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Type 2 diabetes (T2D) is known as a disease caused by gene alterations characterized
by insulin resistance, thus the insulin-responsive tissues are of great interest for
T2D study. It's of great relevance to systematically investigate commonalities and
specificities of T2D among those tissues. Here we establish a multi-level comparative
framework across three insulin target tissues (white adipose, skeletal muscle, and liver)
to provide a better understanding of T2D. Starting from the ranks of gene expression,
we constructed the ‘disease network’ through detecting diverse interactions to provide
a well-characterization for disease affected tissues. Then, we applied random walk with
restart algorithm to the disease network to prioritize its nodes and edges according to
their association with T2D. Finally, we identified a merged core module by combining
the clustering coefficient and Jaccard index, which can provide elaborate and visible
illumination of the common and specific features for different tissues at network level.
Taken together, our network-, gene-, and module-level characterization across different
tissues of T2D hold the promise to provide a broader and deeper understanding
for T2D mechanism.

Keywords: type 2 diabetes, gene pairwise expression, dysfunctional interactions, multi-level analysis, random
walk with restart

INTRODUCTION

Type 2 diabetes (T2D) is one of the leading complex diseases. It is most commonly seen in older
adults, but it is increasingly seen in children, adolescents, and younger adults due to rising levels
of obesity, physical inactivity, and poor diet (International Diabetes Federation [IDF], 2017). T2D
is mainly a glucose metabolism disorder, and is currently believed to be a heterogeneous disease.
One important fact is that the development of T2D involves multiple tissues (Zhong et al., 2010;
Camastra et al., 2011; Petersen et al., 2012; Tang et al., 2018). Those tissues include white adipose
tissue, skeletal muscle, and liver (shortly written as adipose, muscle, and liver hereafter). Each tissue
has its own characteristics induced by T2D. One important and challenging problem is to explore
the cross talk among multiple tissues since T2D is a systemic disease involving complicated synergy
and regulation among different tissues. Exploring its underlying mechanisms across multiple tissues
will be helpful for personalized therapy and precision medicine in T2D treatment. However, most
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existing studies focused on single tissue only (Li et al., 2015; Lee
and Kim, 2016; Alghamdi et al., 2017).

On the other hand, it has been accepted that although
molecules are basic components of cellular machinery, a complex
disease is generally caused not from the malfunction of
individual molecules but from the interplay of a group of
correlated molecules or a network. Thus, with the development
of bioinformatics and high-throughput data, network-based
characterization of complex diseases, including T2D, has been
invaluable to integrate and interpret functional genomics datasets
and identify new biomarkers or modules to better classify patients
into subtypes. Such approaches are much more powerful than
approaches that examine a single gene at a time (Barabasi et al,,
2011; Hofree et al., 2013; Zhang et al., 2014; Liu et al., 2017; Zhang
and Zhang, 2017; Hwang et al., 2018; Zou et al., 2018). However,
most methods tended to characterize the complex programs
using sets of genes, while the interaction (described as edge in
biological network) information was not fully utilized in final
prediction or analysis. Therefore, such methods cannot inform
us on the functional discrepancies between gene pairs that are
perturbed under disease.

Here, we propose a multi-level comparative framework mostly
focusing on interactions across different representative tissues
to gain a broader and further understanding of T2D. The
whole framework can be divided into two phases and each
phase is comprised of several major steps (Figure 1). The first
phase is disease network construction, to effectively characterize
the abnormal information response to disease. In recent years,
many efforts have been made to extract disease information
through selecting co-expression gene pairs whose expressions
were highly correlated across samples. These methods were under
the hypothesis that genes associated with the same disorder tend
to share common functional features, i.e., their protein products
tend to interact with each other. However, genes show highly
correlated patterns of expression in one biological state, but
not in another, i.e., they may not be highly correlated across
the entire dataset, and therefore they fail to be picked out by
co-expression based methods (Zhang and Horvath, 2005; Fuente,
2010). For this reason, we proposed a method based on finding
‘diverse interactions’ according to the discrepancy between
correlations in different phenotypes by extending our previous
work (Sun et al., 2013). Beyond our previous work, we further
considered the weight of interactions together, thus all the
diverse interactions along with their discrepant coefficients which
composed the weighted diverse interaction network (WDIN).
Indeed, this WDIN would unravel the complexity of gene-pair
regulation in the complex process regarding different tissues.
In addition, it should be noted that during the computation
of adjacency matrix for WDIN, we proposed to calculate the
discrepant coefficient based on genes’ ranks instead of expression
values. Such an operation would weaken the biased influence
caused by different expression levels in different tissues and
experiments and consequently provide a uniform scale for all
samples independent of the dynamic range of a data profile (Le
et al., 2010; Altschuler et al., 2013).

