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One of the objectives of precision oncology is to identify patient’s responsiveness to a
given treatment and prevent potential overtreatments through molecular profiling. Predictive
gene expression biomarkers are a promising and practical means to this purpose. The
overall response rate of paclitaxel drugs in breast cancer has been reported to be in the
range of 20-60% and is in the even lower range for ER-positive patients. Predicting
responsiveness of breast cancer patients, either ER-positive or ER-negative, to paclitaxel
treatment could prevent individuals with poor response to the therapy from undergoing
excess exposure to the agent. In this study, we identified six sets of gene signatures
whose gene expression profiles could robustly predict nonresponding patients with
precisions more than 94% and recalls more than 93% on various discovery datasets
(n = 469 for the largest set) and independent validation datasets (n = 278), using the
previously developed Multiple Survival Screening algorithm, a random-sampling-based
methodology. The gene signatures reported were stable regardless of half of the discovery
datasets being swapped, demonstrating their robustness. We also reported a set of
optimizations that enabled the algorithm to train on small-scale computational resources.
The gene signatures and optimized methodology described in this study could be used
for identifying unresponsiveness in patients of ER-positive or ER-negative breast cancers.

Keywords: microarray gene expression profile, breast cancer, signature genes, drug resistance, predictor

INTRODUCTION

Predicting if a given patient would not respond to a specific treatment could save enormous
health care resources and potentially make it possible to reallocate the individual to better suited
medication programs earlier (Garraway et al., 2013; Collins and Varmus, 2015). Paclitaxel treatment,
which targets at cell cycle processes through stabilizing microtubules, is a prevalent medication
used in various cancer types including breast, ovarian, and prostate cancer. Up to 20% of the
ER-positive (ER+) breast cancer patients, who represent 80% of breast cancer population, could
gain survival benefit from paclitaxel treatment. With high-confident prediction, it would be made
possible to prevent nearly 20,000 women from ineffective paclitaxel treatment, which might
cause additional neurotoxicity and adverse effects, in the United States alone. Network representation
learning as well as integration of somatic mutation profile and gene functional annotation
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information were utilized to discovery driver genes related to
drug treatment responsiveness (Xi et al., 2017, 2018; Yang et al,,
2018; Zhang et al, 2018). Existing studies either focused on
triple-negative cases, or provided insights on a small number
of tipping point genes more biologically other than computationally.
For example, ABCB1/PgP and ABCC3/MRP3 were reported to
be closely associated with resistance to paclitaxel (Némcova-
Fiirstova et al.,, 2016; Delou et al., 2017), while the resistance
might be driven by hundreds of genes (Duan et al,, 2004). Xu
et al. collected 22 key genes involved in paclitaxel treatment
resistance for miscellaneous cancer types by analyzing literatures
(Xu et al, 2016) with the assistance of GeneMANIA (Warde-
Farley et al,, 2010), a gene/protein function predicting tool.

In this study, we improved the Multiple Survival Screening
(MSS), a methodology developed by Li et al. (2010). for
identifying cancer prognostic markers with high robustness
and prediction power (Li et al, 2010), and employed it to
five microarray gene expression datasets [GSE20194 (MAQC
Consortium, 2010; Popovici et al., 2010), GSE20271 (Tabchy
et al, 2010), GSE22093 (Iwamoto et al, 2010), GSE23988
(Iwamoto et al., 2010), and GSE25066 (Hatzis, 2011; Itoh et al.,
2013)], which were partitioned into discovery set and independent
validation set, in search of signature genes of nonresponsiveness
in ER+ breast cancer. We discovered sets of such genes that
gave precision up to 94.6% and recall rate up to 93.3%, and
performed consistently in cross validation inside discovery
datasets, and different discovery datasets against their
corresponding independent validation datasets. Similar results
were obtained for ER-negative patients, demonstrating the
prediction power and potential of real-life applications of the
optimized methodology and reported gene sets.

