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Alzheimer’s disease (AD) is a neurodegenerative and progressive disease, which often

causes irreversible damages to the cerebrum. The pathogenesis of AD is far from being

fully understood, while there are some popular hypotheses. So far, the diagnosis of AD

relies only on clinical screening in the form of imaging techniques or cerebrospinal fluid

analysis, which may lead to inaccurate evaluation and then cause the delay of suitable

treatments. While molecular biomarkers provide promising alternatives of establishing

correct relationships between genotypes and phenotypes of clinical symptoms. In this

paper, we propose a machine-learning-based method of identifying potential diagnostic

biomarkers of AD based on gene coexpression network by integrating gene expression

profiles in six brain regions. After building an integrated gene coexpression network of

multiple brain regions, we decompose the differential network into some subnetwork

modules. The module candidates from these coexpressed gene communities are then

identified by screening their discriminative powers in control from disease samples.

The potential biomarkers are then validated by multiple cross-validations and functional

enrichment analyses. If the biomarkers successfully pass clinical significance tests, they

can be used as a reference for clinical diagnosis after wet-experimental validations.

Keywords: Alzheimer’s disease, biomarker discovery, gene expression, data integration, classification, machine

learning

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative and progressive disease, which causes irreversible
damages to the cerebrum with cognitive and functional impairments (Porteri et al., 2017).
Approximately, 50 million peoples are suffering from AD worldwide. The pathogenesis of AD
is still poorly understood and some popular hypotheses have been proposed, such as genetics,
cholinergic, amyloid and Tau protein hypothesis (Goedert and Spillantini, 2006). The progression
of AD is rather long-time because its pathological change is a slowly accumulating process. It often
takes years to decode, reveal and recognize the neuronal dysfunctions and neurodegeneration with
dominant symptoms (Hardy and Selkoe, 2002; Goedert and Spillantini, 2006).

Currently, the diagnosis of AD generally relies on clinical screening in the form of imaging
techniques or cerebrospinal fluid analysis (Jack et al., 2010). The limited dementia at an early stage
often leads to inaccurate diagnosis and then results in the delay of beneficial treatments. Thus,
the discovery of effective and efficacious biomarkers that can establish correct correspondences
and relationships with clinical symptoms has become an urgent request (Porteri et al., 2017).

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00157
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00157&domain=pdf&date_stamp=2019-03-12
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zpliu@sdu.edu.cn
https://doi.org/10.3389/fgene.2019.00157
https://www.frontiersin.org/articles/10.3389/fgene.2019.00157/full
http://loop.frontiersin.org/people/634103/overview
http://loop.frontiersin.org/people/126999/overview


Wang and Liu Detecting Diagnostic Biomarkers of AD

Take it into consideration that the complicated genetic and
environmental risk factors of developing AD in the human
brain, there are thousands or 10,000 of candidates from
genes, transcripts, and proteins with their interactions (Wang
et al., 2016). It is a big challenge to identify AD biomarker
molecules by making full use of the available big data. Due
to the underlying complexity, network-based computational
methods become important options to meet the challenge
(Liu et al., 2011, 2012a).

In this paper, we aim to detect AD biomarkers by integrating
gene expression data in six brain regions. Gene expression
profiling data generates a genome-wide measurement of RNA
abundance in parallel manners, which provide possible materials
of bridging the gap between genotype and phenotype, which is
the foundation of biomarker screening. Physiological and cellular
processes are executed through interactions among genes and
their products. Through the analysis of genetic network, which
models their interactive activities, it is possible to screen out
the core genes which play crucial roles in AD development
and progression (Liu et al., 2009). Moreover, the incidence of
AD in brain regions is sequential during disease progression.
It is necessary to identify molecular biomarkers by integrating
gene expression data from brain regions (Jack et al., 2013). To
these ends, we provide a bioinformatics framework of detecting
the potential diagnostic biomarkers based on differential gene
coexpression network obtained by integrating gene expression
profiles in multiple brain regions.

2. METHODS

2.1. Framework of Biomarker Discovery
Figure 1 demonstrates our proposed framework of identifying
diagnostic biomarkers of AD by integrating gene expression
data in six brain regions. Briefly, we identify the correlation
coefficients between differentially expressed genes across control
and disease samples. By integrating the correlations of six brain
regions, differential co-expressed gene pairs are selected by a
statistical test, and they construct a differential co-expressed
network. Then, we employ a network clustering method to
partition off it into subnetwork modules. By evaluating their
classification ability of distinguishing controls from diseases,
the modules are screened individually by machine learning
algorithms. The modules with the highest performance are
identified as biomarkers after functional enrichment analysis and
validation. The details shown in Figures 1A–D are introduced
as follows.