The second phase is multi-level analysis based on the inferred
disease network. This phase is composed of network-, gene-,

and module-level analysis. Network-level analysis gives an overall
cross-tissue study about the T2D based on the constructed
original tissue-dependent WDIN. Gene-level analysis is carried
out through discussing the prioritized nodes of WDIN which
can provide a local and delicate explanation for the disease. The
major step of this phase is to discover core modules and then
derive a merged core module. Following module-level analysis
could carefully and visibly illustrate the common and specific
features belonging to different tissues. In this part, the random
walk restart (RWR) algorithm is employed to rank genes and
further extended to prioritize gene interactions. The clustering
coeflicient is introduced to enable identifying biological core
modules composed of prioritized interactions.

In summary, we explore the tissue cross talk of T2D
at gene-, module-, and network-level comparisons across
different tissues to uncover hidden patterns and their biological
implications from multi-tissues ‘omic’ data. Our multi-level
comparative framework is shown in Figure 1. We expect that
our proposed multi-level analysis framework can be extended
beyond gene expression level and discover new commonalities
and specificities among tissues.

MATERIALS AND METHODS

Data Collection

Tissue Dependent Gene Expression Data Retrieval
We obtained gene expression profiles from three rat tissues
(white adipose, skeletal muscle, and liver) [diabetes rats: Goto—
Kakizaki (GK) rats; control rats: Wistar-Kyoto (WK) rats] from
the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus database (access ID: GSE13268, GSE13269,
and GSE13270) (Almon et al., 2009; Nie et al., 2011; Xue et al.,
2011). The profile was composed of 31,099 probes. Our first
filter eliminated the probe sets without the corresponding official
symbol, leaving 25,345 genes for further consideration.

T2D Associated Genes Collection

To provide support and verification for our work, we collected
the canonically reported genes associated with T2D. These genes
were gathered from Type II diabetes mellitus pathway (KEGG-
Kyoto Encyclopedia of Genes and Genomes, H00409) which will
be referred to as “T2D-pathway genes.” In total, we obtained 50
T2D-pathway genes, among which 42 genes had gene expression
aforementioned and were used in this study. Other T2D related
genes were downloaded from the Rat Genome Database (RGD)'
in October 2018. In total, 515 genes were downloaded from RGD
(referred to as RGD-reported genes), and only those that have
been measured in GSE 13268-13270 were kept. Thus 303 RGD-
reported genes were left.

Protein-Protein Interaction Network Integration

Rat protein-protein interaction (PPI) network was integrated
based on KEGG pathway and BioGRID (Biological General
Repository for Interaction Datasets). Actually, not all the

'http://rgd.mcw.edu/wg/home
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Data Collection (PPI network, Gene expression profile, Reported T2D related genes)

Data Processing (Mapping expression to PPI, Ranking expressions)

Calculate the correlation of gene pair based on normalized genes’ ranks

Determination of adjacency matrix based on significant different
correlations between control and disease states to generate WDIN

Original constructed WDIN ':>

4

Prioritizing WDIN based
on RWR algorithm

J

Detecting modules based
on ranked edges of
prioritized WDIN

Multi-level analysis

Network-level analysis based
on tissue-dependent WDINs

E> Gene-level analysis based on |:>
prioritized nodes

Module-level analysis based
on deduced MCM

Cross-tissue comparison based
on network similarity and
functional analysis etc.

Local and delicate functional
analysis based on prioritized
genes; characterizing molecular
functions of each predicted
T2D-associated gene

Visualized analysis according to
E> edges with different patterns in |:
MCM ;

FIGURE 1 | Schematic illustration of the multi-level comparative framework of this study. Two major phases are included, network construction and multi-level
analysis. WDIN is the constructed disease network, and MCM is the identified key module.

proteins in PPI network have corresponding gene expression
values in expression profiles GSE13268-GSE13270. To carry
out our cross-tissue analysis, we only reserved interactions
whose two nodes have expressions in three tissues. Finally, the
reserved interactions composed a network with 4,081 nodes
(proteins) among 24,503 edges (interactions). This network
was noted as ‘background PPI network’ with gene pair-wise
expressions in our study.