RESULTS

Gene Signatures for Unresponsiveness
of Paclitaxel Treatment in ER-Positive
Breast Cancer
To explore efficient and generalizable gene signatures for
predicting of whether a given breast cancer patient should
be admitted to paclitaxel treatment, we constructed a discovery
dataset comprised of microarray data generated by four cohorts
(GSE20271, GSE22093, GSE23988, and GSE25066; referred to
as T1,, see Methods for details), where in total 469 patients
were acquired (nzp = 418, nex = 51; RD, residual disease; CR,
complete response). Similarly, an independent validation dataset
was formed using microarray data from the cohort of GSE20194
(nrp = 213, ney = 65; referred to as V1,,). MAS5 normalization
was employed for both TI, and VI, respectively. Both
expression profile matrices then underwent additional
normalizations to address batch effects between the cohorts
as well as merging of multiple probes that represented same
gene on the gene expression microarray (see Methods).
Implementing a methodology based on Multiple Survival
Screening (MSS) (Li et al, 2010), which as a random search

computational scheme that could identify reliable signature
genes, we obtained six gene signatures (“Signatures,’” A,-F,)
from T1,, corresponding to six groups of Gene Ontology (GO)
terms closely associated with carcinogenesis (Figure 1): cell
adhesion, apoptosis, cell cycle, immune response, phosphorylation,
and DNA damage & repair. Each signature gene set contained
30 unique genes and was used to translate a given expression
profile into a feature vector. Testing the six signatures against
V1, we observed that the prediction achieved precision of
94.4% and recall rate of 90.1% for RD (residual disease; mutually
exclusive to CR, complete response) subgroup, where a true
positive prediction was defined as predicting a nonresponding
patient to be so, and a false positive prediction to be predicting
a patient that responded to the treatment as a nonresponding
one. Precision and recall rate aligned with convention definition.
Comparing to the genes with most significantly differential
expression profiles (see Method), less than 50% of the most
significant genes were selected (i.e., if selecting 130 genes, less
than 65 genes were among the 130 top listed genes). Simply
using the most significant genes gave inferior prediction power
in the independent validation dataset (recall rate of 88%),
implying that most prominent differential expression patterns
contained cohort-specific features and might not be feasible to
be utilized directly.

Further, we examined the predicting performances of all possible
combinations of six signatures (k = 2, 3, 4, 5) (Figures 2-4)
through 10-fold cross validation tests in T1,,. While all choices
gave precisions more than 94%, recall rates varied between 80
and 95%, exhibiting differences in prediction power. The combination
of Signature B, (apoptosis), C, (cell cycle), and F, (DNA damage
and repair) provided the best-balanced precision and recall rate
(using the average values of 10-fold cross validations), of 94.0
and 93.4%, respectively. Predictor comprised of the selected
combination of signatures had a better performance on the
independent validation (precision of 93.1% and recall rate of
92.7%). We considered the recall rate to be the most important
metric, as the methodology was intended to reliably predict whether
an individual can skip a treatment without adverse consequences.
In comparison, we tested seven signature genes (BRCA1, APC,
p16/CDKN2A, FRMD6/hEx, YAP, BAX, and LZTS1/FEZ1) related
to drug resistance in breast cancer, collected by Xu et al. (2016),
for their prediction power. In the four-cohort discovery dataset,
two-cohort discovery dataset and validation dataset, the signature
gave precision rates of 92.3, 89.5, and 94.0% and recall rates of
82.7,78.9, and 85.2%, respectively. Overall, our proposed signature
genes provided better prediction power, and the methodology
allowed the aggregation of accumulating datasets to discover
potential better gene combinations.

To demonstrate the contribution of the signature genes against
drug resistance, we calculated their relative contribution scores
(RCS) based on randomization tests. Similar to the signature
selection process but with reduced randomization count per
iteration (50,000) and higher total iteration counts (200 for
each of the six GO terms), fuzzy K-means clustering combined
with Fisher’s test was performed to measure randomized gene
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FIGURE 1 | Diagram illustrating the workflow of methodology used. Refer to Methods for dataset information and details in each step.
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FIGURE 2 | Gene signature B, C, and F of ER-positive breast cancer. Box plots showing the distributions of normalized expression levels of the signature genes,
whose centroids were further used to construct the predictor.
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FIGURE 3 | Precisions and recall rates of predictor comprised of potential signature combinations, trained on T7,,,, tested using 10-fold validation. Although the
combination of Signature B, C, and F provided not the best precision, its recall rate was finest.
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‘Apoptosis signature genes of ER+

