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One of the objectives of precision oncology is to identify patient’s responsiveness to a 
given treatment and prevent potential overtreatments through molecular profiling. Predictive 
gene expression biomarkers are a promising and practical means to this purpose. The 
overall response rate of paclitaxel drugs in breast cancer has been reported to be in the 
range of 20–60% and is in the even lower range for ER-positive patients. Predicting 
responsiveness of breast cancer patients, either ER-positive or ER-negative, to paclitaxel 
treatment could prevent individuals with poor response to the therapy from undergoing 
excess exposure to the agent. In this study, we  identified six sets of gene signatures 
whose gene expression profiles could robustly predict nonresponding patients with 
precisions more than 94% and recalls more than 93% on various discovery datasets 
(n = 469 for the largest set) and independent validation datasets (n = 278), using the 
previously developed Multiple Survival Screening algorithm, a random-sampling-based 
methodology. The gene signatures reported were stable regardless of half of the discovery 
datasets being swapped, demonstrating their robustness. We also reported a set of 
optimizations that enabled the algorithm to train on small-scale computational resources. 
The gene signatures and optimized methodology described in this study could be used 
for identifying unresponsiveness in patients of ER-positive or ER-negative breast cancers.

Keywords: microarray gene expression profile, breast cancer, signature genes, drug resistance, predictor

INTRODUCTION

Predicting if a given patient would not respond to a specific treatment could save enormous 
health care resources and potentially make it possible to reallocate the individual to better suited 
medication programs earlier (Garraway et al., 2013; Collins and Varmus, 2015). Paclitaxel treatment, 
which targets at cell cycle processes through stabilizing microtubules, is a prevalent medication 
used in various cancer types including breast, ovarian, and prostate cancer. Up to 20% of the 
ER-positive (ER+) breast cancer patients, who represent 80% of breast cancer population, could 
gain survival benefit from paclitaxel treatment. With high-confident prediction, it would be made 
possible to prevent nearly 20,000 women from ineffective paclitaxel treatment, which might 
cause additional neurotoxicity and adverse effects, in the United States alone. Network representation 
learning as well as integration of somatic mutation profile and gene functional annotation 
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information were utilized to discovery driver genes related to 
drug treatment responsiveness (Xi et al., 2017, 2018; Yang et al., 
2018; Zhang et  al., 2018). Existing studies either focused on 
triple-negative cases, or provided insights on a small number 
of tipping point genes more biologically other than computationally. 
For example, ABCB1/PgP and ABCC3/MRP3 were reported to 
be  closely associated with resistance to paclitaxel (Němcová-
Fürstová et  al., 2016; Delou et  al., 2017), while the resistance 
might be  driven by hundreds of genes (Duan et  al., 2004). Xu 
et  al. collected 22 key genes involved in paclitaxel treatment 
resistance for miscellaneous cancer types by analyzing literatures 
(Xu et  al., 2016) with the assistance of GeneMANIA (Warde-
Farley et  al., 2010), a gene/protein function predicting tool.

In this study, we  improved the Multiple Survival Screening 
(MSS), a methodology developed by Li et  al. (2010). for 
identifying cancer prognostic markers with high robustness 
and prediction power (Li et  al., 2010), and employed it to 
five microarray gene expression datasets [GSE20194 (MAQC 
Consortium, 2010; Popovici et  al., 2010), GSE20271 (Tabchy 
et  al., 2010), GSE22093 (Iwamoto et  al., 2010), GSE23988 
(Iwamoto et al., 2010), and GSE25066 (Hatzis, 2011; Itoh et al., 
2013)], which were partitioned into discovery set and independent 
validation set, in search of signature genes of nonresponsiveness 
in ER+ breast cancer. We  discovered sets of such genes that 
gave precision up to 94.6% and recall rate up to 93.3%, and 
performed consistently in cross validation inside discovery 
datasets, and different discovery datasets against their 
corresponding independent validation datasets. Similar results 
were obtained for ER-negative patients, demonstrating the 
prediction power and potential of real-life applications of the 
optimized methodology and reported gene sets.