Data Processing

In most studies about network biology such as the ones aimed at
identifying network biomarkers of complex diseases, researchers
usually collect gene expression data from multiple experiments.
The expression profiles belonging to different experiments may
represent different tissues, or different experiment conditions.
Straightly pooling the expression profiles to construct various
networks would ignore the underlying structure of the data,
and the pooled estimates may be severely biased due to
the heterogeneity of the experiments. Instead of pooling the
expression data, we first ranked the genes by their expression
values for each expression array, and then normalized the
rank index for every gene. The normalized rank (z-score) was
computed using the mean () and standard deviation (o) of the
ranks of all genes along one sample which can be described as
z-score = (x—)/o0. In subsequent computation and analysis, this
normalized rank was used instead of expression value since it

can reduce the data noise deriving from different experimental
conditions and different tissues.

Figure 2 shows that the expression levels estimated by
normalized ranks subject to normal distribution are more
consistent, indicating that such ranking processing is a more
valid procedure.

Tissue-Dependent WDINs Construction

A WDIN was constructed for each tissue that was related to
the query disease—T2D. The pipeline of constructing WDIN
was as follows:

(1) For each gene pair in the integrated background PPI
network, calculate its correlation respectively under
normal (WK) and disease condition (GK) based on
the tissue specific normalized expression ranks of their
corresponding two genes.

(2) Choose the gene pair as our diverse interaction whose
correlations own significant difference between two
conditions, and all identified dysfunctional interactions
compose the WDIN. The weight of each edge is the
difference between two correlations under normal (WK)
and disease (GK) conditions.

After the creation of the tissue-dependent WDIN for each
tissue, each interaction was weighted by the diverse correlation
of corresponding gene pair. For each interaction, the absolute
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FIGURE 2 | The histograms of six gene expression profiles under different data processing strategies. (A) Histograms of gene expression in three tissues for two
phenotypes. (B) Histograms of normalized gene expression in three tissues for two phenotypes. (C) Histograms of gene index based on ranking expression in three

tissues for two phenotypes.
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value of its weight can reflect the degree of deviation of this
interaction in different phenotypes (normal and disease), and the
positive and negative property of the weight coefficient indicates
whether the corresponding function is active or inactive in
disease condition compared with normal condition, which would
provide more information for medical biology. Subsequently,
we noted the edge with positive weight as ‘active edge, and the
edge with negative weight as ‘inactive edge, respectively.

Random Walk With Restart

(RWR) on WDIN

Rank Candidate Genes

We applied RWR algorithm to our constructed tissue-dependent
WDINs. The goal is to rank genes in candidate sets based on
their association level with T2D. RWR is a ranking algorithm
which simulates a random walk on the network to compute the
proximity between two nodes by exploiting the global structure
of the network. It starts on a set of seed nodes, which is the set
of genes known to be associated with a phenotype p (T2D in this
work). The candidate genes are then ranked by the probability of
the random walker reaching this node (Lovasz, 1996; Tong et al.,
2008; Ganegoda et al., 2014).

Each tissue-specific WDIN can be mathematically described
as I' = (V,e,w), V is the gene set of WDIN’s nodes, €is a
set of undirected interactions between these genes (or their
products), uv € e represents an interaction between u € V and
v eV, w(u, v) indicates the weight coefficient of interaction
uv € €. The set of interacting partners of a gene v € V is defined
as N(v) ={u € V}:uv €e and the total reliability of known
interactions of v is defined as W(v) = > . N(y) W(uv).