2.2. Data Pre-processing
The microarray gene expression datasets are downloaded from
NCBI GEO (ID:GSE5281) database (www.ncbi.nlm.nih.gov/
geo) (Liang et al., 2007). The experiments contain the gene
expression profiles of 161 samples in six brain regions, i.e.,
EC (entorhinal cortex), HIP (hippocampus), MTG (medial
temporal gyrus), PC (posterior cingulate cortex), SFG (superior
frontal gyrus), and VCX (primary visual cortex). In each brain
region, there are the corresponding samples of disease and
control simultaneously. The numbers of samples of affect/control

cases are 10/13 in EC, 10/13 in HIP, 16/12 in MTG, 9/13
in PC, 23/11 in SFG, and 19/12 in VCX. According to
the GPL570 annotation table, we map the probe set IDs
to Entrez gene IDs and gene official symbols, respectively.
When there are two or more corresponding gene IDs, we
only select the one with maximum interquartile range. In
each sample, the gene expression values are then normalized
into Z-scores (Cheadle et al., 2003). Totally, there are 23,643
unique genes to get their expression measurements after
data pre-processing.

2.3. Integration of Data in Six Brain Regions
2.3.1. Differential Gene
First of all, we identify the differentially expressed genes in the
six brain regions by the pre-processed gene expression data.
Specifically, we evaluate the differential p-value of each gene
across the control and disease samples via Welch’s two sample
t-test. For removing the high probability of committing type I
error in multiple hypotheses testing, the corresponding FDR is
also calculated (Noble, 2009). By setting up p ≤ 0.05 and FDR ≤

0.01, we screen out these differential genes in each brain region
respectively. We integrate the top 200 (top 10%) differential
genes in each brain region and get the union of differentially
expressed genes.

2.3.2. Correlation Analysis
For building gene-gene coexpression relationships in multiple
brain regions, we pick out the dysregulated interactions between
genes using differential correlation analysis in each region
individually. We firstly associate gene pairs in these identified
differential genes in an all-against-all manner. In other words,
we generate all the non-repetitive gene pairs that are produced
by these differential genes. For each gene pair, we calculate their
coexpression status in the samples via PCC (Pearson correlation
coefficient) (Liu et al., 2012b), i.e.,

r(X,Y) =

n∑
i=1

(Xi − X)(Yi − Y)

(n− 1)SXSY
, (1)

where X and Y are the gene expression vectors. X and Y
refer to the mean values of X and Y . SX and SY represent
their standard deviations. Then the coexpression values for all
gene pairs in control and disease are obtained, respectively. We
integrate the six coexpression values under control condition
and those under disease condition into two new vectors across
six brain regions. The differentially coexpressed gene pairs are
identified via a nonparametric statistical testing. For the two
vectors of six elements, we implement Spearman’s t-test to detect
the differential gene coexpressions with thresholds of p-value ≤
0.05 and FDR ≤ 0.1.

2.4. Differential Co-expression Network
After collecting these differentially coexpressed gene pairs, we put
them together to form into a differential coexpression network
as shown in Figure 1C. It can be visualized when we import
these dysregulated gene interactions into Cytoscape (Shannon
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FIGURE 1 | The framework of detecting AD biomarkers from gene expression data. (A) The gene expressions of AD samples and controls in the six brain regions of

EC, HIP, MTG, PC, SFG and VCX respectively. (B) The union of differentially expression gene in each brain region. We generate the non-repetitive gene pairs from the

pairwise differential genes. For each gene pair, we calculate their coexpression status in the control and disease samples via PCC. For the two correlation vectors, we

implement Spearman’s t-test to detect the differential gene coexpressions with thresholds of p-value ≤ 0.05 and FDR ≤ 0.1. (C) The differential correlation gene pairs

construct a differential coexpression network. (D) The differential coexpression network is grouped into several subnetwork modules by clustering. They are screened

out as candidate biomarkers when they successfully classify controls and diseases. The functional enrichment analysis will be performed to justify the dysfunctions

underlying these candidates. Then, the validations in independent experimental settings are to check the classification performances of the identified biomarkers.

et al., 2003). The subnetworks of this network will be targeted
for identifying module biomarkers.

