web-based tools is that most updates are
transparent. In turn, this enhances the users’ performance and
enables collaboration between users by eliminating the burden of
local installation and the need to keep it up-to-date.

The choice of the programming language used for the
implementation also influences how well the method will be
received. Tools that are well-implemented and packaged are
more accepted than those that are poorly implemented or not
user-friendly. Many methods implemented in Java provide good
performance, can run on multiple platforms (Windows, Linux,
MacOS), and offer a nice interactive user interface. For packages
providing command line or APIs, it is worth to mention that
the programming language plays a vital role in attracting users.
For example, R users will prefer using an R package rather
than learning a new language (such as Python or MATLAB).
The programming language can also be an obstacle when there
is a need to integrate a tool written in a different language
to the current analysis pipeline. Most tools published as R
packages can be easily installed due to R’s user-friendly package
manager. Other standalone tools written in C++, Python, and
Ruby provide a command line interface to execute the analysis.
Tools implemented in C++ also need to be compiled before using.

We also report the number of citations (and citations per
year) for each method according to Google Scholar. Although
the number of Google citation is not the right metric to assess
a method’s novelty or performance, it partially reflects how well a
tool is accepted or known among researchers in the community.
Finally, we report the license of each software. All of the surveyed
software are free-of-charge for academic purposes. Many of them
are freely available for non-academic users as well.

2.2. Experimental Data and Network
Databases
Table 2 shows the input of each method, as well as the
corresponding network databases and applicable species. Up to
date, most methods are designed for analyzing human diseases
using protein-protein interactions. Among the 22 methods, only

six were designed to work with other species, including Rattus
norvegicus (ModuleDiscoverer), Mus musculus (MATISSE,
CEZANNE, TimeXNet), Saccharomyces cerevisiae (MATISSE,
CEZANNE, jActiveModule, ResponseNet, TimeXNet, SAMBA),
Drosophila melanogaster (MATISSE, CEZANNE), and C. elegans
(MATISSE, CEZANNE). Most methods claim to be able to
work with other species provided that the interaction network
is available.

A subnetwork detection analysis typically requires two
different kinds of input: (1) experimental data, and (2)
interactome networks. Experimental data is generally data
obtained from high-throughput technologies, such as gene
and protein expression, somatic mutation, and copy number
alteration. Among the 22 methods, only BioNet & Heinz uses
the survival information to score genes in addition to differential
analysis of expression data (Supplementary section 1.12).
Most methods are designed for comparative analysis of two
phenotypes, e.g., condition (disease) vs. control (healthy).
Among the 22 methods, only four methods can detect
subnetworks that are perturbed across multiple diseases or
conditions. These are PinnacleZ, COSINE, GLADIATOR, and
jActiveModules. These methods use statistics and tests (e.g.,
F-test, mutual information) that are able to compare more
than two groups of samples in order to score the candidate
subnetworks (see section 6 for discussions).

Different analysis methods use different input formats. There
are only three methods that use mutation profiles as input,
including RME Module Detection, HotNet, and MEMo. These
methods aim to identify subnetworks that have more genes
with mutations than expected. Most other methods accept the
whole gene expression matrix, in which rows represent genes
and columns represent samples from different phenotypes. Some
methods accept only differentially expressed (DE) genes/proteins
and their corresponding statistics (fold-change, p-value).
TimeXNet is the only method that requires time-course data in
the format of DE genes. The list of DE genes or proteins can be
obtained by using a predefined cut-off based on p-value, fold-
change, or both. Network approaches relying on input DE genes,
however, might be overly sensitive to both selection method
and cut-off threshold. First, a slight change in the threshold can
greatly alter the list of DE genes (Nam and Kim, 2008). Second,
different selection methods often produce different lists of DE
genes. For example, the list of genes with high fold-changes is
often not identical to the list of genes with significant p-values.
In addition, for the same disease, independent studies or
measurements often produce inconsistent sets of DE genes (Tan
et al., 2003; Ein-Dor et al., 2005, 2006). This makes network
analysis methods that rely on DE gene list even less reliable.

