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Improved cancer prognosis is a central goal for precision health medicine. Though many

models can predict differential survival from data, there is a strong need for sophisticated

algorithms that can aggregate and filter relevant predictors from increasingly complex

data inputs. In turn, these models should provide deeper insight into which types of data

are most relevant to improve prognosis. Deep Learning-based neural networks offer a

potential solution for both problems because they are highly flexible and account for data

complexity in a non-linear fashion. In this study, we implement Deep Learning-based

networks to determine how gene expression data predicts Cox regression survival

in breast cancer. We accomplish this through an algorithm called SALMON (Survival

Analysis Learning with Multi-Omics Neural Networks), which aggregates and simplifies

gene expression data and cancer biomarkers to enable prognosis prediction. The results

revealed improved performance whenmore omics data were used in model construction.

Rather than use raw gene expression values as model inputs, we innovatively use

eigengene modules from the result of gene co-expression network analysis. The

corresponding high impact co-expression modules and other omics data are identified

by feature selection technique, then examined by conducting enrichment analysis and

exploiting biological functions, escalated the interpretation of input feature from gene level

to co-expression modules level. Our study shows the feasibility of discovering breast

cancer related co-expression modules, sketch a blueprint of future endeavors on Deep

Learning-based survival analysis. SALMON source code is available at https://github.

com/huangzhii/SALMON/.

Keywords: deep Learning, co-expression analysis, survival prognosis, breast cancer, multi-omics, neural
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BACKGROUND AND INTRODUCTION

There is a strong need to identify effective prognostic biomarkers
to help optimize and personalize treatment (Liu et al., 2016).
Among cancers, breast invasive carcinoma is one of the
most heterogeneous cancers with distinct prognoses based
on morphological, phenological, and molecular stratifications
(Nagini, 2017; Wu et al., 2017). Breast invasive carcinoma
patients have a 77% survival rate after 5 years and 44% survival
rate after 15 years (Pereira et al., 2016), so developing accurate
prognostic models could significantly improve risk stratification
after diagnosis.

Recent Deep Learning-based approaches have been widely
applied to Computational Biology and Bioinformatics (Huang
et al., 2017; Zhang et al., 2018b). The advantages of learning non-
linear functions and retrieving lower dimensional representation
(Ching et al., 2018) reveal advances of Deep Learning models.
The application of survival prognosis that incorporates Cox
proportional hazards regression with a single transcriptomic
dataset (Ching et al., 2018; Katzman et al., 2018; Shao et al., 2018)
and with multi-omics data (Chaudhary et al., 2018; Poirion et al.,
2018; Ramazzotti et al., 2018; Sun et al., 2018; Zhang et al., 2018a)
is of major interest in precision health.

For these reasons, we integrate multi-omics data with
Deep Learning-based survival prognosis models. While most
contemporary approaches incorporate one or few types of omics
data, such as mRNA-seq data and miRNA-seq data (Gupta et al.,
2015; Nassar et al., 2017), we propose that integrating more
diverse data may lead to improved modeling—especially when
driven by machine learning. Moreover, classic cancer biomarkers
can often stratify patients into risk groups, and these too should
be integrated when available. Specifically, copy number burden
(CNB) and tumor mutation burden (TMB) are important for
predicting tumor progression (Marshall et al., 2017; Thomas
et al., 2018) and immunotherapy (Birkbak et al., 2013; Chalmers
et al., 2017; Goodman et al., 2017). Other demographical and
clinical information such as diagnosis age, estrogen receptors
(ER) status, progesterone receptors (PR) status should also be
considered during model construction. One of the challenges for
such diverse data is high-dimensionality.

Most Deep Learning approaches employ neural networks
(multilayer perceptron) with huge numbers of parameters to be
optimized. Optimizing such large sets of parameters with limited
patient samples tends to introduce overfitting that renders
the models ineffective. In this paper, we advocate the use of
eigengene matrices instead of original mRNA-seq and miRNA-
seq data derived from co-expression analysis with R package
“lmQCM.” Using neural network architecture, multi-omics data,
and the Cox proportional hazards model, we develop our model
called SALMON (Survival Analysis Learning with Multi-Omics
Neural Networks). SALMON adopts co-expression modules as
input, namely, the eigengene matrix derived from co-expression
network analysis. It greatly reduces the dimension of the original
feature space addressing the “curse of dimensionality” and
increases the robustness and learnability of the model. This novel
technique was not adopted by any other Deep Learning-based
survival prognosis model such as Cox-nnet (Ching et al., 2018).

SALMON is trained on co-expression module eigengenes
instead of gene expressions and thus we were able to
investigate co-expression modules contribution to the hazard
ratio (Figure 1). These gene co-expression modules contained
individual genes from the initial lmQCM gene co-expression
network analysis. Genes from modules that highly contributed
to the hazard ratio were further evaluated with gene enrichment
analysis to confirm certain gene regulations and biological
processes. These biological findings confirm the validity of
our models and provide insight into the complex regulatory
relationships at work in breast invasive carcinoma.