EntrezgeneID  Gene description Gene description
erb-b2 receptor tyrosine kinase 3
matemal embryonic leucine zipper kinase
'SAM pointed domain containing ETS transcription factor
transforming growth factor beta 3
GLI family zinc finger 3
huntingtin
CCAAT/enhancer binding protein beta
amyloid beta precursor protein binding family B member 2
mitochondrial carrier 1
nischarin
insulin like growth factor 1 receptor
mucin 1, cell surface associated
ETS variant 6
ysine demethylase 1A
calreticulin
mutS homolog 2
tyrosyHRNA synthetase
nuclear factor of activated T-cells 4
protein disulfide isomerase family A member &
box binding protein 1
checkpoint kinase 2
TN receptor associated factor 5
minichromosome maintenance complex component 2
‘GATA binding protein 3
MALT1 paracaspase
RNA binding molif protein 5
androgen receptor
SERPINE1 mRNA binding protein 1

sphingosine kinase 1
bridging integrator 1

Keratin 18

celldivision cycle 25A
SLCOAS regulator 1

promyelocytic leukemia
calreticulin

muts
ety

tuberous sclerosis 2
GATA binding protein 3
transcription factor Dp-1

interleukin 1 receptor associated kinase 1
KIAAD141

KIAAO141

FIGURE 4 | List of gene signatures of ER-positive breast cancer.

Cell cycle signature genes of ER+

RAD50 double strand break repair protein 9231
retinoic acid receptor alpha
cyclin dependent kinase 7

proteasome subunit beta 9

P vzmny member B
hom

3159 high mobilty group AT-hook 1 HMGA1
nuclear autoantigenic sperm protein 51065 ribosomal protein S27 like. RPS27L
MYB proto-oncogene, transcripton factor MY 7398 ubiquilin specific peptidase 1 usp1
Tbox 3 4350 N-methylpurine DNA glycosylase MPG
1956 epidermal growth factor receptor EGFR
cyclin dependent kinase inhbitor 24 7874 ubiquiti specifc peptidase 7 Usp7
KRT18 64135 dasalend b R T TFIH1
mitogen-activated protein kinase kinase 1 [ 10519 calcium and nogein binding ciBt
amyloid beta precursor protein binding family B member 2 882 i e e e BT CEBPG
5371 promyelocytic leukemia PML
23028 ysine demethylase 1A KDM1A
feukocyte immunoglobulin ike receptor B1 4436 mutS homolog 2 MSH2
79661 HEITENA Giess NEILT
BH3 interacting domain death agonist 2956 mutS homolog 6 MSHE
55159 ting finger and WD repeat d RFWD3
7979 split handfoot malformation (eamaacmy) type 1 SHFM1
64421 DNA cross-ink repair 1C DCLRETC
11201 polymerase iota POLI
cyclin dependent kinase 2 associated protein 1 11200 checkpoint kinase CHEK2
PLAGL1 641 Bloom syndrome RecQ like helicase. BLM
6832 Suva like RNA helicase. SUPVALY

PLAGH like zinc finger 1

secreled frizled related protein 1 SFRP1 902 cyclin H CONH
tumor protein pS3 binding protein 2 TP53B]
protein kinase AMP-dependent type Il regulatory subunit beta PRKAR2B 5884

'DNA damage & repair signature genes of ER+

Gene description

Gene symbol

10111 RADS0 double strand break repair protein RADS0
5983 replication factor C subunit 3 RFC3
discs large MAGUK scaffold protein 5 DLGS
1022 cyclin dependent kinase 7 COKT

GATA3 79677

structural maintenance of chromosomes 6 SMC6
TFDP1 9643 2

‘mortality factor 4 like:

7913 'DEK proto-oncogent
RADT7 checkpoit olamp loader component RAD17

sets’ partition power over responsiveness, where gene set that
exhibited statistical significance stronger than p < 0.001 was
collected as “candidate geneset” Relative prevalence of a given
signature gene was then obtained by measuring its presence
amongst the candidate gene sets and normalizing the value
through dividing the largest absolute prevalence value.

