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Extracting inherent valuable knowledge from omics big data remains as a daunting

problem in bioinformatics and computational biology. Deep learning, as an emerging

branch from machine learning, has exhibited unprecedented performance in quite a few

applications from academia and industry. We highlight the difference and similarity in

widely utilized models in deep learning studies, through discussing their basic structures,

and reviewing diverse applications and disadvantages. We anticipate the work can

serve as a meaningful perspective for further development of its theory, algorithm and

application in bioinformatic and computational biology.
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INTRODUCTION

Deep learning is the emerging generation of the artificial intelligence techniques, specifically in
machine learning. The earliest artificial intelligence was firstly implemented on hardware system
in the 1950s. The newer concept with the more systematic theorems, named machine learning,
appeared in the 1960s. And its newly-evolved branch, deep learning, was first brought up around
the 2000s, and soon led to rapid applications in different fields, due to its unprecedented prediction
performance on big data (Hinton and Salakhutdinov, 2006; LeCun et al., 2015; Nussinov, 2015).

The basic concepts and models in deep learning have derived from the artificial neural network,
whichmimic human brain’s activity pattern to intelligentize the algorithms and save tedious human
labor (Mnih et al., 2015; Schmidhuber, 2015; Mamoshina et al., 2016). Although deep learning is
an emerging subfield recently from machine learning, it has immense utilizations spreading from
machine vision, voice, and signal processing, sequence and text prediction, and computational
biology topics, altogether shaping the productive AI fields (Bengio and LeCun, 2007; Alipanahi
et al., 2015; Libbrecht and Noble, 2015; Zhang et al., 2016; Esteva et al., 2017; Ching et al., 2018).
Deep learning has several implementation models as artificial neural network, deep structured
learning, and hierarchical learning, which commonly apply a class of structured networks to infer
the quantitative properties between responses and causes within a group of data (Ditzler et al., 2015;
Liang et al., 2015; Xu J. et al., 2016; Giorgi and Bader, 2018).

The subsequent paragraphs mainly summarize the essential concepts and recent applications
of deep learning, together highlight the key achievements and future directions of deep learning,
especially from the perspectives of bioinformatics and computational biology.
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ESSENTIAL CONCEPTS IN DEEP NEURAL
NETWORK

Basic Structure of Neural Network
Neural network is a class of information processing modules,
frequently utilized in machine learning. Within a multi-layer
context, the basic building units, namely neurons, are connected
to each other among the adjacent layers via internal links, but
the neurons belonging to the same layer have no connection, as
depicted in Figure 1.

In Figure 1, each hidden layer processes its inputs via a
connection function denoted as below,

hW,b(X) = f (WTX + b) (1)

where W refers to the weight and b for bias. When all input
layer neurons are active, each input neuron will multiply their
respective weight matrix and the output will be summed up with
a bias, which then will be fed into an adjacent hidden layer.
Although the input-output formalization may repeat similarly
among hidden layers, there is usually no direct connection
between neurons within the same layer. And activation function
is to quantify the connection between two neighboring neurons
across two (hidden) layers.

Specifically, the input of the activation function is the
combinationWTX+b denoted in Equation (1), and the function
output is then fed into the next neuron as a new input.
Following the connection formula, the former input feature can
be extracted to the next layer; by this means the features can be

FIGURE 1 | The network structure of a deep learning model. Here we select a

network structure with two hidden layers as an illustration, where X nodes

constitute the input layer, Hs for the hidden layers, Y for the output layer, and

f (·) denotes an activation function.

well-extracted and refined further. And the performance of the
feature extraction depends significantly on the selection of the
activation function.

Before training the network structure, the input raw datasets
are usually separated into two or three groups, namely a training
set and a test set, sometimes a validation set to examine the
performance of previously trained network models, as depicted
in Figure 2. In practice, the original datasets are separated
stochastically to avoid the potential local tendency, but the
proportion of each set can be determined manually.