RESULTS

Gene Signatures for Unresponsiveness  
of Paclitaxel Treatment in ER-Positive  
Breast Cancer
To explore efficient and generalizable gene signatures for 
predicting of whether a given breast cancer patient should 
be admitted to paclitaxel treatment, we constructed a discovery 
dataset comprised of microarray data generated by four cohorts 
(GSE20271, GSE22093, GSE23988, and GSE25066; referred to 
as T1pos; see Methods for details), where in total 469 patients 
were acquired (nRD  =  418, nCR  =  51; RD, residual disease; CR, 
complete response). Similarly, an independent validation dataset 
was formed using microarray data from the cohort of GSE20194 
(nRD = 213, nCR = 65; referred to as V1pos). MAS5 normalization 
was employed for both T1pos and V1pos, respectively. Both 
expression profile matrices then underwent additional 
normalizations to address batch effects between the cohorts 
as well as merging of multiple probes that represented same 
gene on the gene expression microarray (see Methods).

Implementing a methodology based on Multiple Survival 
Screening (MSS) (Li et  al., 2010), which as a random search 

computational scheme that could identify reliable signature 
genes, we  obtained six gene signatures (“Signatures,” A1–F1) 
from T1pos corresponding to six groups of Gene Ontology (GO) 
terms closely associated with carcinogenesis (Figure 1): cell 
adhesion, apoptosis, cell cycle, immune response, phosphorylation, 
and DNA damage & repair. Each signature gene set contained 
30 unique genes and was used to translate a given expression 
profile into a feature vector. Testing the six signatures against 
V1pos, we  observed that the prediction achieved precision of 
94.4% and recall rate of 90.1% for RD (residual disease; mutually 
exclusive to CR, complete response) subgroup, where a true 
positive prediction was defined as predicting a nonresponding 
patient to be so, and a false positive prediction to be predicting 
a patient that responded to the treatment as a nonresponding 
one. Precision and recall rate aligned with convention definition. 
Comparing to the genes with most significantly differential 
expression profiles (see Method), less than 50% of the most 
significant genes were selected (i.e., if selecting 130 genes, less 
than 65 genes were among the 130 top listed genes). Simply 
using the most significant genes gave inferior prediction power 
in the independent validation dataset (recall rate of 88%), 
implying that most prominent differential expression patterns 
contained cohort-specific features and might not be  feasible to 
be  utilized directly.

Further, we examined the predicting performances of all possible 
combinations of six signatures (k  =  2, 3, 4, 5) (Figures 2–4) 
through 10-fold cross validation tests in T1pos. While all choices 
gave precisions more than 94%, recall rates varied between 80 
and 95%, exhibiting differences in prediction power. The combination 
of Signature B1 (apoptosis), C1 (cell cycle), and F1 (DNA damage 
and repair) provided the best-balanced precision and recall rate 
(using the average values of 10-fold cross validations), of 94.0 
and 93.4%, respectively. Predictor comprised of the selected 
combination of signatures had a better performance on the 
independent validation (precision of 93.1% and recall rate of 
92.7%). We  considered the recall rate to be  the most important 
metric, as the methodology was intended to reliably predict whether 
an individual can skip a treatment without adverse consequences. 
In comparison, we  tested seven signature genes (BRCA1, APC, 
p16/CDKN2A, FRMD6/hEx, YAP, BAX, and LZTS1/FEZ1) related 
to drug resistance in breast cancer, collected by Xu et  al. (2016), 
for their prediction power. In the four-cohort discovery dataset, 
two-cohort discovery dataset and validation dataset, the signature 
gave precision rates of 92.3, 89.5, and 94.0% and recall rates of 
82.7, 78.9, and 85.2%, respectively. Overall, our proposed signature 
genes provided better prediction power, and the methodology 
allowed the aggregation of accumulating datasets to discover 
potential better gene combinations.

To demonstrate the contribution of the signature genes against 
drug resistance, we  calculated their relative contribution scores 
(RCS) based on randomization tests. Similar to the signature 
selection process but with reduced randomization count per 
iteration (50,000) and higher total iteration counts (200 for 
each of the six GO terms), fuzzy K-means clustering combined 
with Fisher’s test was performed to measure randomized gene 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Feng et al. Predictive Markers for Paclitaxel Treatment

Frontiers in Genetics | www.frontiersin.org 3 March 2019 | Volume 10 | Article 156

FIGURE 1 | Diagram illustrating the workflow of methodology used. Refer to Methods for dataset information and details in each step.