Robustness and Generalizability of
Signature Gene Sets
To examine whether the identified gene signatures were not
impacted by random factors, we performed another round of
signature discovery process on TI,, with same set of
hyperparameters and a new initial random state. We found
that 99.2% (129 out of 130) gene selections remained the same
in the new iteration, with the only altered gene selection resided
in the Signature A, (adhesion). Expanding the number of
random gene sets or iterations of the algorithm (see Methods)
would not significantly impact on the gene signatures.
Further, the same gene signature discovery methodology was
employed to T2,,, a discovery dataset comprised of two cohorts
(GSE22093 and GSE25066) and validated against the remaining
three cohorts (GSE22093, GSE23988, and GSE20194) to prove
the generalizability of the signatures. Regardless of shrank dataset
size, the identified Signature B, (apoptosis), C, (cell cycle), and
F, (DNA damage & repair) were exactly the same as the above
Signature B,, C,;, and F,. This signature combination achieved
best precisions and recall rates in GSE20194 (a.ka. VI,; 94.6
and 93.4%, respectively), GSE20271 (95.4 and 91.2%, respectively),
and GSE23988 (95.7 and 96.0%, respectively). Swapping the
components of the discovery dataset did not significantly impact
on signature discovery (none or less than two gene selections
altered in each GO term signature) and the above reported
prediction power. These results demonstrated that Signature
C and E were generic and stable for nonresponsive ER-positive
breast cancer cases and might be applied to new incoming datasets.

Gene Signatures for Unresponsiveness of
Paclitaxel Treatment in ER-Negative
Breast Cancer

We further demonstrated that the methodology may work equally
well for ER-negative population. To obtain signature genes for

ER-negative (ER—) group, we constructed a discovery dataset
comprised of the four cohorts described above (see Methods
(GSE20271, GSE22093, GSE23988, and GSE25066; referred to as
Toug Mipantiing = 1525 Neramazne = 217). Similarly, GSE20194
(MRD-and-ERicg = 625 Mcreandpraee = 45; referred to as V) was utilized
as an independent validation dataset. MAS5 normalization and
further regularizations addressing batch effects were performed
as mentioned previously. We obtained five sets of signature genes
(“Signatures,” a-e) corresponding to five groups of GO terms
which were closely associated with carcinogenesis: phosphorylation,
immune response, apoptosis, DNA damage and repair, and cell
cycle. Regardless of distinct ratio of sample size of RD and CR
subgroup (ratios in range 0.7-1.4), compared to ER+ datasets
(ratios in range 3-10), the prediction power of the signature gene
sets was similarly steady. Validating in V,,, the combination of
Signature b (immune response), ¢ (apoptosis), and d (DNA damage
and repair) (Figure 5) achieved precision of 94.8% and recall
rate of 92.0%.

Optimizing Methodology to Use 50-Fold
Less Computation Resources

The original MSS methodology essentially relied on random
searching, which was implemented through randomly generating
sets of genes, ranking their ability to represent nonresponding
patients, and selecting consensus genes from top-ranked gene
sets to serve as gene signatures in the predictor. This process
was computationally expensive, where training a model distributed
on 672 cores (2.60 GHz) would cost 30-60 min to finish the
6 million iterations for six GO subsets (see Methods), and had
also undefined hyperparameters that accounted for the number
of total iterations as well as ranking criteria.

We found that the signature genes were prominent enough
in most discovery datasets, as long as the overall sample size
was reasonable, to allow optimization of signature discovery
processes. First, hyperparameters that determine the base “gene
pool” of random sampling could be replaced by simply picking
the 500 most significantly differentially expressed genes,
trivializing parameter tuning. Then, through introducing one
single threshold and an ensemble method (see Methods),
we were able to reduce the 1 million iterations required by
the original methodology to 20,000 iterations while retaining
same prediction power. While signatures reported above could
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plosis signature genes of ER-
EntrezgenelD G n Gene description
nuclear factor of activated T-cells 4 NFATC4
‘TNF receplor associated factor 5 TRAFS
‘SAM pointed domain containing ETS transcription factor

transforming growth factor beta 3

checkpoint kinase 2

lysine demethylase 1A 2956 muts hor

erb-b2 receplor tyrosine kinase 3
maternal embryonic leucine zipper kinase

high mobilty group A

FIGURE 5 | List of gene signatures of ER-negative breast cancer.