MATERIALS AND METHODS

Datasets and Study Design
In this experiment, we analyzed 583 female breast invasive
carcinoma (BRCA) patients which had five omics data types
including gene expression data (illuminahiseq_rnaseqv2-
RSEM_genes_normalized) and miRNA data
(illuminahiseq_mirnaseq-miR_gene_expression) from Broad
GDAC Firehose (https://gdac.broadinstitute.org/), copy number
burden (CNB) was measured by total Kb length and the data
(broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.
seg) was provided from Pan-Cancer Atlas (PanCanAtlas)
Initiative (https://gdc.cancer.gov/about-data/publications/
pancanatlas). Tumor mutation burden (TMB) was calculated
by the total number of mutated genes based on MAF files
(Mutation_Packager_Oncotated_Calls) from Broad GDAC
Firehose. Demographical and clinical information (diagnosis
age, Estrogen Receptor (ER) status, Progesterone Receptor
(PR) status) and overall survival (OS) events and months
were collected from cBioPortal (http://www.cbioportal.org/).
HER2 status was not considered in this article because of
insufficient data. Table 1 shows the statistical information of this
patient cohort.

We performed 5-fold cross-validation on the dataset. In each
fold, 80% of the data were used for model training and 20% of
the data were used for model testing. mRNA and miRNA data
were pre-processed by TSUNAMI online analysis suite (https://
apps.medgen.iupui.edu/rsc/tsunami/). The pre-processing steps
are 2-fold: It firstly removed genes with lowest 20% of mean
expression values shared by all patients. Then it removed genes
with lowest 20% of expression values’ variance. These pre-
processing steps were necessary to ensure the robustness for
the downstream correlational computation in gene co-expression
module analysis step.

Gene Co-expression Module Analysis
Instead of feeding mRNA-seq and miRNA-seq data to the
neural networks and analyzing results at the gene level, we used
eigengenematrices of gene co-expressionmodules obtained from
lmQCM algorithm (Zhang and Huang, 2014) as the input to
the SALMON algorithm. This reduced 99.46% of input features
and greatly reduced the number of parameters in the neural
networks. Using eigengenes as features can be considered as
bias/variance (error/complexity) trade-off in machine learning
(Weigend et al., 1990; Geman et al., 1992), which simplifies
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FIGURE 1 | SALMON (Survival Analysis Learning with Multi-Omics Neural Networks) architecture with the implementation of Cox proportional hazards regression

networks. Co-expression modules (eigengene matrices) are the inputs to the SALMON. Number of the hidden layers and dimensions of hidden layers can also be

fine-tuned (not included in this paper). The output is the hazard ratios which can be interpreted as the relative risks of patients.

TABLE 1 | Demographical and clinical characteristics of 583 female breast invasive carcinoma (BRCA) patients.

mRNA size miRNA size OS Months Diagnostic age ER positive ratio PR positive ratio

Original Co-expression module Original Co-expression module Median Range Median Range

13,132 57 530 12 31.70 0.00–216.59 57 26–90 76.16% 67.41%

mRNA and miRNA stand for mRNA-seq data and miRNA-seq data. OS stands for overall survival. The status of ER and PR were derived from IHC (immunohistochemistry). All clinical

information was collected from cBioPortal.

the networks significantly. The total number of neural network
weights to be learned was then narrowed down from 107193 to
521, ensuring the robustness of the learning process and alleviate
the overfitting issue (Caruana et al., 2001; Schmidhuber, 2015).

There are many gene co-expression network analysis
packages, such as the R package for weighted correlation
network analysis (WGCNA) (Langfelder and Horvath, 2008)
and local maximal Quasi-Clique Merger (lmQCM) (Zhang
and Huang, 2014), which can discover densely connected
gene modules across samples/patients. Co-expression network
analyses are used increasingly to reveal latent gene-gene
interactions, biomarkers and novel gene functions (Horvath
et al., 2012; Chandran et al., 2016; Han et al., 2016, 2017; Zhang
and Huang, 2017; Xiang et al., 2018). Comparing to WGCNA,
weight normalization process in lmQCM was inspired by
the spectral clustering (Ng et al., 2002) in machine learning.
With efficient implementation of the revision from eQCM
(edge-covering quasi-clique merger) algorithm (Xiang et al.,
2012), lmQCM allowed module overlap, mining smaller densely
co-expressed modules, and thus was adopted in this article. The
generally smaller size of mined modules can also generate more
meaningful gene ontology (GO) enrichment results (Zhang et al.,
2012, 2013, 2016; Shroff et al., 2016; Cheng et al., 2017). The
implementation was performed on TSUNAMI. For mRNA-seq
data, we set lmQCM parameters γ = 0.7, λ = 1, t = 1, β = 0.4,
minimum size of cluster = 10, and adopted Spearman’s rank
correlation coefficient (Mukaka, 2012) to calculate gene-wised

correlations. The parameters setting of miRNA-seq data were the
same except γ = 0.4, β = 0.6, and minimum size of cluster= 4.