Learning by Training, Validation, and
Testing
Normally, training a neural network refers to a process the
network self-tunes its parameters or weights to meet the
prespecified performance criteria, thus the trained model can be
further used in regression or classification purposes. As depicted
in Figure 2, generally a complete dataset collected from a specific
experiment beforehand can be split into the training and testing,
and even validation sets, then followed by conventional tasks as
model training, validation and performance comparison.

During training with initial batches of data samples, model
parameters and their characteristics normally can be tuned by
various learning paradigms, including appropriate activation
and rectification functions. Then the trained network should be
further tested or even validated with the other batch of samples,
to acquire high robustness and satisfactory predictability,
the processes of which are often referred as model testing
and validation.

Usually, the three procedures above are faithfully
implemented in conventional machine learning studies;
and even in its quickly-evolving subfield, deep learning, the
similar paradigm is always observed (LeCun et al., 2015;
Schmidhuber, 2015).

Activation and Loss Function
After training completed, the neural network can perform
regression or classification task on testing data, while there
usually exists the difference between the predicted outputs and
actual values. And the difference should be minimized to acquire
optimal model performance.

Within a certain layer, error reduction requires scaling it back
within a preset range before passing it onto the next layer of
neurons. Activation herein is defined to control neurons’ outputs
in “active” or “inactive” status, using those non-linear functions
as rectified linear unit (ReLU), tanh, and logistic (Sigmoid or soft
step) (LeCun et al., 2015).

Besides, a loss function herein is to measure the total
difference between the predicted and accurate values, through
fine-tuning in backpropagation process. And it acts as an ending
threshold for parameter optimization by means of iteratively
evaluating the trained models.

With activation function in each neuron throughout diverse
layers, a training procedure will continue searching a whole
hyperparameter space till the ending threshold, compare and
detect an optimal parameter combination by minimizing the
preset loss function.
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FIGURE 2 | The general analysis procedure commonly adopted in deep learning, which covers training data preparation, model construction, hyperparameter

fine-tuning (in training loop), prediction and performance evaluation. Basically, it still follows the requisite schema in machine learning.

TYPICAL ALGORITHMS AND
APPLICATIONS

With the substantial progresses in advanced computation
and Graphic Processing Unit (GPU) technologies, systematic
interrogation into massive data to understand its inherent
mechanisms becomes possible, especially through deep learning
approaches. Hereinafter, we illustrated several frequently utilized
models in deep learning literatures, in both recent computation
theories and diverse applications.

Recurrent Neural Network
Recurrent Neural Network (RNN) is a deep learning model
different from traditional neural networks, since the former
can integrate the previously learned status through a recurrent
approach, namely backpropagation; while traditional neural
network usually outputs prediction based on the status of the
current layer.

Compared with traditional network models, RNN only has
one hidden layer but it can unfold horizontally, and multi-
vertical-groups are enabled to utilize most of the previous results,
namely “using memory”.

As depicted in Figure 3, the hidden layer neuronHn is defined
by Equation (2),

Hn = σ1(W
T
1,nHn−1 +WT

2,nXn + b1,n) (2)

where W1,n and W2,n represent weight matrix, b1,n is a bias
matrix, and σ (·) (usually tanh(·)) for an activation function.
Thus, each layer will generate a partial of output from the current
hidden layer neuron with a weight matrix W3,n and bias b2,n,

defined by Equation (3),

Ŷn = σ2(W3,nHn + b2,n) (3)

And the total loss Ltotal will be the sum of the loss functions from
each hidden layer, defined as below,

Ltotal =
∑N

n= 1
Ln =

∑N

n= 1
L(Ŷ ,Y) (4)

Thus, fine tuning of RNN backpropagation is based on three
weights,W1,n,W2,n, andW3,n. Since the multi-parameter setting
in weights adds to the optimization burden, RNN usually
performs worse than Convolutional Neural Network (CNN) in
terms of fine-tuning. But frequently it is ensembled with CNN
in diverse applications, such as dimension reduction, image, and
video processing (Hinton and Salakhutdinov, 2006; Hu and Lu,
2018). Angermueller et al. proposed an ensembled RNN-CNN
architecture, DeepCpG, on single-cell DNA methylation data,
to better predict missing CpG status for genome-wide analysis;
together the model’s interpretable parameters shed light on
the connection between sequence composition and methylation
variability (Angermueller et al., 2017). Section Autoencoder will
specifically discuss CNN and its typical applications.