DNA damage & repair signature genes of ER-

R

mutS homolog
nei like DNA glycnsylase 1

CAAT/enhancer binding protein beta o arg0 MAGUK scafld protein s 1051 CCAAT/enhancer binding protein beta CEBPB.
amyloid beta precursor protein binding family B member 2. ubiquitin specific peptidase 1 3627 CX-C motif chemokine ligand 10 cxcLo
mitochondrial carrier 1 N-methylpurine DNA glycosylase 659 secretory leukocyte peptidase inhibitor SLPI
nischarin epidermal growth factor receptor 1054 CORATIsancer B proteln gt CEBPG
insulin like growth factor 1 receptor fing finger and WD repeat domain 3 3480 IS S e IGFIR

i interferon induced with helicase C domain 1 6373 CX-C motif chemokine ligand 1 oxcLtt
calcium and integrin binding 1 10087 collagen type IV alpha 3 binding pmlem coLeA3sP
CCAAT/enhancer binding protein gamma 6732 SRSF protein kinase SRPK1
promyelocytic leukemia 6364 C-C moiif chemokine ligand 20 COLX
Iysine demethylase 1 DNA cross-link repair DCLRE1C
tyrosyHRNA synthetase ubiquitin specific peptidase 7 7494 X-box binding protein XBP1
SERPINE1 mRNA binding protein 1 split hand/foot malformation (ectrodactyly) type 80762 Nedd4 family interacting protein 1 NDFIP1
protein disulfde isomerase family A member 6 PDI DNA cross-fink repair 1C 1672 defensin beta 1 DEFi
i 2 i 38 APOBEC3B
ribosomal protein S27 fike 3572 Ineruki o sona ansducer IL6S
3 2625 GATA binding protein 3 GATA3
mlehromosome maienanos complex omponent 2 3929 Ipopelysacchande bpding prfein Lep
‘GATA binding protei 10892 MALT1
WALT paracacpce mortality factor 4 ike 2 3934 fipocalin 2 LON2
RNA binding moltf protein 5 cyclinH. 6347 C-C motif chemokine ligand 2 coL2
interleukin 1 receptor associated kinase 1 K DEK proto-oncogen 720 ‘complement C4A (Rodgers blood group) CaA
KIARO141 884 A e GBS e 1075 cathepsin C cTSC

huntingtin HTT oy doendntinsse 7_

RADS0 coury arand bresk mDanr protein 3654

Immune response signature genes of ER-

Entrez gene ID

Gene description

Gene symbol

81603 tripartte motif containing & TRIMS
5167 ectonucleotide pyrophosphatase/phosphodiesterase 1 ENPP1

10563 CX-C motif chemokine ligand 13 oXCL13
3148 high mobility group box 2 HMGB2
10512 ‘semaphorin 3C SEMASC

5819 necin cell adhesion molecule 2 NECTIN2
9156 exonuclease 1 EXO1
interleukin 1 receptor associated kinase 1 IRAK1

be used for potential application in breast cancer nonresponsive
screening without redoing the discovery processes, the
optimization was suitable for implementations of the methodology
on small computation resource, e.g., personal computer.

DISCUSSION

Precision oncology addresses the following aspects of targeted
therapies: for example, developing medications that would
benefit patients with a certain phenotype or symptom helps
improve overall survival, finding means to confidently suggest
patients to opt-out treatments that provide little benefit to
them is as important. Paclitaxel, a drug which targets microtube
components (B subunit of tubulin) of cell cycle regulatory to
oppress expansion of cancer cells, has been considered as an
important agent for treating breast cancer, providing valid
efficacy and tolerability while low in cross-resistance with other
drugs. However, paclitaxel’s response rate among breast cancer
patients resides in a loose range of 10-60%. Only 20% ER-positive
patients would respond or partially respond to the drug.
Accurately predicting whether a given patient will respond to
paclitaxel treatment with confident would help preventing
enormous breast cancer patients from undergoing excess effectless
treatment and adverse effects. Gene expression profile was
reported to be the strongest indicator of paclitaxel sensitivity
in breast cancer patients (Dorman et al, 2015). Although
resistance to paclitaxel has been reported to be associated with
the expression levels of hundreds of transcripts and studied
for the underlying molecular mechanisms as well as key pathways,
existing signature genes did not perform well in predicting
the lack of response in breast cancer patients.

While microarray and RNA-seq are becoming more applicable
and affordable for clinical diagnostics, preventing patients from
excessive treatments is desirable. In this study, we reported
six sets of robust and generalizable gene signatures for the
prediction of nonresponding individuals in ER+ and ER— groups
of breast cancer, where combination of Signature B (30 genes
related to apoptosis), C (30 genes related to cell cycle), and
F (30 genes related to DNA damage and repair) achieved the
best precision (>94%) and recall (>93%) predicting
nonresponding patients in independent validation datasets,

which were significant improvements compared to previous
studies [e.g., 82% accuracy in cell lines, using expression profile
of 15 genes and SVM model (Dorman et al., 2015)]. Signature
genes were given relative contribution scores (RCS) based on
randomization tests to demonstrate their contribution to the
predictor, or relatively to what extent they contributed to the
resistance. Moreover, we described a potential optimization of
the methodology that rendered the algorithm less computational
demanding, and therefore enabling faster gene signature discovery
in new datasets.