The input format for each method can be different depending
on the programming language and the implementation of the
method. For R packages, a common input of gene expression
profiles is usually a matrix object where rows represent samples
and columns represent genes (or vice versa). The input
network can be passed as an adjacency matrix representing the
relationship between nodes. For Cytoscape’s plugins, the input
network is in the format of Cytoscape network input files. With
other methods, gene expression and network data are usually
stored in flat files with a specific format defined by the software.
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Besides experimental data, most methods also require
interactome data or biological networks for their analysis.
Biological networks are graphs representing either protein-
protein networks or gene-gene networks. In these networks, the
nodes are proteins or genes, and edges are interactions between
them. Each network can contain additional information such as
directions of the interactions (in directed networks), weights of
nodes and edges, and other knowledge about the proteins, genes
or their interactions (e.g., different types of interactions). RME
Module Detection is the only method that does not require a
predefined network as input. It constructs the global network
from mutation data before extracting active subnetworks.

Among the network databases presented in Table 2, many of
them are widely used in pathway analysis such as KEGG, HPRD,
STRING, Reactome, NCI-PID, and BioGRID. In the subnetwork
analysis, while most methods use a single protein network
database to conduct the experiment, some methods, such as
jActiveModules, MOEA, MEMo, TimeXNet, and DIAMOnD,
combine multiple networks from different sources to construct
a larger network. Since overlap among network databases
is small (Chaurasia et al., 2006; Prieto and De Las Rivas,
2006), combining multiple databases can potentially increase
the knowledge about interactome networks to build a more
comprehensive biological network.

3. METHODS

Figure 1 shows the schematic representation of computational
approaches that integrate phenotypic molecular profiles with
known interactions accumulated in network databases. Most
methods start by scoring the nodes and calculate node similarity
that reflects the expression change (e.g., between disease and
control) and the correlation between genes, respectively. Then,
they adjust the scores and edge weights by taking into
consideration the topological order and interaction between
genes and proteins. The next step is to construct the subnetworks
using edge weights and node scores. Typically, each method
deploys its own subnetwork extension strategy in order to
optimize a particular subnetwork scoring function using node
scores and edge weights. After the subnetworks are constructed,
eachmethod performs a hypothesis testing to assess the statistical
significance of identified modules. Some methods also repeatedly
reconstruct the subnetwork after the statistical tests in order to
find a more optimal solution.

Here we divide the methods into 6 categories according to
the way the subnetworks are expanded: (1) greedy algorithms,
(2) evolutionary algorithms, (3) maximal clique identification,
(4) randomwalk algorithms, (5) diffusion emulation models, and
(6) clustering-based methods. We summarize the methods in
each category, providing the big picture and insights. Section 6
contains a detailed characteristics of each method.

3.1. Greedy Algorithms
In this section, we review six approaches that utilize a greedy
strategy in order to construct active subnetworks, including
GXNA (Gene eXpression Network Analysis), CEZANNE (Co-
Expression Zone ANalysis using NEtworks), MATISSE (Module

Analysis via Topology of Interactions and Similarity SEts),
DIAMOnD (DIseAse MOdule Detection), PinnacleZ, and RME
(recurrent and mutually exclusive) Module Detection.

The common flow of greedy algorithms consists of threemajor
steps: (i) seed nodes selection (ii) subnetwork expansion, and (iii)
significance testing. In the first step, the seeds can be randomly
selected nodes (GXNA and PinnacleZ), high-scoring nodes
(MATISSE and CEZANNE), user-defined nodes (DIAMOND
and GXNA), or all nodes in the network (RME Module
Detection). In the second step, each method then greedily
extends the seeds with neighboring nodes with the objective to
maximize the subnetwork’s score. The procedure is repeated until
further expansion does not increase the objective function. Some
methods introduce early stopping criteria, such as the maximum
size (RME Module Detection) or the improvement rate
(PinnacleZ). In the third step, the statistical significance of the
identified subnetworks is assessed by comparing its score against
the scores obtained from random subnetworks (CEZANNE,
PinnacleZ, RME Module Detection), or from permuting sample
and gene labels (GXNA, MATISSE, PinnacleZ). This statistical
significance of a subnetwork represents the probability of
observing such score or higher, just by chance. The smaller
the p-value, the less likely that such extreme score is observed
by chance, i.e., the more likely the subnetwork has significant
changes or significantly perturbed under the impact of the
disease. DIAMOnD is the only method in this category that does
not assess the statistical significance of the resulted subnetworks.