Let po be the initial probability vector and ps be a vector
in which the i-th element holds the probability of finding the
random walker at node i at steps. Algorithmically, random-walk
based association scores can be computed iteratively as follows:

ps+1 = (1 —y)MTps +y(1 —n)po (1)

Here, 1 denotes the weight of the network. y € (0, 1)is a user-
defined restart probability to adjust the preference between the
importance of a protein or gene with respect to the seed set and
network topology. Numerical results show that y = 0.3 is optimal
for RWR’s performance (Erten, 2009; Erten et al., 2011). Thus, y
is set to 0.3 for RWR in this paper. M is the transition matrix
of the T', the transition probability from gene u to gene v can be
described as follows,

M(u, v) = [ :)V(u, VW), ifuvee o

, otherwise

The seed set is composed of T2D-pathway genes covered by the
WDIN, and the candidate set contains other nodes of WDIN
excluding these seed genes. The RGD-reported genes would be
used as test genes to verify the performance of applying RWR to
WDINSs. The details will be shown in the Results section.

Rank Candidate Edges

Based on the ranked candidate nodes, we further prioritized
the edges of WDIN for each tissue. In detail, given an edge,

we assigned an index to the edge according to the ranks of
its two linked nodes to indicate its association degree to the
studied disease. Theoretically and computationally, using the
average ranks of its two nodes as the edge’s index would meet the
requirement. Then all the edges would be ranked in ascending
order according to their assigned indices. An edge having higher
rank (with smaller rank value) is more closely associated with
the studied disease. These sorted edges enable us to identify a
minimal set composed of prioritized edges which can reflect
plentiful information about the disease in the considered tissue.
Such a set would be referred to as ‘core module, which could
provide some important information from another viewpoint.

Network/Module Comparison

We quantified the similarity of two networks based on edges.
Given two different networks, we supposed the numbers of edges
belonging to these two networks to be respectively Ny and Nj.
Then we calculated the number of edges that are present in
both networks (common edges) noted as variable n. We defined
variable x; as the ratio of the number of common edges (1) to the
number of edges in the first network (N;) and defined variable x;
as the ratio of the number of common edges (#) to the number
of edges in the second network (N3). Using variables x; andx;,
we introduced a S-score as the harmonic mean of x; and x, (Roy
et al., 2013; Knaack et al., 2014). The formulae are as follows,

n

X1 = —

N1

n

X) = ——

N2
(3)

S — score =
1
2 Xi

Pathway and Motif Enrichment

Functional analyses about pathway and process enrichment
have been carried out with the following ontology sources:
GO Biological Processes, KEGG Pathway, Reactome Gene Sets.
The analyses are performed through web tool Metascape’
(Tripathi et al., 2015).

RESULTS

Network-Level Analysis Based on
Tissue-Dependent WDINs

In order to better capture the disease related information,
for each tissue, we have designed a new way to infer a
tissue-dependent WDIN through exacting the interactions with
significant diverse correlations in different phenotypes. Instead
of choosing disease related genes individually, we picked out
such genes in pairs. An edge would be picked out if its
corresponding genes were strongly correlated (the Spearman
correlation coefficient is larger than or equal to some threshold,

Zhttp://metascape.org
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TABLE 1 | Characteristics of three tissue-dependent WDINs.

Number of nodes Number of edges

Item
Tissue

Hits of 42 T2D-pathway genes Hits of 303 RGD-reported genes

Adipose 2,026 1,710
Muscle 2,118 1,783
Liver 2,184 1,793

35 154
36 169
39 162

such as 0.8) under one strain while not (e.g., less than 0.2)
in the other condition. Such an edge implicated that the
interaction between the genes was obviously perturbed under
the disease and hence noted as ‘diverse interaction’ in this
work. Subtracting the correlation coefficient in normal state
from the coeflicient in disease state, we have the weight of each
diverse interaction.

Characteristics of WDINs

Through screening all edges in background PPI network,
we identified 2,026/2,118/2,184 diverse edges among 1,710/
1,783/1,793 nodes for adipose/muscle/liver respectively. We
computationally validated these networks by examining the
number of T2D-rpathway genes and RGD-reported genes
covered by each tissue-dependent WDIN. We found that the
created WDIN could hit most (exceed 83%) T2D-pathway genes
and more than half RGD-reported genes (Table 1). This means
that our designed way of constructing WDIN is effective, and
through screening the background PPI network and cutting away
those edges having loose or no association with the disease,
the inferred WDINs could capture abundant disease related
information with less edges.