After calculating gene co-expression modules with lmQCM,
eigengene matrices were then determined. The eigengene matrix
is the expression values of each gene co-expression module
summarized into the first principal component using singular
value decomposition (SVD) (Golub and Reinsch, 1970). With
the first right-singular vector of each module as the summarized
expression values, it projects co-expressed genes to 1-D space
and thus can be treated as the “super gene.” In our experiment
with breast invasive carcinoma, an eigengene matrix with 57
dimensions was derived from mRNA-seq data and an eigengene
matrix with 12 dimensions was also derived from miRNA-seq
data. Details of co-expression modules and eigengene matrices
we derived for this paper are available in Supplementary files.
These eigengene matrices were treated as the substitution of the
original expression inputs.

Neural Networks Design, Architecture, and
Evaluation Metric
SALMON was designed and implemented in PyTorch 1.0.
mRNA-seq and miRNA-seq eigengene matrices were firstly
connected to hidden layers with dimensions 8 and 4, respectively,
then connected to the final output (hazard ratio) with Cox
proportional hazards regression networks. Alternatively, CNB,
TMB, and demographical and clinical information (diagnosis
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age, ER status, PR status) had no hidden layer and were
connected to final output directly as covariates. This architecture
was explained graphically in Figure 1. The rationale behind this
network architecture instead of using simple fully connected
networks such as Cox-nnet (Ching et al., 2018) was by assuming
(1) each omics type affects the hazard ratio independently; (2)
downscale eigengene matrices by hidden layers can force multi-
omics data contributed to hazard ratios in a relatively equal scale
at Cox proportional hazards regression networks part.

SALMON adopts Adaptive moment estimation (Adam)
optimizer (Kingma and Ba, 2015). We set the number of
epochs = 100 with fine-tuned learning rates for each 5-folds
cross-validation experiments. LASSO (least absolute shrinkage
and selection operator) regularization (Santosa and Symes,
1986) is applied to the networks. Sigmoid activation function
is also applied right after each forward propagation and Cox
proportional hazards regression networks. The Sigmoid function

sigmoid (x) =
1

1+ e−x
(1)

forces the output range be within 0 to 1, introduces non-linearity
to the system. In this model, we set the batch size = 64, and
the batch normalization was not adopted. The number of the
hidden layers and dimensions of hidden layers can be fine-tuned,
in this paper, single hidden layers were attached to transcriptomic
data with size = 8 for mRNA-seq modules, and size = 4 for
miRNA-seq modules.

Cox Proportional Hazards Regression Networks
Our algorithm SALMON, integrated Cox proportional hazards
model, differs from previous work (Ma and Zhang, 2018; Sun
et al., 2018) which use survival status (living or deceased) in a
binary classification problem. In contrast, we also took survival
times (overall survival months) into account denoted as Yi and
made our neural networks into a Cox regression learning task.
Maximum likelihood estimation (MLE) is then applied to the log
partial likelihood

ℓ (β) =
∑

i :Ci=1





K
∑

k=1

βkXik − log





∑

j :Yj≥Yi

exp(

K
∑

k=1

βkXik)







(2)

where β are the parameters to be estimated. Ci = 1 indicates the
occurrence of the death events for patient i with K-dimensional
input vector Xi.

Objective Function
Based on Cox proportional hazards regression networks we
formulized the objective function of neural networks as:

2̂ = argmin2
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K
∑
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βkXik

− log
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j :Yj≥Yi

exp(

K
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βkXik)







+ λ ‖2‖1







(3)

where 2 are the entire network weights (including β) to be
optimized via back-propagation, λ is the weight multiplier of
LASSO regularization. We set λ = 1 × 10−5 in the experiments.

Evaluation Metric
Concordance index (Steck et al., 2007), valued from 0 to 1, is
used in this article as the evaluation metric of survival prognosis.
It is widely adopted to evaluate the performances of survival
prognosis models (Ching et al., 2018; Katzman et al., 2018) and
is equivalent to the area under the ROC curve (AUC) (Bradley,
1997), which measures the model’s distinguishability between
living and deceased groups. A concordance index= 0.5 indicates
the model makes ineffective prediction. A higher concordance
index > 0.5 indicates a better survival prognosis model. For
breast invasive carcinoma cancer, we consider a concordance
index > 0.7 indicates a good model performance.

Survival Analysis
Survival analysis with log-rank test (Mantel, 1966) is used
to inspect the performances of SALMON on 5-folds cross-
validation testing sets. The Kaplan-Meier survival curves are
generated by dichotomizing all testing patients to low risk
and high risk groups via the median hazard ratio. The
corresponding log-rank p-value implies the ability of the model
to differentiate two risk groups. Lower p-values convey better
model performances.