Greedy algorithms are fast and intuitive. However, since the
decision at each step aims to improve the current state of the
solution without paying attention to the global situation, it
does not guarantee to produce the most optimal path. In fact,
there is a high chance that the greedy algorithm does not find
the global optima. Therefore, the selection of starting points
plays a vital role in identifying optimal solutions. In addition,
since this approach depends heavily on maximizing the score of
the network by repeatedly adding adjacent nodes, the scoring
function plays a vital role in the entire analysis, affecting the
construction as well as the statistical significance of the obtained
subnetworks. The methods scoring the network based on the
similarity or correlation in gene expression change (MATISSE,
CEZANNE, RME Module Detection, and PinnacleZ) tend to
expand the modules to contain only highly similar genes, which
can result in subnetworks missing important intermediate genes.
Moreover, in some cases, these methods can produce large
subnetworks with hundreds of genes that are difficult to interpret.

3.2. Evolutionary Algorithms
Here we review five approaches that use evolutionary algorithms
to search for active modules with optimal scores: BMRF-
Net (Bagging Markov Random Field), COSINE (COndition
SpecIfic sub-NEtwork), GLADIATOR (GLobal Approach for
DIsease AssociaTed mOdule Reconstruction), jActiveModule,
and MOEA (Multi-Objective Evolutionary Algorithm). Similar
to greedy approaches, evolutionary methods first define a scoring
formula for each node and each edge as well as for a subnetwork
whose score is often a weighted aggregation of nodes and edges
belonging to the subnetwork. Each tool then uses either Generic
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FIGURE 1 | Overall workflow of active subnetwork identification. (A) Schematic representation of computational approaches that integrate molecular profiles with

known interactions accumulated in knowledge bases. Most methods start by scoring the nodes and calculating node similarity that reflects the expression change

(e.g., between disease and control) and correlation between genes, respectively. Then, they adjust the scores and edge weights by taking into consideration the

topological order and interaction between genes and proteins. The next step is to construct the subnetworks using edge weights and node scores. Typically, each

method develops a specific subnetwork extension strategy in order to optimize a specific subnetwork scoring function using node scores and edge weights. After the

subnetworks are constructed, each method performs a hypothesis testing to assess the statistical significance of identified modules. Some methods also repeatedly

reconstruct the subnetwork after statistical tests to find a more optimal solution. (B) An example network and identified active subnetwork. The subnetwork are often

a very well-connected component of the global network.

Algorithm (COSINE and MOEA) or Simulated Annealing
(BMRF-Net, GLADIATOR, and jActiveModules) to search for
an optimal subnetwork with the highest aggregate score. Among
the five methods, only BMRF-Net and jActiveModule access
the statistical significance of the obtained subnetwork using
resampling and bootstrap, respectively.

Abstractly, the subnetwork construction can be formulated as
a global optimization problem. Given p as the total number of
genes, a subnetwork is represented as a binary vector of length
p. The ith element in the vector being 1 means that the ith gene
is present in the network. Evolutionary algorithms seek to find a

binary vector that optimizes a certain scoring function. Simulated
Annealing (SA) algorithm initializes a subnetwork by assigning
each node as either active or inactive with a probability (default
1
2 ). At each iteration, the algorithm randomly chooses a node and
toggle the node’s state (from active to inactive and vice versa).
It then recalculates the aggregate score of the subnetwork. If the
new score is greater than the old score, the state of the node is
kept toggled. Otherwise, the node is kept toggled with a certain
probability (to avoid being trapped in a local minimum). The
algorithm returns the highest scoring subgraph after a number
of iterations. Note that GLADIATOR maximizes the similarity
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(using Jaccard index) between the connected modules provided
for different diseases instead of optimizing the aggregate score
of nodes and edges. The classical simulated annealing algorithm
gets its inspiration from heat treatment in metallurgy which
involves annealing metal to increase crystal size while reducing
defects (Kirkpatrick et al., 1983).

Genetic Algorithms (SA), on the other hand, are inspired by
natural selection, the process that drives biological evolution.
The algorithm initialization sets certain genes (e.g., nodes with
high scores) to 1 (active) and considers these genes as the
starting population. Individuals in the population (parents) are
then selected in pairs for reproduction based on their fitness
score, in which crossover andmutation are happening. Crossover
involves exchanging information from the parents to produce
offspring while random mutations (with a low probability) alter
the offspring to maintain diversity. The algorithm stops when the
population has converged.

Although both GA and SA produce good quality solutions
in the problem of finding optimal subnetworks, there is always
a trade-off between running time and solution quality, which is
affected by the size of the solution in GA and the temperature
decay rate in SA (Adewole et al., 2012). The advantage of these
algorithms is that they are not limited to the size and the
complexity of the search space. Therefore, it can work with
very large networks. In contrast to greedy algorithms, genetic
algorithms aim to find the global solution and have proven to
be very efficient in finding an approximation of global optima.
Since GA and SA are both efficient in solving the problem of
finding optimal subnetworks, it is important that the scoring
process reflects precisely the perturbation and signal propagation
of the subnetworks.