2.5. Clustering
For decomposing the whole differential coexpression
network into subnetwork modules, we group the nodes by
a network clustering algorithm, i.e., MCL (Markov clustering)
(Van Dongen, 2000). Specifically, MCL algorithm is a fast and
scalable unsupervised network clustering algorithm based on
topological structures and features. It repeats two basic algebraic
operations on matrices to simulate random walks on the network
(Vlasblom and Wodak, 2009). The first operation is expansion,
which is a process to calculate the probability of a random walk
of length n between any two nodes in the network. Considering

that the behavior of matrix multiplication is similar to random
walks on graph, the Markov matrix associated with the graph
can be used as the foundation of simulating these random walks.
In a network, the flow is much easier within its dense regions
than across its sparse boundaries. Thus, the second operation of
MCL is inflation, which aims to keep this property by changing
the distribution of each vertex transition values in the Markov
matrix such that high values are further high and low values
are further low. If the two-step iterations produce a convergent
matrix, the final clustering will be achieved (Van Dongen, 2000).

2.6. Classification
These gene subnetwork modules provide the candidates for
screening out the module biomarkers of classifying control
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and disease samples in brain regions. We perform an SVM
(support vector machine) classification procedure to evaluate the
discriminative ability of each module in distinguishing disease
state from a normal state. SVM classifier aims to find an optimal
hyperplane that satisfies the classification requirement and the
optimal margin evaluation criteria are based on the distance
between two support vectors (Suykens and Vandewalle, 1999).
In the classification with two categories, the classifier can be
constructed as follows. Given a training set of data points (xi, yi),
i = 1, 2, · · · ,m, x ∈ Rn, y ∈ {±1}, optimal hyperplane H is:

(w · x)+ b = 0. (2)

SVM classifier should meet some constraints, one of them is:

w·xi+b ≥ 1, if yi = +1;w·xi+b ≤ −1, if yi = −1 (3)

which is equivalent to

yi[w · xi + b ] ≥ 1, i = 1, 2, · · · ,m (4)

The other is to maximize the margin which is calculated
as 2/‖w‖. In other words, it is to minimize w. For
solving the constraint optimization problem, the Lagrange
function is introduced:

L(w, b, a) =
1

2
‖w‖ − λ ( y ((w · x )+ b )− 1) (5)

Where λi > 0 is Lagrangian multiplier. By setting partial
derivatives of (4) for w and b as 0, we finally find the optimal
hyperplane and construct a classifier as:

y(x) = sign [

m∑

i=1

λi yi x
T
i x+ b ] (6)

In the case of binary classification, we assess the classification
performance of the SVM-based classifier by a leave-one-out cross
validation (Cawley and Talbot, 2004). For a comparison study,
we also implement several machine learning algorithms in the
classification, such as naive Bayes, neural network and random
forest (Liu, 2016).

2.7. Classification Evaluation
We evaluate the classification performance of these modules
by the ROC (receiver operating characteristic) curves and their
corresponding AUC (area under ROC curve) values. For each
gene module, we compare the classification AUC values achieved
by integrating gene expressions in six brain regions as well as in a
single brain region. In addition, we also implement naive Bayes,
neural network and random forest algorithms for classification.
The comparison identifies the target module selected by SVM
with the consistently high classification performance serving
as AD module biomarkers. We also prove the rationality of
data integration in six brain regions in the identification. The
subnetwork module with highest AUC values is identified as
the module biomarkers of AD for further cross-brain-region
and cross-dataset validations. Then, the target network module
with the best classification performances is regarded as the final
identified AD biomarkers.

2.8. Enrichment Analysis
The functional implications of these network modules with
good classification performance are obtained by GO (gene
ontology) enrichment analysis. We implement our NOA
(network ontology analysis) method (http://app.aporc.org/
NOA/) to identify the enriched dysfunctions in these biomarker
genes. From the functional implications, we can partially
validate these identified biomarkers about their roles of AD
development and progression.

3. RESULTS

3.1. Differentially Expressed Genes
After data pre-processing, we obtain 23,643 genes with their
expression profiles. In each brain region, we identify the top 200
(top 10% genes picked after setting up p ≤ 0.05 and FDR ≤ 0.01)
differential genes. All together, we identify 1,001 differentially
expressed genes. Figure 2 illustrates the overlapping summary
statistics of these differential genes distributed in the six brain
regions. We find that most of the differential genes are only the
differentially expressed genes in individual brain regions. Few
genes are simultaneously differential across several brain regions.