MATERIALS AND METHODS

Data Processing and Normalization

The following five microarray-based gene expression profiles
(samples examined before treatments) were collected from the
repository of Gene Expression Omnibus (GEO): (1) GSE20194,
comprised of 278 samples using Affymetrix Human Genome
U133A Array (GPL96), where 161 samples were labeled as
ER+. Of the 161 samples, 151 samples were marked as residual
disease (RD) and 10 samples as partial complete response
(pCR) or complete response (CR); (2) GSE 20271, comprised
of 178 samples using Affymetrix Human Genome U133A Array
(GPL96). In total, 98 samples were labeled as ER+, where 91
samples were marked as RD and 7 samples as pCR or CR;
(3) GSE22093, comprised of 103 samples using Affymetrix
Human Genome U133A Array (GPL96). In total, 42 samples
were labeled as ER+, where 32 samples were marked as RD
and 10 samples as pCR or CR; (4) GSE23988, comprised of
61 samples using Affymetrix Human Genome U133A Array
(GPL96). In total, 32 samples were labeled as ER+, where 25
samples were marked as RD and 7 samples as pCR or CR;
(5) GSE25066, comprised of 508 samples using Affymetrix
Human Genome U133A Array (GPL96). In total, 297 samples
were labeled as ER+, where 270 samples were marked as RD
and 27 samples as pCR or CR.

We retrieved all five cohorts in their raw data format (CEL
files) along with clinical data records. Expression profiles of
each cohort were then normalized through MAS5.0 normalization
(using RMA normalization instead in this step did not
demonstrate visible impact on the results reported). After log2
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transformation, we mapped the probes to Entrez Gene IDs
(mapping provided by GEO) and removed duplicated reads
of a given gene by retaining their average read. In total 4,075
unique genes were preserved. Probes pointed to unidentified
genes (i.e, genes without Entrez ID) were not removed
deliberately. They were practically invisible during the downstream
analysis (see below), however. Data were further median-centered
and z-scored across cohorts to address batch effects.

The four-cohort discovery datasets comprised of GSE20271,
GSE22093, GSE23988, and GSE25066, utilizing GSE20194 as
independent validation dataset. The two-cohort discovery dataset
comprised of GSE22093 and GSE25066, utilizing GSE20194,
GSE20271, and GSE23988 as validation set.

MSS Methodology and Optimization

Based on the study of Li et al, we utilized the following
random-sampling-focused methodology in a given pair of
discovery dataset and independent validation dataset.

1. In discovery dataset, genes that demonstrated significant
differential expression profiles between subgroup of responsive
patients (i.e., samples marked as pCR or CR) and subgroup
of nonresponsive patients (samples marked as RD) were
selected to form a gene pool. Significance was defined by
the criteria that in more than 80 of 100 iterations of randomly
drawing 30 responsive samples and 70 nonresponsive samples,
t-test between such randomly drew subgroups showed
p < 0.05. The 30-70 ratio can be relaxed to up to 30-120
without altering downstream results; in fact, only half of
the differentially expressed genes that made to the final
collections were at the top of this list, implying the following
feature selection steps were of more importance. For the
four-cohort discovery dataset, we obtained 389 unique genes
to form the pool; for the two-cohort discovery dataset, 593
genes were selected. The two pools shared 369 unique genes,
implying that although more significantly differentially
expressed genes were found in two-cohort discovery dataset,
many of which might be cohort-specific or at least not
generic. Gene pools were annotated for GO terms by DAVID
(Huang et al, 2008, 2009) (v6.8). In original MSS
methodology, criteria of significance were considered to
be hyperparameters, ideally controlling the number of selected
genes during the corresponding step. However, training on
the discovery dataset, we noticed that none of the signature

genes came from the less significant ones, i.e., the bottom
of the ranking list, therefore simply performing the t-tests
and selecting the most significant 300-500 genes would
serve the same objective. We discarded the hyperparameter
in favor of this optimization and observed same results as
reported, with less tuning attempts.