3.3. Diffusion-Flow Emulation Models
In this section, we discuss five methods that emulate diffusion
flow phenomena in order to construct active subnetworks. Two
of these are inspired by the heat diffusion process (HotNet and
RegMod), while three others by the water flow phenomenon
(BioNet & Heinz, ResponseNet, and TimeXNet). These are
methods that aim to find a global solution through algorithmic
optimization. Among the five, only TimeXNet and HotNet
provide a statistical significance of the obtained active modules
by using a permutation test.

Given a weighted and directed protein-protein interaction
(PPI) network, BioNet & Heinz, ResponseNet, and TimeXNet
emulate an abstract flow from a source node to a sink node
through capacity- and cost-associated edges. The objective is
to minimize the total cost from a source node to a sink node
through a linear formulation in which variables represent the
flow over each edge. Each edge of the network is assigned
with: (i) a cost that is inversely proportional to the interaction
reliability between the two connected nodes, and (ii) a flow
capacity that is proportional to the similarity in molecular
measurements of the two connected genes. The optimization
problem is then solved using constrained linear programming,
in which constraints (linear equalities or inequalities) are given
to nodes and edges. While ResponseNet and TimeXNet produce
only one optimal solution, Heinz allows users to explore different

sub-optimal networks by adding a hamming distance to the
optimal subnetwork to constrain the differences of the returned
sub-optimal networks.

Heat diffusion algorithms, HotNet and RegMod, define
the problem of finding active subnetworks as a heat diffusion
model. Given a PPI network in which nodes weight represents
initial heat, the optimization process delivers heat through
edges until the heat in the network is equilibrium. Hot
subnetworks are constructed after selecting edges transferring a
total heat amount larger than a certain threshold. RegMod
uses a heat diffusion kernel to calculate the similarity
between two nodes, then computes the score for each
gene that represents its relationship with other genes in the
network. Active subnetworks are obtained by extracting high
scoring genes.

3.4. Random Walk Algorithms
A random walk is a simulated path consisting of successive
random transitions through a mathematical space, for example,
an integer set or a 2-D plane. The transitions are not necessarily
a complete random action but rather can be biased toward
a specific direction. In a biological network, the connections
(or interaction intensities) between different pairs of proteins
are different. When applying the random walk algorithm
on the network, the walk is more likely to stay in the
subnetwork with high interactions among the members, because
the chance of the walk choose the lower interaction paths
to escape the subnetwork is small. The performance of the
algorithm is heavily affected by the method used to weight
the interactions.

Walktrap-GM (R package) and EnrichNet (web interface)
are the two tools that utilize random walks to identify active
subnetworks. EnrichNet requires a list of starting proteins
while Walktrap-GM uses as input gene expression data. To
build the weighted interaction network, Walktrap-GM calculates
the weight of each edge as the average fold-change of the
two connected nodes. In contrast, ErinchNet uses the weight
extracted from STRING 9.0 database, which could be argued to
be better, as it is combined confidence from different sources
such as curated databases, gene co-occurrence, text mining,
etc. To travel in the network, Walktrap-GM uses the random
walk algorithm which transits from the current node to its
adjacent nodes with a probability based on the weight of the
linking edge and the degree of the current node. Using the
transition probabilities, the distance between two nodes and
between two communities formed by the random walk process
are then calculated. The traverse will merge two communities
if it minimizes the mean of the squared distances between each
node and its community. On the other hand, EnrichNet uses a
randomwalk with restart to emphasize the importance of starting
nodes. Therefore, the result would be subnetworks that has strong
connections with the input gene list. Overall, Walktrap-GM is
expected to be more useful to look for new active modules
while EnrichNet is expected to perform better in the deeper
investigation of already-known modules. Walktrap-GM also
assesses the statistical significance of the obtained subnetworks
using bootstrap.
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3.5. Maximal Cliques Identification
This class of methods for active subnetwork identification is
focusing on finding cliques, i.e., subnetworks in which every
node is connected with all others. This approach is based on
the assumption that all the proteins in an active module would
have tight connections with the rest. Due to the lack of efficient
algorithms to find these cliques in a dense network (Tomita et al.,
2006), a preprocessing step to simplify the network is necessary.
Two methods in this review (MEMo and ModuleDiscover) have
different solutions to this problem. ModuleDiscover tries to filter
out the interactions that are not strong enough based on the
data from STRING database. In contrast, MEMo applies three
different kinds of filters based on significantly mutated gene, copy
number regions of interest and mRNA expression to retain only
the altered genes in their network. Then, cliques are extracted
from these filtered networks.