Gene Ontology and Functional
Enrichment Analysis
Co-expression modules generated by lmQCM are then exported
to ToppGene Suite (Chen et al., 2009) (https://toppgene.cchmc.
org/) and Enrichr (Kuleshov et al., 2016) (http://amp.pharm.
mssm.edu/Enrichr/). Using ToppGene, we performed functional
analysis including Gene ontology (GO) and cytoband analysis.
The false discovery rate (FDR) <0.05 and FDR <1.0 were
considered to be significantly enriched for GO analysis and
cytoband analysis, respectively. Human Gene Atlas [up regulated
genes in human tissues from BioGPS (http://biogps.org)] and
ARCHS4 tissues were also investigated for some certain co-
expression modules by Enrichr.

RESULTS

The experiments were performed with six different combinations
of multi-omics data as input sources, they are: (i) mRNA-seq
data (mRNA) (57 features); (ii) miRNA-seq data (miRNA) (12
features); (iii) integration of mRNA and miRNA (69 features);
(iv) integration of mRNA, miRNA, copy number burden (CNB),
and tumor mutation burden (TMB) (71 features); (v) integration
of mRNA, miRNA, and demographical and clinical (diagnosis
age, ER status, PR status) data (72 features); (vi) integration of
mRNA, miRNA, CNB, TMB, and demographical and clinical
(diagnosis age, ER status, PR status) data (74 features). Where
both RNA-seq co-expression modules are required for all
integrative combinations. The SALMON model architecture
from Figure 1 removed certain network substructures which
not been used and performed 5-folds cross-validation with
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583 patients. Concordance index was used to evaluate the
performances. SALMON was then compared to several other
survival prognosis algorithm Cox-nnet (Ching et al., 2018),
DeepSurv (Katzman et al., 2018), generalized linear model with
Cox regression (GLMNET) (Friedman et al., 2010), and RSF
(Ishwaran et al., 2008) with all omics data fed in. Since their
Cox regression model didn’t take multi-omics data sources into
consideration, we modified their original framework to integrate
multi-omics data (with co-expression modules) altogether as
single input vector. The feature importance of all 74 covariates
were also investigated by repeated feature deletion, then ranked
by the median of decreased concordance index, proved and
revealed certain biological interpretations.

Integrating Multi-Omics Features
Increased the Performances
From Figure 2A, we observed an upward trend on median/mean
concordance indices with more omics data are integrated.
Integrating all omics data (74 features) gave the optimal
performances (concordance index: median = 0.7285;
mean = 0.6918). Next, all hazard ratios from 5-folds testing
sets were concatenated and performed the log-rank test (Mantel,
1966) as shown in Figures 2C–E and Figure S1. Another feature
set without transcriptomics data was also considered as reference
(5 features containing CNB, TMB, and demographical and
clinical features) with median concordance index = 0.6949
and the Kaplan-Meier plot was shown in Figure S1F (log-rank
test p-value = 3.67E-03). We found that integrating all omics
data (Figure 2E) gave the most significant p-value (1.201E-04)
with respect to the log-rank test, proving that integrating more
multi-omics data to SALMON can enhance the prediction.

We further performed pairwise paired t-test to the resulting
concordance indices. As shown in Table 2, a negative t-statistic
implied that the set 1 is lower than set 2. This concludes
that integrating more omics data can generally increase the
performance of survival prognosis in breast cancer.

Next, we compared SALMON to the state-of-the-art Deep
Learning-based cancer survival prognosis model Cox-nnet
(Ching et al., 2018), as well as another recently proposed
DeepSurv (Katzman et al., 2018), and two traditional models
generalized linear model with Cox regression (GLMNET)
(Friedman et al., 2010) and RSF (Ishwaran et al., 2008).We
further modified their original implementation with all omics
data as inputs. As shown in Figure 2B, the median concordance
index of SALMON (0.7285) was reported higher than the
modified Cox-nnet (0.7234), DeepSurv (0.6563), GLMNET
(0.6490), and RSF (0.6229). Compare to the modified Cox-
nnet with similar performance in terms of concordance
index, SALMON has a more significant result in log-rank
test (p-value = 1.201E-04) than the modified Cox-nnet
(p-value = 2.282E-04) with all testing sets and all 74
features as inputs (Figure S2). Between SALMON and the
modified Cox-nnet the performance is insignificant (paired
t-test statistic = −2.105, p-value = 0.103) suggesting these
two methods are comparable. But from the neural network
structure perspective, SALMON is more flexible since it separates

forward propagation for each omics data, which enable a scalable
integration of multi-omics data.

Interpreting and Ranking the Importance
of Co-expression Modules
Interpreting feature importance for neural networks has been
studied over years. One way is to assign each feature be
zero repeatedly, then the feature with lowest change of the
resulting accuracy implies the least importance that affects to
the prediction model. This approach is widely adopted for
feature selection and ranking the importance of features in
neural network (Setiono and Liu, 1997; Zhang, 2000; Sung and
Mukkamala, 2003). Based on this approach, we analyzed the
contribution of each eigengene’s module to the final hazard ratio
by forcing each input feature of the testing sets be zero. By feeding
the modified testing sets to the pre-trained SALMON networks,
we rank the importance of features by inspecting how much the
concordance indices decreased. Features that decrease the testing
concordance indices more are considered to be more important.
At this moment, we integrated all omics data for training and
testing. Table 3 presented top features that mostly reduced the
concordance index. The leading two features are the diagnosis
age and PR status, then five mRNA-seq co-expression modules
are followed.