Moreover, RNN outperforms those conventional models as
logistic regression and SVM, and it can be implemented in
various environments, accelerated by GPUs (Li et al., 2017). Due
to its structural characteristics, RNN is suitable to deal with long
and sequential data, such as DNA array and genomics sequence
(Pan et al., 2008; Ray et al., 2009; Jolma et al., 2013; Lee and
Young, 2013; Alipanahi et al., 2015; Xu T. et al., 2016).

But RNN cannot interact with hidden neurons far from
the current one. To construct an efficient framework
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FIGURE 3 | Illustrative structure diagram of Recurrent Neural Network, where X, Y, and W are defined the same as above; Li denotes the loss function between the

actual Yi and predicted Ŷ i (i ∈ N).

FIGURE 4 | The LSTM network structure and its general information flow chart, where X, Y, and W are defined the same as above.

of recalling deep memory, many improved algorithms
have been proposed, like BRNN in protein secondary
structure prediction (Baldi et al., 1999), and MD-RNN in
analyzing electron microscopy and MRIs of breast cancer
samples (Kim et al., 2018).

LSTM (Long Short-Term Memory) and GRU (Gated
Recurrent Unit) are two recently-improved derivatives of RNN
to solve the long-time dependence issues. GRU shares a similar
structure with LSTM, which has several gates used for modeling
its memory center. The current memory output is jointly
influenced by its current input feature, the context (namely the

past influence), and the inner action toward the input, as shown
in Figure 4.

In Figure 4, the yellow track refers to an input gate transfering
its total past features, and is accessible for any new feature to
be added. The green track is a mixture of an input gate and its
former hidden layer neurons; and it decides what to omit, namely
resetting activation function close to 0, and what to be updated
into the yellow track. The blue track is the output gate integrating
the inner influence from the yellow track, and it decides the
output of the current hidden neurons and what to be passed to
the next hidden neuron.
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FIGURE 5 | The basic architecture and analysis procedure of a CNN model, which illustrates a classification procedure for an apple on a tree.

Recently an attention-based architecture, DeepDiff, utilizes a
hierarchy of LSTM modules to characterize how various histone
modifications cooperate simultaneously, and it can effectively
predict cell-type-specific gene expression (Sekhon et al., 2018).

Convolutional Neural Network
Convolutional neural networks (CNN or ConvNet) are suitable
to process information in the form of multiple arrays (LeCun
et al., 2015; Esteva et al., 2017; Hu and Lu, 2018). To reduce
the parameters without compromising its learning capacity is the
general design principle of CNN (LeCun et al., 2015; Krizhevsky
et al., 2017). And each convolution kernel’s parameters in CNN
are trained by the backpropagation algorithm.

Especially in image-related applications, CNN can cope with
pixel scanning and processing, thus it greatly accelerates the
implementation of optimized algorithms into practice (Esteva
et al., 2017; Quang et al., 2018). Structurally, CNN consists of
linear convolution operation, followed by nonlinear activators,
pooling layers, and deep neural network classifier, depicted
in Figure 5.

In Figure 5, several filters are applied to convolve an input
image, and its output is subsampled as a new input into the next
layer; and convolution and subsampling processes are repeated
till high level features, namely shapes, can be extracted. The more
layers a CNN model has, the higher-level features it will extract.

In feature learning, convolution operation is to scan a 2D
image with a given pattern, and calculate the matching degree
at each step, then pooling identifies the pattern presence in the
scanned region (Angermueller et al., 2016). Activation function
defines a neuron’s output based on a set of given inputs. The
weighted sum of inputs is passed through an activation function
for non-linear transformation. A typical activation function
returns a binary output, 0 or 1; when a neuron’s accumulation
exceeds a preset threshold, the neuron is activated and passes
its information to the next layers; otherwise, the neuron is
deactivated. Sigmoid, tanh, ReLU, leaky ReLU, and softmax are
the commonly used activation functions (LeCun et al., 2015;
Schmidhuber, 2015).