The advantage of these methods is the reliability of the
identified subnetworks, due to the nature of clique (strong
interaction in subnetwork). Moreover, by modifying the
algorithm, various kinds of data could be applied to the
simplification step to refine the network even more before the
identification of active modules. As a potential disadvantage,
ModuleDiscover’s reliance on the prior knowledge in the
STRING database means that the discovery of new modules is
essentially impossible. Also for MEMo, the aggressive filtering
(three filter layers) means that some important information may
be lost in the process.

3.6. Clustering-Based Methods
In this section, we review twomethods using different approaches
in the identification of active modules from other groups. These
are ClustEx, which is based on a hierarchical clustering algorithm,
and SAMBA, which uses biclustering on a bipartite graph.
ClustEx first calculates weights and distances for the edges using
the Pearson correlation of the expression of the genes associated
with the nodes. Subsequently, ClustEx clusters the genes using
hierarchical clustering. It then identifies the active modules
through two steps. In the first step, it looks for node pairs with
the distance below a given threshold and assigns the connecting
path as the initial clusters. In the second step, it expands the
initial cluster to the surrounding genes. Finally, the nodes that
are visited by the 10-shortest path in this expanded cluster
are identified as belonging to an active module. As potential
limitations, one can note that during the first step, ClustEx
calculates the distances between every pair of nodes which could
be a heavy computational task. Moreover, due to the nature of
the expanding process, which is determined by the 10-shortest
path, some important nodes in a tightly connected cluster could
be left out.

Unlike other methods, SAMBA takes a completely different
approach to identify the active modules. Instead of building
one single interaction network using genes as nodes, they build
a weighted bipartite graph where nodes on one side represent
the genes and nodes on the other side represent properties of
proteins encoded by them. The connection between two parts
represents the probability for a gene to have a specific property.
The locally optimal subgraphs are identified using biclustering

and overlapping is minimized by limiting the shared properties
between subgraphs. The performance of this model is heavily
dependent on the selections of properties layer, which couldmake
it challenging to apply SAMBA to a new disease.

4. APPLICATIONS

The 22 surveyed methods have been widely applied in real-world
scenarios to find disease gene signatures, dysfunctional pathways,
common mechanisms of different diseases, as well as to discover
drug and toxicity effects on different organisms. PinnacleZ,
despite being the most highly cited method, was mostly cited for
the discovery reported in the paper. The method jActiveModules
appears to be the most used tool for discovery and understanding
biological mechanisms. As a Cytoscape plugin, jActiveModules
has its advantages in network visualization and manipulation.
At the time of this survey, we found approximately 80 studies
that utilized this software. BioNET as an R package, was also
applied in real-world settings in more than 30 studies. Other
tools including EnrichNet, MEMo, and MATISSE were utilized
in more than 10 studies. The number of studies and manuscript
DOIs are reported in Supplementary section 2.

PPI networks have been widely used in identifying disease
biomarker and sample classification. For example, Chuang
et al. (2007) used PinnacleZ to classify patients with breast
cancer and Yuan et al. (2017) applied jActiveModules to find
gene signatures for leukemia patients for sample stratification
purposes. Network-based signatures have proven to be more
reliable and reproducible than signatures identified from gene
expression data alone. In fact, proteins involved in cancers
tend to show a high level of connectivity in the PPI
networks (Jonsson and Bates, 2006). Therefore, discovering
gene signatures for specific diseases can be greatly improved
by identifying significantly impacted subnetworks from the PPI
network, especially when the known disease genes are highlighted
as seed genes in the network (Shafi et al., 2019).

Active subnetwork approaches have also been utilized to
discover dysfunctional pathways of diseases. For example, Skov
et al. (2012) used jActiveModules to study biological pathways
and networks that are dysregulated in type 2 diabetes. The
study by Riazuddin et al. (2017) made use of MATISSE to
find novel gene candidates for the biological pathways of
intellectual disability disorder. Similarly, Sharma et al. (2015)
identified key pathways within the asthma module discovered
by the DIAMOnD method. Resulted modules from subnetwork
methods provide meaningful insights to dysfunctional processes
of the underlying disease phenotypes.