3.2. Coexpression Network and Modules
For each pair of differential genes, we calculate the differential
correlation values via a statistical testing between control and
disease samples. We identify the differentially coexpressed gene
pairs and put them together to form a differential coexpressed
network with 615 dysregulated interactions. By employing
MCL algorithm, we identify some dysregulated subnetwork
modules from the network. Figure 3A demonstrates five (top 5
number of genes in modules) of these modules. We note that
there is obviously a hub gene in these modules individually,
which indicates a topological feature of these differential
coexpression networks.

As shown in Figure 3A, gene NPIPA1 (nuclear pore complex
interacting protein family member A1) is the identified hub
differential gene with differential correlations with all the
other genes in Cluster 1. NPIPA1 is proved to perform
biological functions of mRNA transport and protein transport.
It has an interacting gene MAP2K4, which encodes an
important membrane protein of MAPK (mitogen-activated
protein kinase) family. From the interacting partners in Cluster
1, the biologically cooperative dysfunctions can be revealed.
The differential coexpressed interaction between NPIPA1 and
MAP2K4 implies the dysfunctional signal transduction in AD.
From the network-based approach, the global scenario of
dysfunctions is displayed for AD development and progression
in the form of molecular subnetworks.

3.3. Biomarker Classification
For evaluating the performance of these clusters in distinguishing
control and disease, we perform leave-one-out classifications.
The ROC curves of these five clusters in the six brain regions are
shown in Figure 3B. We also implement our evaluations in each
brain region respectively. The sensitivity, specificity and AUC
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FIGURE 2 | Top differentially expressed genes and their overlapping gene numbers in six brain regions.

values are shown simultaneously. The detailed AUC values in six
brain regions are shown in Table 1.

From Table 1, we find that the five clusters reach high AUC
values in the six brain regions. The 5th cluster reaches the highest
AUC values of 1.0. These results provide direct evidence for
the effectiveness and efficiency of these candidate biomarkers
in distinguishing between control and disease states. We also
calculate the AUC values of summarizing these individual
brain regions and their average values. The good classification
performances indicate these modules can service as biomarkers
of classifying the disease states in multiple brain regions. For
better AUC values of these modules in various brain regions,
we select Cluster 1 and Cluster 5 to further screening through
different classification algorithms.

We further test the discriminative capability of the two
clusters by other three classification algorithms, i.e, naive
Bayes, neural network, and random forest. Joint with SVM,
Figures 4A,B demonstrate the ROC curves of the classifiers
based on the four algorithms. In Cluster 1, we find that random
forest achieves the best AUC of 0.994 from Figure 4A. While in
Cluster 5, it achieves the AUC of 0.755 as shown in Figure 4B.
Relatively, SVM obtains stably high AUC values of 0.984 and
1.0, respectively. Thus, we prefer SVM classifier to distinguish

normal and disease states and Cluster 1 is the identified
AD biomarkers.

For a comparison study with conventional biomarker
discovery methods, we implement two widely-used methods,
i.e., the method using differentially expressed genes (denoted as
‘DiffGene’ method) (Liu, 2016) and the variable/feature selection
method by SVM-RFE algorithm (denoted as ‘SVM-RFE’ method)
(Guyon et al., 2002). Figure 5 demonstrates the AUC values of
classification results. As shown Figure 5A, the AUC values of
‘DiffGene’ method are not as good as our proposed method
shown in Table 1. In Figure 5B, the AUC values of ‘SVM-RFE’
method are not consistently high. In brain regions of HIP, SFG
and VCX, the AUC values of our proposed method (Table 1)
exceed those of ‘SVM-RFE’. The comparisons demonstrate our
method outperforms the conventional methods in terms of
classification performance.

3.4. Biomarker Dysfunctional Analysis
For analyzing the functional implications in these identified
diagnostic biomarkers of AD, we use NOA to enrich the
GO annotations underlying these gene modules. Table 2 shows
the significant GO terms of biological process. As shown in
Table 2, we find the function of ‘lipid transport’ is enriched,
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FIGURE 3 | Five differential subnetwork modules and their ROC curves in classification. (A) Five gene modules identified by MCL clustering of differential

coexpression network. Clusters 1–5 contain 44, 15, 13, 10, and 7 genes respectively. (B) The ROC curves of Clusters 1–5 in classifications in EC. The specificity and

sensitivity are (0.955, 0.932), (0.933, 0.865), (0.385, 1.000), (0.800, 0.900), and (1.000, 1.000), respectively.
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FIGURE 4 | The ROC curves of four classification algorithms on Cluster 1 (A) and on Cluster 5 (B).