We further investigated the Venn diagram for nodes of
three tissue-dependent WDINs and disease related genes they
covered (Figure 3). From the Venn we can see that the
percentage of specific genes in each WDIN ranges from
11.1 to 14.1%, and the housekeeping genes (genes appeared
in three WDINs simultaneously) is at the level of 33.2%

(Eisenberg and Levanon, 2013; Lee et al., 2015). The Venn about
the coved T2D-related genes composed of T2D-pathway genes
and RGD-reported genes presented a similar result.

Network Similarity Analysis

In addition to comparing networks based on network nodes
through Venn diagram, we also carried out network edge
comparison to further quantify the extent of shared and tissue-
specific network components. Thus, we introduced S-score
measure to assess the similarity between networks edges for
each pair of tissues since it is a more sensitive measure for
comparisons. Based on S-score (Figure 4A), we found that
the similarity between each pair of WDINs is low, which
means that during the progress of T2D, three tissues possess
evident tissue specificity. In this network comparison, adipose
tissue and muscle tissue were indicated to emerge as the
most similar dysfunctions caused by T2D among three insulin
responsive tissues.

Cross-Tissue Functional Analysis Based on WDINS
To confirm the significant relation between tissue- dependent
WDINs and T2D, the pathway and motif enrichment was
conducted for each WDIN to categorize the genes participating
in different biological functions or pathways.

Enrichment analysis on tissue non-specific genes
Table 2 lists the top 20 enriched terms of pathway and biological
process of 904 tissue non-specific genes. The well-known T2D

Muscle

A Adipose

Liver

FIGURE 3| (A) Venn diagram of all genes in three tissue-dependent WDINSs. (B) Venn diagram of T2D- related genes covered in three WDINSs respectively.

B Adipose Muscle

Liver
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FIGURE 4 | Network-level comparison of three tissue-dependent WDINs. (A) Network similarity based on edges. (B) Heatmap of enriched terms across three

tissue-specific gene lists, colored by p-values.

G0:0010469: regulation of signaling receptor activity
mo04010: MAPK signaling pathway
) G0:0043408: regulation of MAPK cascade
0.0840 | G0:0060627: regulation of vesicle-mediated transport
G0:0007568: aging
G0:0051186: cofactor metabolic process
G0:0032101: regulation of response to external stimulus
0.1010 | G0:0017144: drug metabolic process
Mo04060: Cytokine-cytokine receptor interaction
G0:1903530: regulation of secretion by cell
G0:0070482: response to oxygen levels
i G0:0071363: cellular response to growth factor stimulus
Livgk G0:0055086: nucleobase-containing small molecule metabolic process
j G0:0043269: regulation of ion transport

G0:0099132: ATP hydrolysis coupled cation transmembrane transport
G0:0090066: regulation of anatomical structure size
— rno04610: Complement and coagulation cascades

G0:0010035: response to inorganic substance
G0:0006979: response to oxidative stress
G0:1902532: negative regulation of intracellular signal transduction

uads 3PS

TABLE 2 | Enriched terms of pathway and biological process of
house-keeping genes.

Category Description Count % Log10(P)

KEGG Pathway  Pathways in cancer 174 19.3548 —100.0

KEGG Pathway ~ Chemokine signaling 112 12.4582 —100.0
pathway

KEGG Pathway  Purine metabolism 104 11.5684 —91.7492

KEGG Pathway  Proteoglycans in cancer 101 11.2347 —79.4258

GO Biological Organophosphate 139 15.4616  —70.6282

Processes biosynthetic process

KEGG Pathway  Oxytocin signaling 83 9.2324 —69.5144
pathway

KEGG Pathway ~ HTLV-I infection 105 11.6796  —65.5991

Reactome Signaling by Receptor 105 11.6796 —64.0668

Gene Sets Tyrosine Kinases

KEGG Pathway  cAMP signaling pathway 87 9.6774 —63.8028

GO Biological Small molecule 143 15.9065 —59.8328

Processes biosynthetic process

GO Biological Response to peptide 138 15.3503 —58.5452

Processes

GO Biological Drug metabolic process 148 16.4627 —55.7688

Processes

GO Biological Response to xenobiotic 108 12.0133 —54.4963

Processes stimulus

GO Biological Response to toxic 141 15.6840  —52.1495

Processes substance

KEGG Pathway  Insulin signaling pathway 67 7.4527 —52.0524

GO Biological Response to inorganic 143 15.9065 —51.8458

Processes substance

KEGG Pathway  Fluid shear stress and 69 7.6751 —51.1151
atherosclerosis

KEGG Pathway  Leukocyte 61 6.7853  —50.3888
transendothelial migration

KEGG Pathway  Wnt signaling pathway 66 7.3414 —49.2176

KEGG Pathway  Phosphatidylinositol 54 6.0066 —46.7635

signaling system

related pathway- Insulin signaling pathway ranks in the 16th
position. Most other listed pathways have been documented
to be associated with T2D. For example, two pathways about