The discovered subnetworks, although are resulted from a
specific disease, can also be used to predict disease-causing genes
for similar diseases or other complex diseases (Oti and Brunner,
2007). By identifying responsive modules corresponding to
certain diseases, the associations among diseases can be
discovered by network similarity. For example, Dong et al.
(2014) used jActiveModules to extract active modules of type
2 diabetes and coronary heart disease to find pathways that
are important to both diseases. In another study, Wuchty et al.
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(2010) used significant subnetworks discovered by PinnacleZ to
find pathways that help to discriminate major glioma subtypes.
Studying associations between dysfunctional modules from
different phenotypes may reveal the true mechanism of complex
diseases such as cancers.

Drug and toxicity studies have also made use of active
subnetwork identification to discover their effects on different
organisms. For example, jActiveModules was used to identify
the network regions that is active under methamphetamine
(Bortell et al., 2017) and dioxin (Alexeyenko et al., 2010)
exposure. Similarly, BioNet was applied to extract top-scoring
networks to understand the impact of drug combinations on
lymphoma disease (Zhao et al., 2014). BioNet was also used to
find candidates for drug targets (Cursons et al., 2015). Although
drug targets are typically regarded as single proteins, most drugs
often interact with a larger number of proteins. By studying
drug-response subnetworks, the overall effects of a drug can be
revealed not only the efficacy of the drug to the target proteins
but also its side effects.

5. CHALLENGES IN SUBNETWORK
IDENTIFICATION

Even though subnetwork identification methods have
been applied in many real-world applications, there are
challenges that have not been addressed. In this section,
we highlight the limitations of existing knowledge bases,
as well as identify outstanding challenges from the method
development perspectives.

5.1. Knowledge Bases
One major challenge is that most PPI knowledge bases are
incomplete. For example, widely used networks in HPRD
and BioGRID cover at most 50% of the known human PPIs
(De Las Rivas and Fontanillo, 2010). In consequences, analysis
results using these knowledge bases may be incomplete due to
possible omissions of important factors. Another example is that
the number of genes in KEGG remained around 5,000 over the
past few years whereas the number of protein-coding genes is
estimated to be between 19,000 and 20,000 (Ezkurdia et al., 2014).
Integrative methods using networks and gene expression data are
forced to work on a much reduced gene space. In many cases,
using the reduced number of features in a classification algorithm
decreases the classification performance (Staiger et al., 2013),
suggesting that some important features (genes) had been left out
by the PPI networks. One approach to increase the coverage of
the PPI networks is to combinemultiple knowledge bases to build
a more comprehensive biological network.

Another important limitation of existing knowledge bases
is that they are unable to keep up with the high-resolution
information that has become available with the advancement
of high-throughput technologies and multi-omics assays. For
example, data obtained from RNA-Seq experiments allows us
to identify transcripts that are active under certain conditions.
Multiple transcripts mapping to the same gene can have distinct
or even opposite functions due to the alternative splicing (Wang

et al., 2008). Although this information is crucial to reveal
the underlying biological mechanisms, the majority of the PPI
knowledge bases only provides information at the gene level. In
addition, knowledge bases do not provide information regarding
cell types, conditions and time points each of which is essential
to reveal the true phenomenon of a given biological condition.
Finally, existing knowledge bases offer at most limited options
to integrate multi-omics data. In the past decade, molecular data
of all kinds, from transcriptomics to genomics, epigenetics, and
non-coding RNA have accumulated on public repositories with
unprecedented rates. However, most subnetwork approaches
are limited to gene/protein data. A great wealth of these data
remain unused since knowledge bases mostly store information
about protein or gene interactions. Future approaches need to
develop graphical models that take into consideration changes
at different levels (e.g., methylation, miRNA, mRNA) to exploit
the complementary information available in different types of
omics data.

5.2. Method Development
One key challenge for subnetwork method development is
the lack of universally accepted gold-standard to validate the
identified subnetwork modules. Computational approaches are
typically assessed by simulated data or by well-studied biological
datasets (He et al., 2017; Vlaic et al., 2018). The advantage of using
simulation data is that the ground truth is always known. Thus
it can be used to compare different methods using sensitivity
and specificity. However, simulation is often oversimplified and
unable to capture the complexity of living organisms. On the
other hand, when using real biological data, the biology is never
fully known. In addition, many papers presenting new analysis
methods include results obtained from only a couple of datasets
and researchers are often influenced by the observer-expectancy
effect (Sackett, 1979). Designing benchmark real datasets where
the true mechanisms are known would help address this issue.