TABLE 1 | The classification AUC values of the five clusters.

Region Cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

ALL 0.983 0.960 0.633 0.900 1.000

Average 0.961 0.887 0.730 0.813 1.000

EC 0.938 0.938 0.331 0.890 1.000

HIP 0.953 0.956 1.000 0.730 1.000

MTG 1.000 0.609 0.988 0.550 1.000

PC 0.936 0.920 0.799 0.930 1.000

SFG 0.966 0.942 0.538 0.780 1.000

VCX 0.972 0.960 0.722 1.000 1.000

FIGURE 5 | The classification performances by conventional biomarker discovery methods in the six brain regions. (A) The ROC curves of ‘DiffGene’ method on top

44 differential genes. (B) The ROC curves of ‘SVM-RFE’ method on top 1,000 differential genes.

which indicates the dysfunctional metabolism and energy
transformation in AD. The epigenetics of ‘regulation of DNA
methylation’ indicates the dysfunctional modifications related to
AD. The important enrichments provide a functional map with
blocks in these identified biomarker genes. They provide more
evidence of functional importance of these biomarkers, which
enlighten the insightful findings of AD pathogenesis.

4. DISCUSSION

4.1. Cross-Region Biomarker Classification
AD is a chronic neurodegenerative disease which affects various

brain regions of controlling various physical functions (Liang

et al., 2007). The module biomarker of Cluster 1 with good

classification power in control and disease samples has been
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TABLE 2 | The enriched GO biological processes in the identified AD biomarkers.

GO term Representative

gene

Term

name

Corrected

P-value

GO:0006869 CEL, FABP2, SORL1 lipid transport 8.9E-5

GO:0050892 CEL, FABP2 intestinal absorption 2.6E-4

GO:0022600 CEL, FABP2 digestive system process 0.0015

GO:0018350 CEL protein amino acid esterification 0.0016

GO:0044030 TNNI3 regulation of DNA methylation 0.0016

GO:0034196 APOH acylglycerol transport 0.0016

identified by integrating gene expression data of six brain regions.
It is of interest to investigate the cross-region classification
performances for checking the potential pathogenic relationship
between brain regions.

To evaluate the classification accuracy of module biomarker
between six brain regions, we train the SVM classifier by utilizing
gene expression data in one brain region and then test it in the
other brain regions. Taking EC brain region as an example, we
first extract the expression data of these module biomarker genes
in EC and train the classifier for recognizing their patterns in
control and disease samples. Then we test the trained classifier of
distinguishing controls from diseases by the gene expression of
these biomarker genes in the other five brain region individually.
The five AUC values of classification are shown in Figure 6A.
They are plotted as a bar. Secondly, we train the SVM classifier by
the gene expressions in the other five brain regions, respectively
and then test the classification performance in EC. The five AUC
values are shown as the other bar graphs in Figure 6A.

From the AUC values of cross-brain-region validations, we
can roughly estimate the dysfunctional relationships between the
six brain regions from the view of dynamic gene expressions.
In Figure 6A, we can find the classifiers achieve higher AUC
values in HIP, MTG, PC, and SFG than that in VCX when we
train them by the expressions of biomarkers in EC (0.657, 0.707,
0.598, and 0.809 vs. 0.508). This indicates the gene expressions
in VCX are different from the other five brain regions. During
AD progression in brain regions, the differences of effect in VCX
have been identified (Liang et al., 2007; Liu et al., 2011). When we
train the classifiers by the gene expression of biomarkers in the
five brain regions, the classification performance for the samples
in EC achieves high AUCs, i.e., 0.912 of HIP, 0.827 of MTG,
0.843 of PC, 0.802 of SFG, and 0.496 of VCX, respectively. We
find the AUC of VCX is still the lowest one. This provides more
evidence for the distinction of VCX during AD development.
Moreover, the high AUC in some specific brain region implies its
dysfunctional specificity. While we mainly focus on integrating
the gene expression data of six brain regions to identify general
biomarkers for AD instead of detecting specific biomarkers for
individual brain regions.