. For a given gene pool, we partitioned genes with replacement
into GO-defined subgroups (or, “subpool”). One gene could
appear in more than one such subgroup according to its
annotations. For the four-cohort discovery dataset, subgroup
of apoptosis-related functions comprised of 186 unique genes;
similarly, the numbers of genes were as the following for
other subgroups: DNA damage & repair (56), immune response

(104), cell adhesion (56), cell cycle (84), and phosphorylation
(77). For the two-cohort discovery dataset, the numbers of
genes were as the following for subgroups: apoptosis (290),
DNA damage & repair (81), immune response (142), cell
adhesion (93), cell cycle (115), and phosphorylation (111).

3. Following the original MSS methodology, for a given GO-defined

subpool, 30 genes were randomly drew without replacement
to form a random gene set (RGS) for 1,000,000 iterations,
yielding 1 million RGSs. For a given discovery dataset, 25 CR
individuals and 55 RD individuals were randomly drew without
replacement to form a random patient set (RPS) for 40 iterations,
yielding 40 RPSs. We optimized this step computationally
through the following, without significant impact on the outputs:

a. The number of RGSs can be reduced to up to 20-fold
less by monitoring the list of most frequently appeared
genes of the RGSs, without affecting the reported results.
In original MSS, arbitrary 1 or 2 millions of iterations
were performed to obtain the “gilded RGSs” and then the
signature genes (see below). Instead we observed that,
combinations of signature genes were prominent enough
that it was possible to set a stopping criterion T, such
that if after T iterations, the top 30 most frequently appeared
genes of the “gilded RGSs” had no change, terminate this
step and accept the “gilded RGSs” along with the list of
top 30 most frequent genes as the final results. It was
safe to assume such a parameter T in the range of 100-500,
where a lesser T implied more tradeoff of robustness of
the gene list in favor of computational complexity.

b. Computational complexity could be further reduced by
using an ensemble model. Instead of allowing each
signature gene set to claim one vote in the predicting
(see below), we lowered the parameter T to as less as
30 and obtained five gene lists for each GO-defined
subpool. Each gene list was then treated as one
independent voter during voting.

Combining a and b, the number of total executed iterations
could be reduced to 50-fold less. In this study, we implemented
the original MSS methodology distributed on a cluster with
672 CPUs, paralleling all 1 million iterations for each GO-defined
subpool, and the runtime was around half an hour. Using
the optimization, it was possible to calculate the predictor of
desire at regular PCs or workstations in reasonable time frame.

Altering the proportion of CR and RD cases in RPSs would
not significantly affect reported results, as long as the ratio
was kept around 1:2 to 1:5.

4. Each RGS was tested against all 40 RPSs (if not using optimized
version): patients in a RPS were partitioned into two clusters
through K-means (Euclidean distance; using fuzzy K-means
that implemented by sklearn-extension with fuzzy factor as
2 would not significantly alter the reported results, but with
much less efficiency). Fishers test was used to determine if
the clusters enriched CR or RD individuals, respectively. The
ps yielded by Fisher’s tests were recorded, and the reciprocal
of their average was considered as the enrichment score of
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the RGS. For each GO term, top 3,000 most significant RGSs
were selected to be “gilded RGSs” based on the enrichment
score. This threshold could be chosen freely between 1,000
and 3,000 and did not significantly affect the report results.

5. The unique 30 most frequently picked genes across gilded
RGSs of a GO term were drew as the set of signature
genes for the corresponding GO term.

Gene Sets Selection

Combinations of gene sets were tested using 10-fold cross
validation and independent validation dataset. Prediction of
labels (either the given individual being nonresponsive or
responsive to paclitaxel treatment) was made through voting:
(1) for each GO term, we used their 30 signature genes to
translate expression profiles of patients in the training dataset
into 1D vectors of shape (30, 1). (The expression profile of
the individual being predicted underwent the same
transformation.) Centroids of the feature vectors were
calculated for RD subgroup and CR subgroup, respectively.
If cosine distance between feature vectors of an individual
and RD subgroups’ centroid was smaller than such cosine
distance between feature vectors and CR’s centroid, the
individual would gain one point on belonging to RD; one
point be given to CR otherwise. (2) After all signature
genesets had their votes assigned, the individual was labeled
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