Furthermore, the majority of the active subnetwork
identification methods do not account for the complexity
of protein interactions. Most of active subnetwork identification
methods and network clustering approaches, produce only
non-overlap modules. These methods were developed based
on the assumption that a protein can be active in at most one
module. However, it is known that most proteins may involve in
many biological processes. In addition, a disease can go through
different stages and a protein may take place in different active
modules at different time points. Producing large networks
containing all possible interactions is insufficient to reveal
the underlying mechanisms for complex diseases. Reporting
different networks for different stages of dynamic networks,
in this case, will significantly help to interpret the signal of
the disease.

Finally, p-value-based approaches are subject to potential bias
under the null hypothesis. In principle, the null distribution is
used to assess the significance of the observed result obtained
from an experiment. The p-values obtained from any sound
statistical test are assumed to follow a uniform distribution
(with the interval 0–1) (Fodor et al., 2007; Barton et al.,
2013). Although this issue is yet to be investigated in the field
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of subnetwork identification, it has been shown that many
computational methods for network and pathway analysis have
a systematic bias toward pathways related to cancer and well-
studied diseases (Nguyen et al., 2017). In the study, the authors
created a large pool of healthy individuals and then randomly
compare two groups of healthy people. Interestingly, the p-value
distributions of cancer pathways are extremely biased toward
zero and thus are found significant in many analyses that have
nothing to do with cancer. Similarly, subnetwork analyses are
expected to be biased toward well-studied diseases and network
modules. To overcome this problem, p-values of the candidate
modules should be calculated under the null to demonstrate that
a method is not biased under the null.

6. DISCUSSIONS

All of the methods surveyed here aim to identify one or several
active subnetworks for one or several input datasets. However,
they differ in their assumptions about the relationship among
genes, protein, or both, which leads to different scoring functions
and traversal strategies. Figure 2 shows the workflows of the
22 methods, highlighting their characteristics and differences.
From left to right are the techniques applied in each approaches:
(i) node scoring, (ii) edge scoring, (iii) algorithm used to
construct the subnetworks, and (iv) statistical test for assessing
the significance of the identified active subnetworks. Note that
GLADIATOR does not score nodes nor edges but rather it uses
the Jaccard Index between input gene sets (of different diseases)
as the objective for its simulated annealing algorithm. In this
review, we categorize the 22 approaches according to the way they
construct their network (main algorithm).

The problem of finding optimal subnetworks with the highest
network score is NP-hard. Therefore, many methods address
this problem via a heuristic approach that does not guarantee a
global optimum. Random walk and greedy algorithms construct
their modules by initializing the seeds and greedily extend the
modules. Therefore, the results obtained with these methods will
depend on the choice of the seeds. In a large network of tens
of thousands nodes, it is harder to find a seed that leads to the
global optima. Diffusion-flow emulation models, on the other
hand, model the problem as a mathematical optimization that
aims to find the global optimum using algorithmic optimization.
For example, maximum-flow algorithms assign flow capacity and
flow cost to nodes and edges and then find the global optimum
using constrained linear programming. These mathematical
approaches guarantee to reach a global optimum. Similarly,
evolutionary algorithms also aim to find the global optimum
or at least an approximation of it. The algorithms allow for
transitions to states with a lower score in order to avoid being
trapped at a local maximum/minimum. In principle, with a
large number of iterations, these algorithms are likely to find a
global solution.

Maximal clique approaches and clustering-based methods
are distinct from the rest in terms of their goals and
objectives. Maximal clique methods do not aim to find
connected nodes with the best score. Instead, they aim to find

groups of genes that interact with one another (every pair
of nodes in a clique has an edge between them). However,
it is not necessarily true that all genes in a clique always
take part in certain biological processes. In addition, these
methods may miss intermediate genes or proteins that play
important roles in connecting those cliques. The clustering-
based methods, on the other hand, assume that co-expressed
genes are all involved in the same cellular process (ClustEx)
or there is a hierarchical structure in the biological network
(SAMBA). Since clustering approaches aim to group high-
similarity genes into the same cluster without paying attention
to the size of each cluster, the output can be highly
imbalanced, including extremely large subnetworks that fail
to provide insights into the underlying mechanisms of the
given phenotypes.