Through pooling layers, pixels are stretched to a single column
vector. The vectorized and concatenated pixel information is
fed into dense layers, known as fully connected layers for

further classification. The fully-connected layer renders the final
decision, where CNN returns a probability that an object in the
image belongs to a specific type.

Following the fully-connected layer is a loss layer, which
adjusts their weights across the network. A loss function is used to
measure the model performance and inconsistency between the
actual and predicted values. Model performance increases with
decreasing of the loss function. For an output vector yi and an
input x=(x1, x2, . . . , xn), the mapping loss function L(·) between
x and y is defined as,

L(yi, ŷi) =
1

n

n,k∑

i=1,j=1

ϕ[yi, f (xi, σi,ωij, bi)] (5)

where ϕ denotes an empirical risk for each output, ŷi for the i-th
prediction, n the total number of training samples, k the count of
the weights ωij and bi the bias for the activation function σi.

Recently, CNN has been adopted rapidly in biomedical
imaging studies for its outstanding performance in computer
vision and concurrent computation with GPUs (Ravi et al., 2017).
Usually convolution-pooling structure can better learn imaging
features from CT scans and MRI images from head trauma,
stroke diagnosis and brain EPV (enlarged perivascular space)
detection (Chilamkurthy et al., 2018; Dubost et al., 2019).

In recent computational biology, a discriminative CNN
framework, DeepChrome, is proposed to predict gene expression
by feature extraction from histone modification. And the deep
learning model outperforms traditional Random Forests and
SVM on 56 cell types from REMC database (Singh et al., 2016).

Furthermore, CNN can be combined with other deep learning
models, such as RNN to predict imaging content, where CNN
encodes an image and RNN generates the corresponding image
description (Angermueller et al., 2016). Till now, quite a few
variants of CNN have been also proposed in diverse classification
applications, like AlexNet with GPU support and DQN in
reinforcement learning (Mnih et al., 2015).

Autoencoder
Through an unsupervisedmanner, autoencoder is another typical
artificial neural network, designed to precisely extract coding or

Frontiers in Genetics | www.frontiersin.org 5 March 2019 | Volume 10 | Article 214

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tang et al. Recent Advances of Deep Learning

FIGURE 6 | The illustrative diagram of an autoencoder model. (A) Basic processing structure of autoencoder, corresponding to the input, hidden, and output layers;

(B) Processing steps in encoding; (C) Processing steps in decoding.

representation features using data-driven learning (Min et al.,
2017; Zeng et al., 2017; Yang et al., 2018). For high-dimensional
data, it is time-consuming and infeasible to load all raw data
into a network, thus dimension reduction or compression is a
necessity in preprocessing of raw data.

Autoencoder can compress and encode information from the
input layer into a short code, then after specific processing, it
will decode into the output closely matching the original input.
Figure 6 illustrates its basic model structure and processing steps.

Convolution and pooling are two major steps in encoder,
depcited in Figure 6B; while decoder has two complete opposite
steps, namely unpooling and deconvolution in Figure 6C. Both
convolution and pooling can compress data while preserving the
most representative features in two different ways. Convolution
involves continuously scanning data with a rectangle window, for
example a 3× 3 size; after each scanning, the window moves to a
next position, namely pixel, by replacing the oldest elements with
new ones, together with convolution operation. After the whole
scanning and convolution, pooling is utilized to deeper compress
on redundancy.

Similar to traditional PCA in dimension reduction to some
extent, but autoencoder is more robust and effective in extracting
data features for its non-linear transformation in hidden layers.
Given an input x, the model extracts its main feature and
generates x̂ = Wb, where W and b denote weighting and bias
vectors, respectively. Commonly, the output cannot fit the input
precisely, which can be measured with a loss function in mean
squared error (MSE) defined in Equation (6),

L
(
W, b

)
=

1

m

m∑

i=1

(
x̂− x

)2
(6)

Thus, the learning process is to minimize the loss L after
iterative optimization.