FIGURE 2 | Gene signature B, C, and F of ER-positive breast cancer. Box plots showing the distributions of normalized expression levels of the signature genes, 
whose centroids were further used to construct the predictor.

FIGURE 3 | Precisions and recall rates of predictor comprised of potential signature combinations, trained on T1pos, tested using 10-fold validation. Although the 
combination of Signature B, C, and F provided not the best precision, its recall rate was finest.
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sets’ partition power over responsiveness, where gene set that 
exhibited statistical significance stronger than p < 0.001 was 
collected as “candidate geneset.” Relative prevalence of a given 
signature gene was then obtained by measuring its presence 
amongst the candidate gene sets and normalizing the value 
through dividing the largest absolute prevalence value.

Robustness and Generalizability of 
Signature Gene Sets
To examine whether the identified gene signatures were not 
impacted by random factors, we  performed another round of 
signature discovery process on T1pos with same set of 
hyperparameters and a new initial random state. We  found 
that 99.2% (129 out of 130) gene selections remained the same 
in the new iteration, with the only altered gene selection resided 
in the Signature A1 (adhesion). Expanding the number of 
random gene sets or iterations of the algorithm (see Methods) 
would not significantly impact on the gene signatures.

Further, the same gene signature discovery methodology was 
employed to T2pos, a discovery dataset comprised of two cohorts 
(GSE22093 and GSE25066) and validated against the remaining 
three cohorts (GSE22093, GSE23988, and GSE20194) to prove 
the generalizability of the signatures. Regardless of shrank dataset 
size, the identified Signature B2 (apoptosis), C2 (cell cycle), and 
F2 (DNA damage & repair) were exactly the same as the above 
Signature B1, C1, and F1. This signature combination achieved 
best precisions and recall rates in GSE20194 (a.k.a. V1pos; 94.6 
and 93.4%, respectively), GSE20271 (95.4 and 91.2%, respectively), 
and GSE23988 (95.7 and 96.0%, respectively). Swapping the 
components of the discovery dataset did not significantly impact 
on signature discovery (none or less than two gene selections 
altered in each GO term signature) and the above reported 
prediction power. These results demonstrated that Signature  
C and E were generic and stable for nonresponsive ER-positive 
breast cancer cases and might be applied to new incoming datasets.

Gene Signatures for Unresponsiveness of 
Paclitaxel Treatment in ER-Negative 
Breast Cancer
We further demonstrated that the methodology may work equally 
well for ER-negative population. To obtain signature genes for 

ER-negative (ER−) group, we  constructed a discovery dataset 
comprised of the four cohorts described above (see Methods 
(GSE20271, GSE22093, GSE23988, and GSE25066; referred to as 
Tneg; nRD-and-ERneg  =  152, nCR-and-ERneg  =  217). Similarly, GSE20194 
(nRD-and-ERneg  =  62, nCR-and-ERneg  =  45; referred to as Vneg) was utilized 
as an independent validation dataset. MAS5 normalization and 
further regularizations addressing batch effects were performed 
as mentioned previously. We  obtained five sets of signature genes 
(“Signatures,” a–e) corresponding to five groups of GO terms 
which were closely associated with carcinogenesis: phosphorylation, 
immune response, apoptosis, DNA damage and repair, and cell 
cycle. Regardless of distinct ratio of sample size of RD and CR 
subgroup (ratios in range 0.7–1.4), compared to ER+ datasets 
(ratios in range 3–10), the prediction power of the signature gene 
sets was similarly steady. Validating in Vneg, the combination of 
Signature b (immune response), c (apoptosis), and d (DNA damage 
and repair) (Figure 5) achieved precision of 94.8% and recall 
rate of 92.0%.