Compared to the former AUCs by training the classifiers
in EC and testing them in the other five regions, the higher
AUC values prove the significant gene expression deviance of
these biomarkers in EC. When we train the classifiers in the
other five brain regions, the accurate classification performance
in EC indicates that the gene expressions in the four brain
regions contain the information of distinguishing controls from

diseases. The asymmetric cross-brain-region classification results
also inspire us to integrate the gene expressions in six brain
regions to identify AD biomarkers for compensating the diversity
of gene expressions in multiple brain regions.

4.2. Individual-Region Biomarker
Classification
Instead of detecting AD biomarkers in the six individual brain
regions, we integrate the differential coexpression gene pairs in
these regions by a systematic strategy. For the comparison study,
we also identify the candidate biomarkers by the gene expression
data in the six brain regions individually and investigate
their classification powers. We implement the whole former-
described processes of biomarker discovery except the selection
of differential gene coexpression pairs. In individual brain
regions, the differential gene correlation pairs are alternatively
based on the absolute difference values of the PCCs in control
and disease samples. In each brain region, we rank the gene
pairs according to differential correlations and select the same
number of them as those in the former integrationmethod. These
differential gene pairs construct the individual gene coexpression
networks in the six brain regions, respectively.

For each gene coexpression network, we also employ the MCL
algorithm to decompose it to subnetwork clusters. For similarity,
the clusters with the largest number of genes are recognized
as the candidate biomarkers. For comparing the classifications
of individual candidate biomarkers with the region-integrated
biomarkers, we implement the leave-one-out cross-validations in
these competitors and in the identified AD biomarkers.

Figure 6B demonstrates the comparison of AUC values in the
six brain regions. By leveraging the gene expressions in each
brain region, we implement the cross-validations of classification
in the individual-region biomarkers and the region-integrated
biomarkers. Except in EC, we can find the module biomarker
achieves higher AUC values when compared to these candidate
biomarkers in individual brain regions. In EC, the candidate
biomarkers achieve a perfect AUC of 1.0 (vs. 0.938 of the
identified biomarker). However, the identifiedmodule biomarker
obtains higher classification AUC values than those in the other
four individual brain regions. The results also indicate the
rationality of identifying AD biomarkers by integrating gene
expression datasets in several brain regions.

4.3. Cross-Dataset Biomarker
Classification
For cross-dataset validation of our identified AD biomarkers, we
also test their classification performance in independent datasets.
The other AD gene expression profiles are downloaded from
NCBI GEO (access ID: GSE48350). The dataset consists two
sample-paired subsets in EC. One contains 15 AD brain samples
and 21 control samples (from donors of young ages from 20 to
52). The other contains 15 AD brain samples and 18 control
samples (from donors of old ages from 64 to 99). By utilizing
the biomarkers, we test the classification in the two subsets,
respectively. The ROC curves of classification by our module
biomarker are shown in Figure 6C.
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FIGURE 6 | The classification validations of identified biomarkers. (A) The AUC values of cross-brain-region classifications between EC and the other five brain

regions by module biomarker. ‘Predict EC’ means that we train the classifier by the gene expression of biomarkers in the other five brain regions respectively, and then

test the classification performance in EC. And ‘Train EC’ means that we train the classifier in EC and test the classification in the other five brain regions respectively.

(B) The classification AUC values obtained by individual-region and integration-region methods. The AUCs of the ‘individual’ module biomarkers are 1.000, 0.720,

0.719, 0.847, 0.902, and 0.954 in the six brain regions respectively. For the ‘integration’ module biomarker, the corresponding AUCs are 0.938, 0.953, 1.000, 0.936,

0.966, and 0.972, respectively. (C) The ROC curves of classification by AD biomarkers in independent datasets. ‘Young’ and ‘Old’ represent the datasets with

different types of control sample respectively. The gray region refers to the standard deviations of classification in 30 random-choosing gene sets. (D) The ROC curve

of biomarker classification in independent blood samples.

In classifying the AD samples with old-aged controls, the
module biomarker achieves the AUC of 0.877. And the AUC
value in the samples with young-aged controls is 0.972. The two
AUC values prove the effectiveness and efficacy of our identified
module biomarker in distinguishing AD samples from controls.
Figure 6C also shows the ROC curve (with the gray range
of standard deviations) in the same-size number of gene sets
randomly choosing from the gene expression profiling data. The
higher classification performances in the identified biomarkers
provide more evidence for the efficiency and advantage of our
proposed method.