Recently, sparse autoencoder (SAE) is frequented discussed
for its admirable performance in dimension reduction and
denoising corrupted data. And the loss function in SAE is defined
in Equation (7),

LSAE = L
(
W, b

)
+ β

∑

k

KL(ρ||ρ̂k) (7)

where KL refers to KL-divergence in Equation (10), ρ for the
activation level of neurons, usually set as 0.05 in condition
of sigmoid, indicating most neurons are inactive, ρk for
the average activation level of neuron k, and β for the
regularization coefficient.

KL(ρ||ρ̂k) = ρlog
ρ

ρ̂k
+ (1− ρ)log

1− ρ

1− ρ̂k
(8)

where ρ̂k represents the average activation level of test samples,
and x(i) is the i-th test sample in Equation (9).

ρ̂k =
1

m

∑

i

[
aj(x

(i))
]

(9)

For high dimensional data, multiple autoencoders can be stacked
to act as a deep autoencoder (Hinton and Salakhutdinov, 2006).
And this architecture may lead to vanishing gradient, due to its
gradient-based and backpropagation learning, and the current
solutions include adopting ReLu activation and dropout (Szegedy
et al., 2015; Krizhevsky et al., 2017). During configuration and
pretraining, the model weights can be acquired by greedy layer-
wise training, then the network can be fine-tuned with the
backpropagation algorithm.
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FIGURE 7 | Illustrative network structures of RBM and DBN. (A) The structure of RBM. (B)Take the hidden layer of the trained RBM to function as the visible layer of

another RBM. (C) The structure of a DBN. It stacks several RBMs on top of each other to form a DBN.

Many variations of autoencoder have been proposed recently,
such as sparse autoencoder (SAE), denoising autoencoder
(DAE). Typically, stacked sparse autoencoder (SSAE) was
proposed to analyze high-resolution histopathological images
in breast cancer (Xu J. et al., 2016). By using SAE with three
iterations, Heffernan et al. reported the successful prediction
of protein secondary structure, local backbone angles, and
solvent accessible surface area (Heffernan et al., 2015). Miotto
et al. introduced a stack of DAEs to predict features from
a large scale of electronic health records (EHR), via an
unsupervised representation approach (Miotto et al., 2016).
Ithapu et al. proposed a randomized denoising autoencoder
marker (rDAm) to predict future cognitive and neural decline for
Alzheimer diseases, with its performance surpassing the existing
methods (Ithapu et al., 2015).

Deep Belief Network
As a generative graphical model, Deep Belief Network (DBN)
is composed of multiple Restricted Boltzmann Machines (RBM)
or autoencoders stacked on top of each other, where each
hidden layer in subnetworks serves as a visible layer for
the next layer (Hinton et al., 2006). The main network
structures of RBM and DBN are depicted in Figure 7,
where it manifests the construction relations between the two
network models.

DBN trains layer by layer in an unsupervised greedy approach
to initialize network weights, separately; then it can utilize the
wake-sleep or backpropagation algorithm during fine-tuning.
While for traditional backpropagation used in fine-tuning, DBN
may encounter several problems: (1) requiring labeled data for
training; (2) low learning rate; (3) inappropriate parameters
tending to acquire local optimum.

Within recent applications, Plis et al. classified schizophrenia
patients based on brainMRIs with DBN (Plis et al., 2014); in drug
design based on high-throughput screening, DBN was exploited
to perform quantitative structure activity relationship (QSAR)

study. And the result showed that the optimization in parameter
initialization highly improves the capability of DNN to provide
high-quality model predictions (Ghasemi et al., 2018). DBN was
also used to study the combination of resting-state fMRI (rs-
fMRI), gray matter, and white matter data by exploiting the latent
and abstract high-level features (Akhavan Aghdam et al., 2018).
Meanwhile, DBN and CNN were compared to prove that deep
learning has better discriminative results and holds promise in
the medical image diagnosis (Hua et al., 2015).

Transfer Learning in Deep Learning
Besides the above deep learning models, transfer learning
is frequently utilized in specific cases without sufficient
labeling information or dimensionality (Pan and Yang,
2010). Although conceptually it does not belong to
deep learning, due to its transferability of high-level
semantic classification for deep neural network, transfer
learning has gained emerging notices from deep learning
fields (O’Shea et al., 2013; Anthimopoulos et al., 2016).