Optimizing Methodology to Use 50-Fold 
Less Computation Resources
The original MSS methodology essentially relied on random 
searching, which was implemented through randomly generating 
sets of genes, ranking their ability to represent nonresponding 
patients, and selecting consensus genes from top-ranked gene 
sets to serve as gene signatures in the predictor. This process 
was computationally expensive, where training a model distributed 
on 672 cores (2.60 GHz) would cost 30–60  min to finish the 
6 million iterations for six GO subsets (see Methods), and had 
also undefined hyperparameters that accounted for the number 
of total iterations as well as ranking criteria.

We found that the signature genes were prominent enough 
in most discovery datasets, as long as the overall sample size 
was reasonable, to allow optimization of signature discovery 
processes. First, hyperparameters that determine the base “gene 
pool” of random sampling could be replaced by simply picking 
the 500 most significantly differentially expressed genes, 
trivializing parameter tuning. Then, through introducing one 
single threshold and an ensemble method (see Methods), 
we  were able to reduce the 1 million iterations required by 
the original methodology to 20,000 iterations while retaining 
same prediction power. While signatures reported above could 

FIGURE 4 | List of gene signatures of ER-positive breast cancer.
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be used for potential application in breast cancer nonresponsive 
screening without redoing the discovery processes, the 
optimization was suitable for implementations of the methodology 
on small computation resource, e.g., personal computer.

DISCUSSION

Precision oncology addresses the following aspects of targeted 
therapies: for example, developing medications that would 
benefit patients with a certain phenotype or symptom helps 
improve overall survival, finding means to confidently suggest 
patients to opt-out treatments that provide little benefit to 
them is as important. Paclitaxel, a drug which targets microtube 
components (β subunit of tubulin) of cell cycle regulatory to 
oppress expansion of cancer cells, has been considered as an 
important agent for treating breast cancer, providing valid 
efficacy and tolerability while low in cross-resistance with other 
drugs. However, paclitaxel’s response rate among breast cancer 
patients resides in a loose range of 10–60%. Only 20% ER-positive 
patients would respond or partially respond to the drug. 
Accurately predicting whether a given patient will respond to 
paclitaxel treatment with confident would help preventing 
enormous breast cancer patients from undergoing excess effectless 
treatment and adverse effects. Gene expression profile was 
reported to be  the strongest indicator of paclitaxel sensitivity 
in breast cancer patients (Dorman et  al., 2015). Although 
resistance to paclitaxel has been reported to be associated with 
the expression levels of hundreds of transcripts and studied 
for the underlying molecular mechanisms as well as key pathways, 
existing signature genes did not perform well in predicting 
the lack of response in breast cancer patients.

While microarray and RNA-seq are becoming more applicable 
and affordable for clinical diagnostics, preventing patients from 
excessive treatments is desirable. In this study, we  reported 
six sets of robust and generalizable gene signatures for the 
prediction of nonresponding individuals in ER+ and ER− groups 
of breast cancer, where combination of Signature B (30 genes 
related to apoptosis), C (30 genes related to cell cycle), and 
F (30 genes related to DNA damage and repair) achieved the 
best precision (>94%) and recall (>93%) predicting 
nonresponding patients in independent validation datasets, 

which were significant improvements compared to previous 
studies [e.g., 82% accuracy in cell lines, using expression profile 
of 15 genes and SVM model (Dorman et  al., 2015)]. Signature 
genes were given relative contribution scores (RCS) based on 
randomization tests to demonstrate their contribution to the 
predictor, or relatively to what extent they contributed to the 
resistance. Moreover, we  described a potential optimization of 
the methodology that rendered the algorithm less computational 
demanding, and therefore enabling faster gene signature discovery 
in new datasets.