Next, we selected those features (33 in total) of which
their median values < 0 in Figure 3 and re-performed the
training testing in SALMON. Results showed that before
and after feature selection, the performances are insignificant
in terms of concordance index (before feature selection:
mean = 0.6918, median = 0.7285; after feature selection:
mean= 0.7108,median= 0.7200; paired t-test statistic=−0.861,
p-value = 0.438) (Figure S3). This implying that training with
selected “important” multi-omics features instead of all can still
preserve the prognosis performances.

Identification of Breast Cancer Related
Genes and Cytobands Associated With
Important Modules
To inference the biological implication from the feature ranking,
we performed Gene Ontology (GO) and cytoband enrichment
from ToppGene Suite (https://toppgene.cchmc.org/) (Chen et al.,
2009). Specifically, we focused on analyzing top five mRNA co-
expression modules (Table 3). Totally we identified 10 genes
such as MST1, CPT1B, MAP3K7, CCNC, etc. We also identified
various enriched cytoband and other biological functions.
Table 3 is further discussed and explained in Discussion section.
Genes list within each mRNA-seq, miRNA-seq module is
provided in Supplementary Material.

Investigating Feature Importance With
Different Age Groups
As shown in Figure 3, we observed the strong predictive power
of diagnosis age, which is consistent with previous studies
demonstrating age as one of the most prominent cancer risk
factors (Adami et al., 1986). Thus, it is crucial to further
investigate if patients in different groups can be stratified using
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FIGURE 2 | (A) Performances of SALMON with multi-omics data integrated in terms of concordance index. (B) Performance comparison between SALMON and the

modified Cox-nnet, DeepSurv, GLMNET, and RSF in terms of concordance index with all omics data used for learning. (C–E) Kaplan-Meier plot of survival prognosis.

Hazard ratios were derived from all five testing sets. Log-rank test was used to find the corresponding p-value with low risk and high risk groups dichotomized by the

median hazard ratio. Omics data used for training and testing: (C) mRNA-seq data (mRNA); (D) miRNA-seq data (miRNA); (E) integration of mRNA, miRNA, CNB,

TMB, and demographical & clinical (diagnosis age, ER status, PR status) data. All other combinations of multi-omics results are in Figure S1.

TABLE 2 | Performances comparison with different combinations of multi-omics data by pairwise paired t-test, according to concordance index among 5-folds

cross-validation results.

Pairwise paired T-test

Set 2

ii iii iv v vi

t P t P t P t P t P

Set 1 i −0.784 0.477 −0.676 0.536 −0.832 0.452 −2.928 0.043* −3.315 0.030*

ii - - 0.406 0.705 −0.487 0.652 −0.092 0.931 −0.652 0.550

iii – – – – 0.247 0.817 −5.804 0.004* −2.710 0.054

iv – – – – – – −4.168 0.014* −3.603 0.023*

v – – – – – – – – −1.529 0.201

Note that a negative t-statistic indicated set 1 worse than set 2 in terms of performances. Multi-omics dataset applied as inputs: (i) mRNA-seq data (mRNA) (57 features); (ii) miRNA-seq

data (miRNA) (12 features); (iii) integration of mRNA and miRNA (69 features); (iv) integration of mRNA, miRNA, copy number burden (CNB), and tumor mutation burden (TMB) (71

features); (v) integration of mRNA, miRNA, and demographical and clinical (diagnosis age, ER status, PR status) data (72 features); (vi) integration of mRNA, miRNA, CNB, TMB, and

demographical and clinical (diagnosis age, ER status, PR status) data (74 features).

t-denotes the pairwise paired Student’s t-test statistic, P denotes the p-value obtained. P-value < 0.05 are considered to be significant and indicated with * symbol.
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the same set of features. In this paper, we define three age
groups: (1) age in range 26–50 (191 patients), (2) age in range
51–70 (280 patients), (3) age in range 71–90 (112 patients) to
represent younger, middle aged, and elderly patients. By training
and testing these three distinct groups with SALMON algorithm,
we aim to answer two questions: (1) whether the diagnosis age
still be a strong factor that affect prognosis performance; (2)
what are the differences of feature rankings between these three
distinct groups.