In quite a few deep learning studies, transfer learning enables
a previously-trained model to transfer its optimized parameters
to a new model, thus to implement the knowledge transmission
and reduce repetitive training from scratch, as depicted
in Figure 8.

Normally, source and target domains have certain statistical
relationship or similarity that directly affects the transferability.
The domain contains the original dataset, for example image
matrix, and the task refers to certain processes, like classification
or pattern recognition. The mission of transfer learning includes
transferring not only the parameters like weight, but the
concentrated small-size matrix from the origin data domain
called knowledge distillation.

The knowledge distillation usually uses both “hard target” and
“soft target” to train the model and obtain lower information
entropy. The below softmax function is usually utilized to soften
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the sparse data and excavate its inherent features,

f (αk) =
e

αk
T

∑
k e

αk
T

(10)

FIGURE 8 | The schematic illustration of transfer learning. Given source

domain and its learning task, together with target domain and respective task,

transfer learning aims to improve the learning of the target prediction function,

with the knowledge in source domain and its task.

where the logical judger αk is the input, f (·) is to soft target
data and can offer smaller gradient variance, k denotes the k-th
segmented data slice. The parameter T is called temperature and
the larger T is, the softer the target is.

Furthermore, transfer learning is categorized into instance-
based, feature-based, parameter-based and relation-based
derivatives, depicted in Figure 9. Currently transfer learning
is frequently discussed in the deep learning fields for its great
applicability and performance. Ensembled with CNN, transfer
learning can attain greater prediction performance of interstitial
lung disease CT scans (Anthimopoulos et al., 2016). It was
also used as a ligament between the multi-layer LSTM and
conditional random field (CRF), and the result showed that the
LSTM-CRF approach outperformed the baseline methods on the
target datasets (Giorgi and Bader, 2018).

CONCLUSIONS

Within the work, we comprehensively summarized the basic but
essential concepts and methods in deep learning, together with
its recent applications in diverse biomedical studies. Through
reviewing those typical deep learning models as RNN, CNN,
autoencoder, and DBN, we highlight that the specific application
scenario or context, such as data feature and model applicability,

FIGURE 9 | Transfer learning has several derivatives categorized by the labeling information and difference between the target and source.
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are the prominent factors in designing a suitable deep learning
approach to extract knowledge from data; thus, how to decipher
and characterize data feature is not a trivial work in deep-
learning workflow yet. In recent deep learning studies, many
derivatives from classic network models, including the network
models depicted above, manifest that model selection affects the
effectiveness of deep learning application.

Secondly, for its limitation and further improvement
direction, we should revisit the nature of the method: deep
learning is essentially a continuous manifold transformation
among diverse vector spaces, but there exist quite a few tasks
cannot be converted into a deep learning model, or in a learnable
approach, due to the complex geometric transform. Moreover,
deep learning is generally a big-data-driven technique, which
has made it unique from conventional statistical learning or
Bayesian approaches. Thus, it is a new direction for deep learning
to integrate or embed with other conventional algorithms in
tackling those complicated tasks.

Thirdly, when it comes to innovation in computational
algorithm and hardware. As an inference technique driven
by big data, deep learning demands parallel computation
facilities of high performance, together with more algorithmic
breakthroughs and fast accumulation of diverse perceptual data,
it is achieving pervasive successes inmany fields and applications.
Particularly in bioinformatics and computational biology, which
is a typical data-oriented field, it has witnessed the remarkable
changes taken place in its research methods.

Finally, as unprecedented innovation and successes acquired
with deep learning in diverse subfields, some even argued that

deep learning could bring about another wave like the internet.
In the long term, deep learning technique is shaping the future
of our lives and societies to its full extent. But deep learning
should not bemisinterpreted or overestimated either in academia
or AI industry, and actually it has lots of technical problems to
solve due to its nature. In all, we anticipate this review work
will provide a meaningful perspective to help our researchers
gain comprehensive knowledge andmakemore progresses in this
ever-faster developing field.
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