4.4. Blood Validation
Currently, the accurate detection of AD in clinics is often
based on nuclear magnetic resonance imaging, cerebrospinal
fluid as well as PET (positron emission tomography) - CT

(computed tomography). The finding diagnosis biomarkers
provide possible alternatives with more clinical validations. Note
that our identification is based on gene expression profiles
in human brains. From a practical perspective in clinician,
peripheral blood plasma testing is much more convenient,
cheaper and with lower invasion in AD diagnosis (Suhre
et al., 2017). Thus, we perform validation of these potential
gene markers in blood gene expression samples to check their
classification performances. The gene expression profiling data
in blood mononuclear cells is downloaded from NCBI GEO
(Access ID: GSE4226) (Maes et al., 2007). By mapping 44
genes in Cluster 1 to the measured blood gene expressions,
we get 6 overlapping markers in blood samples of 14 AD
patients and 14 normal controls. Using these six biomarker genes,
the classification performance of ROC curve in distinguishing
controls from diseases is demonstrated in Figure 6D. The AUC
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FIGURE 7 | The relationship between biomarker genes in Cluster 1 and AD genes. After filtering the intersection of first-order neighbors of Cluster 1 and KEGG AD

genes, we obtain 16 AD genes which have one-step indirect interaction with biomarker genes in Cluster 1.

value achieves as high as 0.76. Although the number of biomarker
genes measured in the samples is small, the diagnotic accuracy is
competitive with the available clinic approaches. From the cross-
dataset and blood validations, we partially verify the identified
biomarkers in public data.

Recently, the circulating microRNAs in serum seem to be an
alternative promising way of finding diagnostic biomarkers for
complex diseases (Chen et al., 2017, 2018a). The development
of computational methods for identifying potential diagnostic
lncRNA biomarkers is also promising in the biomarker screening
for AD, especially when these kind of high-throughput data
are available (Chen et al., 2016, 2018b). It is an interesting
research direction for AD biomarkers discovery from epigenetic
transcripts in blood.

4.5. Relationship Between Biomarkers and
AD Genes
Although APP (Jonsson et al., 2012), APOE (Morris et al.,
2010) and PSEN (Hjermind, 2016) have been recognized as
genetic risk factors of AD, we have not identified them in
the diagnostic biomarkers because they are not differentially
expressed genes in any of the six brain regions. It is of interest
to study the relationship between biomarkers and AD genes. We
firstly build up an integrative human protein-protein interaction
(PPI) network by combining the interactions in various PPI
databases (Liu et al., 2011). We employ the 28 genes in KEGG
AD pathway as the documented AD genes (Liu et al., 2011). Then
we identify the intersection of the first-order neighbors of the
biomarker genes in Cluster 1 and those of AD genes. Figure 7
demonstrates their linkages. There are 16 AD genes containing
the overlapping 38 first-order neighbors with the 44 biomarker
genes. This indicates that the biomarkers have close relationships
with these AD genes although they are not contained in the
identified biomarkers. The results also prove the effects of AD
causal genes have close distances with those biomarker genes in
the molecular interactome.

CONCLUSION

In this paper, we proposed a computational method of detecting
AD biomarkers by integrating gene expression data in six brain
regions. The framework is based on differential coexpression
network and machine learning. The network modules are
screened out by their classification powers via SVM classifiers.
We identified five module candidates and regarded Cluster
1 as the identified AD biomarkers by using the other three
classification algorithms for further screening. The cross-brain-
region, cross-dataset, and validations in blood gene expression
data provide evidence of its efficiency, efficacy, and advantage.
Totally, 44 genes in Cluster 1 are targeted as the potential
biomarkers in the form of a network module. Furthermore, the
blood biomarkers are also important in clinical applications (Ngo
et al., 2018), and we should screen out more genetic biomarkers
from different datasets to map more potential blood biomarkers
to improve classification accuracy. In the future, we also intend
to incorporate these risky AD genes in our identification and
investigate the causality between disease genes and marker genes.
Considering the false positives in the computational strategy
of identifying disease biomarkers, clinical validations of these
potential biomarkers are urgent requests. If these identified AD
biomarkers pass the multiple phases of clinical trials, they will be
highly beneficial for early diagnosis of AD.
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