The performances in terms of concordance index by
integrating all omics and clinical data (including mRNA,
miRNA, CNB, TMB, diagnosis age, ER status, PR status) are
shown in Figure 4. As expected they are all slightly inferior
than the performance when not stratifying patients by age
(median = 0.7285; mean = 0.6918), there is not a statistical
significant difference. When inspecting the feature rankings,
as shown in Table 4, we observed that in the age group 26–
50, PR status (Progesterone Receptors status) plays a pivotal
role in prognosis, while other features do not have substantial
contributions to the prognosis including the diagnosis age (we
still listed some modules). This situation changed in the age
group 51–70 as ER status (Estrogen Receptors status) becomes
the most important feature, while diagnosis age ranked at #5
with only marginal contribution. In age group 71–90, neither
ER, PR status nor diagnosis age ranked in the front, instead
mRNA-seq co-expression modules appeared to have the major
influence on prognosis. The top ranked modules are #11, #1,
#29, #35, and #4. By performing enrichment analysis, we found
that the module #11 is significantly enriched with epithelium
development genes (GO:0060429, p = 2.253E-9); module #1
is significantly enriched with chromosome organization genes
(GO:0051276, p= 5.344E-17) and two well-known breast cancer
genes NCOA3 (Burwinkel et al., 2005) and FOXA1 (Meyer and
Carroll, 2012; Rangel et al., 2018) were identified in module 1;
module #29 was enriched on cytoband 19q13.41 (p = 1.517E-
25) and are exclusively zinc-finger proteins; module #35 was
enriched on cytoband 1q34 (p = 1.252E-15) and contains
multiple genes which have been previously detected in multiple
breast cancer studies including UQCRH, PSMB2, PPIH, and
YBX1 (Miller et al., 2005; Pujana et al., 2007; Barry et al.,
2010); and module #4 is highly enriched with mitotic cell
cycle genes (GO:1903047, p = 2.183E-70) including well-
known breast cancer genes such as MKI67 (Gyorffy et al., 2010)
and AURKA (Cox et al., 2006). Detailed feature rankings are
in Figures S5–S7.

DISCUSSION

In this work, we demonstrated the feasibility of breast
cancer survival prognosis by integrating multi-omics data
using Deep Learning-based approaches and opened up a new
avenue for deriving new prognostic biomarkers in breast
cancer. We introduced our SALMON (Survival Analysis
Learning with Multi-Omics Neural Networks) algorithm with
the implementation of Cox proportional hazards regression
networks in breast invasive carcinoma. Instead of using gene

TABLE 3 | Top features that reduced the concordance index, including two

demographical and clinical features, and five mRNA-seq co-expression modules

(eigengene matrices as inputs to the SALMON).

Ranks Feature

names

Concordance

index

changed

(median)

Highlighted

genes/interpretations/enrichments

or notes

1 Diagnosis

age

−0.1257 Age

2 PR status −0.0343 Progesterone receptors status

3 Module 13 −0.0150 Genes MST1, CPT1B. CD8+, CD4+,

Breast bulk tissue.

4 Module 47 −0.0071 Genes MAP3K7, CCNC. Cytoband

chr6q14-q16 and chr6q21.

5 Module 5 −0.0059 Genes DDR2, FLNA, TCF4.

Associated with extracellular matrix

(ECM), cell adhesion, and cell

migration.

6 Module 36 −0.0053 Gene SNW1. Cytoband

chr14q23-q24 and chr14q31-q32.

7 Module 51 −0.0047 Genes TCP1, HDAC2. Cytoband

chr6q14-q15and chr6q21-q26.

level mRNA-seq or miRNA-seq data directly, SALMON adopts
eigengene matrices as the network input derived from weighted
gene co-expression network analysis. Unlike other algorithms,
SALMON performs forward propagation separately with respect
to each type of omics or clinical data in contrast with some
other models such as Cox-nnet [which originally did not
integrate multi-omics data nor use the co-expression modules
as inputs (Ching et al., 2018)]. The separation of forward
propagation prevents the interactions across omics data types
thus enable easier examination of the module/feature importance
for interpretability. It showed good prognosis results in terms
of concordance index and log-rank test. Though experiments
showed that SALMON has the competitive yet insignificantly
superior performance compared to the state-of-the-art Cox-nnet
(Ching et al., 2018), we have different paradigm in investigating
how prognosis performance increases when integrating more
omics and clinical data types, since other models such as
Cox-nnet (Ching et al., 2018), DeepSurv (Katzman et al.,
2018), etc. do not handle multi-omics data as input. The
improved performances (concordance index) by integrating
more omics data validates the hypothesis that integrative
analysis enhances the survival prognosis accuracy for breast
cancer. Moreover, using gene co-expression modules than gene
expressions to reduce features upfront is the feature engineering
technique we introduced based on bioinformatics techniques. By
bridging the gap between gene co-expression analysis and Deep
Learning, the advantages can be observed when we backtrack
to identify the module/feature can affect the performances.
The detected modules reveal clear cancer related biological
processes, functions or structural variations allowing further
biomedical investigations.

As feature importance has been conveyed and ranked from
SALMON, we discovered that keeping only top important
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FIGURE 3 | Features importance evaluated by the decrease of concordance index, sorted based on median values. Boxplots in Green: 57 mRNA co-expression

module features (ID from 1 to 57); boxplots in red: 12 miRNA co-expression module features (ID from 58 to 69); boxplots in turquoise: copy number burden (CNB) and

tumor mutation burden (TMB) features (ID from 70 to 71); boxplots in pink: demographical and clinical features (ID from 72 to 74).