The methods surveyed here use a wide range of scoring
functions to score the nodes and edges. Most of them (except
GLADIATOR) provide a scoring function for nodes or edges,
but only some of them take into account the scores of both
nodes and edges. While node-based scoring approaches look
at the significance of one gene or protein in the context of
the whole network, edge-based scoring networks look at the
strength of the relationship among protein or gene. Without
paying attention to the weight of the relationship between
proteins or genes, node-based scoring methods may produce
subnetworks that have high scoring nodes but do not have a
meaningful relationship between nodes. Also, the edge-based
scoring network may produce subnetworks that contain highly
similar genes but have low significance in the network. These
resulted subnetworks, unfortunately, will be difficult to interpret.
Methods that take into account the scores of both nodes and
edges are likely to produce a more accurate active module.

Node and edge scoring functions are the building blocks
of the subnetwork score. In principle, they should be the
summary statistics that capture the network perturbation, signal
propagation as well as the changes between different phenotypes.
Since each test and score is based on a certain assumption,
users need to check if the assumption of each test matches
the property of their data. For instance, the z-test and t-
test assume that the data follows a normal distribution, while
methods using fold-change assume that the effect size is the
most important factor to capture the difference between the
two conditions. Note that fold-change is highly dependent
on the background signal, i.e., a shift in the range will
significantly change fold change (e.g., 101 compared to 103
vs. 1 compared to 3) (Drăghici, 2011). Furthermore, the t-
test, z-test, and fold-change approaches can only compare
two conditions, while the F-test, mutual information, and
binomial test allow users to capture changes across multiple
conditions. Some methods do not take into account the scores
of the nodes but rather require the user to input a gene list
or protein list (GLADIATOR, ResponseNet, EnrichNet, and
ClustEx) as the significant gene set to serve as starting points
of the algorithm. These methods can be sensitive to the input
gene list, in which small changes in the list can dramatically
affect the resulted subnetworks. In contrast to the variety of
node scoring, the edge scoring functions mostly rely on the
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FIGURE 2 | Workflows of active module identification approaches. The figure highlights the key characteristics and key differences between each method. From left to

right are the techniques applied in each approach: (i) node scoring, (ii) edge scoring, (iii) algorithm used to construct the subnetworks, and (iv) statistical test for

assessing the significance of the identified active subnetworks. We note that GLADIATOR does not score nodes nor edges but uses Jaccard Index between input

gene sets (of different diseases) as the objective for its simulated annealing algorithm.

correlation between two adjacent nodes to indicate the similarity
between nodes.

The significance test used in a particular tool is also an
important factor to consider. An aggregated score calculated for a
module represents the level of signal perturbation or the degree of
change observed in the subnetwork between different conditions.
Similar to fold-change or effect-size, this score can be either
the result of real biological changes or just by chance due to
random noise. One needs to assess whether the observed change
represents real biological differences. Therefore, a significance
assessment should be done to assess how likely the aggregated
score is observed just by chance under the null hypothesis,
i.e., due to noise and chance alone. DIAMOnD, COSINE,
MOEA, Bionet & Heinz, ResponseNet, and EnrichNet output
the subnetworks and aggregated scores without performing
a significance assessment. Thus, it is totally up to users to
interpret the identified subnetworks and their scores. The
remaining methods perform a significance assessment and
calculate a p-value for each resulted subnetwork. For methods
that provide multiple active subnetworks, a correction for
multiple comparisons should be performed. Users can determine
whether each subnetwork is significantly impacted by comparing
the p-values with a pre-defined threshold.

7. CONCLUSIONS

In the past decades, there have been great efforts to mine network
databases for identifying condition-specific cellular processes.
One successful strategy has been to integrate these networks with
molecular data to identify active subnetworks or modules that
are involved in condition-specific biological functions. In this
article, we review 22 methods that identify active subnetworks
by integrating molecular data (e.g., expression profiles, protein,
mutation) with known biological interaction accumulated in
knowledge bases and public repositories. At the time of preparing
this article, all surveyed methods are available as either a
working standalone package or through a web-based interface.
We categorize the 22 methods into five different categories
according to the way they construct and extend the subnetwork.
We summarize the pros and cons of each approach and category,
focusing on their distinguishing characteristics andmathematical
models. Our main objective is to help potential users and life
scientists to choose methods that are most suitable for their
available data and analysis purpose. This review will also help
computational scientists to identify shortcomings of existing
approaches in order to develop new methods that address
current limitations.
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