MATERIALS AND METHODS

Data Processing and Normalization
The following five microarray-based gene expression profiles 
(samples examined before treatments) were collected from the 
repository of Gene Expression Omnibus (GEO): (1) GSE20194, 
comprised of 278 samples using Affymetrix Human Genome 
U133A Array (GPL96), where 161 samples were labeled as 
ER+. Of the 161 samples, 151 samples were marked as residual 
disease (RD) and 10 samples as partial complete response 
(pCR) or complete response (CR); (2) GSE 20271, comprised 
of 178 samples using Affymetrix Human Genome U133A Array 
(GPL96). In total, 98 samples were labeled as ER+, where 91 
samples were marked as RD and 7 samples as pCR or CR; 
(3) GSE22093, comprised of 103 samples using Affymetrix 
Human Genome U133A Array (GPL96). In total, 42 samples 
were labeled as ER+, where 32 samples were marked as RD 
and 10 samples as pCR or CR; (4) GSE23988, comprised of 
61 samples using Affymetrix Human Genome U133A Array 
(GPL96). In total, 32 samples were labeled as ER+, where 25 
samples were marked as RD and 7 samples as pCR or CR; 
(5) GSE25066, comprised of 508 samples using Affymetrix 
Human Genome U133A Array (GPL96). In total, 297 samples 
were labeled as ER+, where 270 samples were marked as RD 
and 27 samples as pCR or CR.

We retrieved all five cohorts in their raw data format (CEL 
files) along with clinical data records. Expression profiles of 
each cohort were then normalized through MAS5.0 normalization 
(using RMA normalization instead in this step did not 
demonstrate visible impact on the results reported). After log2 

FIGURE 5 | List of gene signatures of ER-negative breast cancer.
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transformation, we  mapped the probes to Entrez Gene IDs 
(mapping provided by GEO) and removed duplicated reads 
of a given gene by retaining their average read. In total 4,075 
unique genes were preserved. Probes pointed to unidentified 
genes (i.e., genes without Entrez ID) were not removed 
deliberately. They were practically invisible during the downstream 
analysis (see below), however. Data were further median-centered 
and z-scored across cohorts to address batch effects.

The four-cohort discovery datasets comprised of GSE20271, 
GSE22093, GSE23988, and GSE25066, utilizing GSE20194 as 
independent validation dataset. The two-cohort discovery dataset 
comprised of GSE22093 and GSE25066, utilizing GSE20194, 
GSE20271, and GSE23988 as validation set.

MSS Methodology and Optimization
Based on the study of Li et  al., we  utilized the following 
random-sampling-focused methodology in a given pair of 
discovery dataset and independent validation dataset.

 1. In discovery dataset, genes that demonstrated significant 
differential expression profiles between subgroup of responsive 
patients (i.e., samples marked as pCR or CR) and subgroup 
of nonresponsive patients (samples marked as RD) were 
selected to form a gene pool. Significance was defined by 
the criteria that in more than 80 of 100 iterations of randomly 
drawing 30 responsive samples and 70 nonresponsive samples, 
t-test between such randomly drew subgroups showed  
p < 0.05. The 30–70 ratio can be  relaxed to up to 30–120 
without altering downstream results; in fact, only half of 
the differentially expressed genes that made to the final 
collections were at the top of this list, implying the following 
feature selection steps were of more importance. For the 
four-cohort discovery dataset, we obtained 389 unique genes 
to form the pool; for the two-cohort discovery dataset, 593 
genes were selected. The two pools shared 369 unique genes, 
implying that although more significantly differentially 
expressed genes were found in two-cohort discovery dataset, 
many of which might be  cohort-specific or at least not 
generic. Gene pools were annotated for GO terms by DAVID 
(Huang et  al., 2008, 2009) (v6.8). In original MSS 
methodology, criteria of significance were considered to 
be hyperparameters, ideally controlling the number of selected 
genes during the corresponding step. However, training on 
the discovery dataset, we  noticed that none of the signature 
genes came from the less significant ones, i.e., the bottom 
of the ranking list, therefore simply performing the t-tests 
and selecting the most significant 300–500 genes would 
serve the same objective. We  discarded the hyperparameter 
in favor of this optimization and observed same results as 
reported, with less tuning attempts.

 2. For a given gene pool, we partitioned genes with replacement 
into GO-defined subgroups (or, “subpool”). One gene could 
appear in more than one such subgroup according to its 
annotations. For the four-cohort discovery dataset, subgroup 
of apoptosis-related functions comprised of 186 unique genes; 
similarly, the numbers of genes were as the following for 
other subgroups: DNA damage & repair (56), immune response 

(104), cell adhesion (56), cell cycle (84), and phosphorylation 
(77). For the two-cohort discovery dataset, the numbers of 
genes were as the following for subgroups: apoptosis (290), 
DNA damage & repair (81), immune response (142), cell 
adhesion (93), cell cycle (115), and phosphorylation (111).