FIGURE 4 | Performances of SALMON algorithm stratified by three age groups: 26–50 group; 51–70 group; 71–90 group with integrating all omics data (integration

of mRNA, miRNA, CNB, TMB, diagnosis age, ER status, PR status).

features can still preserve the testing performances. Based
on features ranking, we also investigated the biological
interpretation behind each demographical feature, clinical
feature, and co-expression module. For the leading two features,
since the importance of diagnosis age and PR status have been
widely examined and recognized in breast cancer (Adami et al.,
1986; Boyd et al., 1995; Huang et al., 2000; Bauer et al., 2007) and
further confirmed by our results (Figure 2C), we focused on the
top five mRNA-seq data co-expression modules ranked from 3

to 7. Those top five mRNA-seq data co-expression modules are:
module #13, #47, #5, #36, #51.

In module #13, appears to be significantly associated with
CD8+ T Cells (p-value = 6.54E-06) and CD4+ T Cells (p-
value = 1.50E-02) based on Human Gene Atlas analysis. CD8+
and CD4+ T cells are important components of the immune
system, which has been proved to have strong correlation with
cancers (Hung et al., 1998; Hadrup et al., 2013). It contains
multiple breast cancer related genes: (1) MST1 kinase, a core
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TABLE 4 | Top features that reduced the concordance indices.

Ranks Age group 26–50 Age group 51–70 Age group 71–90

Feature

names

Concordance index

changed (median)

Feature

names

Concordance index

changed (median)

Feature names Concordance index

changed (median)

1 PR status –0.0247 ER status –0.0807 Module 11 –0.0323

2 Module 1 0 Module 13 −0.0221 Module 1 –0.0233

3 Module 2 0 Module 4 −0.0185 Module 29 –0.0233

4 Module 3 0 Module 5 −0.0150 Module 35 –0.0233

5 Module 4 0 Diagnosis age −0.0150 Module 4 –0.0222

Experiments performed separately with three age groups: 26–50 group; 51–70 group; 71–90 group, with integrating all omics data (integration of mRNA, miRNA, CNB, TMB, diagnosis

age, ER status, PR status). Detailed feature rankings are in Figures S5–S7. The bold values are of our interests and are being discussed.

component of Hippo pathway, its phosphorylation can inhibit
oncoproteins TAZ/YAP and regulate T-cell function. (Arash
et al., 2017; Ercolani et al., 2017); (2) CPT1B, which encodes the
critical enzyme for fatty acid beta-oxidation (FAO), the inhibition
of FAO can inhibit breast cancer stem cells, chemoresistance, and
breast tumor growth (Wang et al., 2018). In addition, tissues
enrichment analysis using ARCHS4 (https://amp.pharm.mssm.
edu/archs4/) also revealed that nearly one third of genes (11 out
of 36) in this module were associated with breast cancer bulk
tissue (p-value= 1.867E-03) (Figure S4).

In module #47, two genes are related to breast cancer have
been identified: (1) MAP3K7, also known as TAK1, is a key
mediator between survival and cell death in TNF-α-mediated
signaling (Totzke et al., 2017); and (2) CCNC, an important
transcriptional regulator whose higher expression is associated
with shorter relapse-free survival (RFS) and impact the response
to adjuvant therapy in breast cancer. Gene amplification of
CCNC is also the most frequent type of genetic alterations
in breast cancers (Broude et al., 2015). Module #47 was also
enriched in cytoband chr6q.

In module #5, genes are highly enriched on tumor
microenvironment (TME) related processes such as extracellular
matrix (ECM), cell adhesion, and cell migration. Among them,
DDR2 plays an indispensable role in a series of hypoxia-
induced behaviors of breast cancer cells, such as migration,
invasion, and epithelial-mesenchymal transition (EMT), the
activated DDR2 can promote the metastasis of breast cancer
(Ren et al., 2014). In addition, FLNA, whose overexpression
is associated with the advanced stage, lymph node metastasis,
and vascular or neural invasion of breast cancer (Feng
et al., 2006). It also contributes the development of breast
cancer (Tian et al., 2013). Finally, TCF4 is an important
transcription factor, its loss is related with breast cancer
chemoresistance (Ruiz de Garibay et al., 2018).

In module #36, SNW1 is a component of spliceosome in RNA
splicing, its deletion can induce apoptosis, where the inhibition
of SNW1 or its associating proteins may be a novel therapeutic
strategy for cancer treatment (Sato et al., 2015). Module #36 was
also enriched in cytoband chr14q23-q24 and chr14q31-q32.

In module #51, TCP1 functioned as a cytosolic chaperone
in the biogenesis of tubulin (Yaffe et al., 1992), which has been
proved to have an association with breast cancer (Bassiouni et al.,

2016). HDAC2, its overexpression has a correlation with DNA-
damage response and promote tumor progression (Shan et al.,
2017). Module #51 was also enriched on cytoband chr6q.