 3. Following the original MSS methodology, for a given GO-defined 
subpool, 30 genes were randomly drew without replacement 
to form a random gene set (RGS) for 1,000,000 iterations, 
yielding 1 million RGSs. For a given discovery dataset, 25 CR 
individuals and 55 RD individuals were randomly drew without 
replacement to form a random patient set (RPS) for 40 iterations, 
yielding 40 RPSs. We  optimized this step computationally 
through the following, without significant impact on the outputs:

 a.  The number of RGSs can be  reduced to up to 20-fold 
less by monitoring the list of most frequently appeared 
genes of the RGSs, without affecting the reported results. 
In original MSS, arbitrary 1 or 2 millions of iterations 
were performed to obtain the “gilded RGSs” and then the 
signature genes (see below). Instead we  observed that, 
combinations of signature genes were prominent enough 
that it was possible to set a stopping criterion T, such 
that if after T iterations, the top 30 most frequently appeared 
genes of the “gilded RGSs” had no change, terminate this 
step and accept the “gilded RGSs” along with the list of 
top 30 most frequent genes as the final results. It was 
safe to assume such a parameter T in the range of 100–500, 
where a lesser T implied more tradeoff of robustness of 
the gene list in favor of computational complexity.

 b.  Computational complexity could be  further reduced by 
using an ensemble model. Instead of allowing each 
signature gene set to claim one vote in the predicting 
(see below), we  lowered the parameter T to as less as 
30 and obtained five gene lists for each GO-defined 
subpool. Each gene list was then treated as one 
independent voter during voting.

Combining a and b, the number of total executed iterations 
could be reduced to 50-fold less. In this study, we implemented 
the original MSS methodology distributed on a cluster with 
672 CPUs, paralleling all 1 million iterations for each GO-defined 
subpool, and the runtime was around half an hour. Using 
the optimization, it was possible to calculate the predictor of 
desire at regular PCs or workstations in reasonable time frame.

Altering the proportion of CR and RD cases in RPSs would 
not significantly affect reported results, as long as the ratio 
was kept around 1:2 to 1:5.

 4.  Each RGS was tested against all 40 RPSs (if not using optimized 
version): patients in a RPS were partitioned into two clusters 
through K-means (Euclidean distance; using fuzzy K-means 
that implemented by sklearn-extension with fuzzy factor as 
2 would not significantly alter the reported results, but with 
much less efficiency). Fisher’s test was used to determine if 
the clusters enriched CR or RD individuals, respectively. The 
p’s yielded by Fisher’s tests were recorded, and the reciprocal 
of their average was considered as the enrichment score of 
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the RGS. For each GO term, top 3,000 most significant RGSs 
were selected to be  “gilded RGSs” based on the enrichment 
score. This threshold could be  chosen freely between 1,000 
and 3,000 and did not significantly affect the report results.

 5. The unique 30 most frequently picked genes across gilded 
RGSs of a GO term were drew as the set of signature 
genes for the corresponding GO term.

Gene Sets Selection
Combinations of gene sets were tested using 10-fold cross 
validation and independent validation dataset. Prediction of 
labels (either the given individual being nonresponsive or 
responsive to paclitaxel treatment) was made through voting: 
(1) for each GO term, we  used their 30 signature genes to 
translate expression profiles of patients in the training dataset 
into 1D vectors of shape (30, 1). (The expression profile of 
the individual being predicted underwent the same 
transformation.) Centroids of the feature vectors were 
calculated for RD subgroup and CR subgroup, respectively. 
If cosine distance between feature vectors of an individual 
and RD subgroups’ centroid was smaller than such cosine 
distance between feature vectors and CR’s centroid, the 
individual would gain one point on belonging to RD; one 
point be  given to CR otherwise. (2) After all signature 
genesets had their votes assigned, the individual was labeled 

as the prediction with most votes. Having even number of 
signature genesets rarely was a problem in this study; 
we  observed that predictions of nonresponsive labels were 
mostly being consented by majority or all genesets. If being 
of concern, cosine-distances-based fuzzy votes could be used 
in place of the binary votes.
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