Instead of identified breast cancer related genes, the
Enrichment analysis in selected modules also revealed important
biological functions. Module 47 and 51 were enriched in
chr6q. Not surprisingly, previous studies have identified the
frequent alterations at chr6q in archival breast cancer specimens
(Shadeo and Lam, 2006), while chr6q21 is hotspots copy number
alteration region (Chin et al., 2007). The copy number alterations
at chr6q26 can affect MAP3K4, plays an important role of
epidermal growth factor receptor pathway (Shadeo and Lam,
2006). Module 36 was enriched in chr14q, the cytoband where
the high-level alterations at 14q31.3-32.12 were found in breast
cancer from Shadeo and Lam (2006). Besides, the deletion of
chr14q is a common feature of tumors with BRCA2 mutations
(Rouault et al., 2012). Modules 5 was specifically associated
with TME related biological process such as extracellular matrix
(ECM), cell adhesion and cell migration. All these GO Biological
Processes (BPs) have been shown to play pivotal roles in
TME development in cancers while TME has now been widely
recognized as a critical participant in tumor progression (Quail
and Joyce, 2013). Abnormal ECM in tumors can promote the
aggressiveness of breast cancer (Robertson, 2016). Cell adhesion
as a common event in cancer can promote cell growth as well
as tumor dissemination (Moh and Shen, 2009; Saadatmand
et al., 2013). All these discoveries not only confirmed the
existed literatures for breast cancer, but also justified the feature
importance that SALMON generated.

Another interesting finding is that no miRNA-seq module
was ranked in top features although miRNA-seq modules show
a better prognosis performance than mRNA-seq modules. This
could due to the modules within miRNA-seq are more dependent
with each other than the modules within mRNA-seq, thus simply
knock out one module/feature may not reduce the performance
too much. Indeed, by performing pair-wised Pearson correlation
analysis, we found 3.03% miRNA-seq modules has strong
correlations (Pearson ρ > 0.8), while in mRNA-seq modules this
ratio is down to 0.94%. It leads us a new perspective to inspect
modules dependency in the future.

Since we confirmed that diagnosis age is the most powerful
predictor, we examined the feature rankings with three different
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age groups, namely, younger group (age 26–50), middle aged
group (age 51–70), and elderly group (age 71–90). We confirmed
that by separating the 583 patients to three distinct age
groups, the diagnosis age becomes unimportant to the prognosis
outcome. While in younger group, PR status is the most
important feature. In middle aged group, ER status is the
most important feature. When we inspected the elderly group
with age in range 71–90, we found that only mRNA-seq co-
expression modules were ranked at the top and the five most
conspicuous ones are modules #11, #1, #29, #35, and #4. These
observations suggest that specific biological processes may play
different roles in breast cancer patients of different ages while
different biomarkers and predictive models may be needed for
different age groups. Further inspection of the modules found
that three of these modules are related to known breast cancer
related processes such as epithelium development (Vincent-
Salomon and Thiery, 2003), chromosome organization (Muleris
et al., 1995), and mitotic cell cycle (Kastan and Bartek, 2004)
including well-known breast cancers genes such as NCOA3,
AURKA, MKI67, and FOXA1. The other two modules are
highly enriched on specific cytobands on different chromosomes,
implying potential copy number variations on these regions.
Indeed, both cytobands (19q13.41 and 1q34) are known to be
associated with breast cancer outcomes (Han et al., 2006; Ton
et al., 2009). For module #35, while most of the genes locate on
1q34, many of the genes such as UQCRH, PSMB2, PPIH, and
YBX1 are involved in RNA processing and have been identified
with breast cancer in multiple studies (Miller et al., 2005; Pujana
et al., 2007; Barry et al., 2010). Interestingly, all genes identified
from module #29 are zinc finger transcription factors. While it is
not clear if any of them are specifically related to breast cancer,
it is of great interest to further investigate the roles of the ZNF
family genes in breast cancer development.

CONCLUSION

We performed survival prognosis on breast cancer, proposed
a Deep Learning-based algorithm SALMON (Survival Analysis
Learning with Multi-Omics Network) by integrating Cox
proportional hazards model and adopting gene co-expression
network analysis results as input, and predict patient hazard
ratios precisely. Performances (concordance index and log-rank
test p-value) improved when more omics data integrated to

the input of SALMON. SALMON also showed a competitive
performance compared to other Deep Learning survival
prognosis model. By inspecting how each feature contributes to
the hazard ratios, SALMON confirmed certain mRNA-seq co-
expression modules and clinical information, which play pivotal
roles in breast cancer prognosis, revealed several biological
functions. By further stratifying patients with diagnosis age,
SALMON confirmed that different age groups have different
main features that controls survival prognosis performance. To
sum up, SALMON fuses the gene co-expression network analysis,
Deep Learning technique, feature selection, Cox proportional
hazard model, integrative analysis, and module-level enrichment
analysis altogether, offers a new avenue for the future integrative
analysis and Deep Learning-based cancer survival prognosis.
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