cancer (pathways in cancer and proteoglycans in cancer) were
enriched, and this is not surprising since cancer is quickly
emerging as another pathological consequence of T2D (Poloz and
Stambolic, 2015). Due to the lack of adequate glucose uptake
induced by dysfunction of insulin response, most pathways
related to the cellular regulatory signal transduction of basic
energy metabolism became abnormal, such as Chemokine, cAMP
and Wnt signaling pathways and so on (Li et al., 2014). As T2D is
a well-known metabolic disease, the metabolic related pathways
appeared to be abnormal, such as Purine metabolism and drug
metabolic process.

Enrichment analysis on tissue specific genes

Some tissue-specific property can be displayed through the
functional analysis of specific genes in three WDINs (Figure 4B).
For example, Drug metabolic appeared to be significant in
liver-dependent WDIN enriched terms. Negative regulation of
intracellular signal transduction and response to oxidative stress
were found to be dysfunctional in liver-specific WDIN only,
and didn’t appear in the remaining two tissues. In addition,
we found that overall the abnormal functions caused by T2D
appear to be more similar in adipose and muscle, which is
consistent with the result induced by network similarity based on
S-score (Figure 4A).

Gene-Level Analysis Based on

Prioritized WDINs
Prioritizing WDINs Using RWR
To rank genes belonging to candidate sets based on their
association level with T2D, we applied RWR to our three
constructed tissue-dependent WDINs. The RWR method starts
with the genes belonging to T2D pathway covered by each
WDIN, and these genes are referred to as seed genes. The
candidate set of genes includes other nodes of WDIN excluding
the seed genes. After the random walking, the candidates are
ranked according to the proximity of each gene to the genes
in the seed set.

To verify the efficiency of random walk on the WDIN,
we collected T2D related genes from RGD database. In all 303
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RGD-reported genes appeared in our background network, and
among 35 T2D-pathway genes hit in adipose-WDIN (seed genes),
there are 0 overlaps. These 130 genes are pleasing test genes
because we can verify our method through inspecting their rank
indexes. Similarly, in muscle-WDIN, there are 36 genes from
T2D-pathway (used as seed genes) and 169 RGD-reported genes
respectively. In 169 RGD-reported genes, excluding the seed
genes, there remains 146 genes which would be used as test genes
for RWR. In liver-WDIN, there are 39 genes from T2D-pathway
(used as seed genes) and 162 RGD-reported genes respectively.
In 162 RGD-reported genes, excluding the overlap genes with
seed genes, there remains 136 genes which would be used as
test genes for RWR.

After random walking on the adipose-WDIN, the top 100
ranked candidates cover 16 test genes, top 200 covered 26,
corresponding p-values tested by Fisher’s exact are 0.0019 and
0.0147. The corresponding results are listed in Table 3, along
with the similar results for the other two tissues. This indicated
that our random walking on inferred WDINs can effectively
prioritized the disease related genes.

To collect more generally known T2D genes to verify our
framework, we queried the approved type 2 diabetes genes
through published papers from year 2010 to 2018. After mapping
their homologous genes in rats based on the homologous
categories from MGI (Bult et al., 2008), 12 genes were reserved.
Finally, 8 of 12 genes were detected in three constructed
WDINs which are respectively BCAR1, CAMK2B, CPS1, FADS2,
GCK, PPARG, PDX1, and POLD2. Among them, GCK (Misra
and Owen, 2018) and PDX1 (Kodama et al, 2016) were
included in our seed set. Besides, FADS2 (Li et al., 2016) were
ranked 112 in our prioritized adipose-WDIN (1,675 genes in
total), and POLD2 (Gaudet et al., 2011) were ranked 98 in
muscle-WDIN (1,747 genes in total). BCAR1 (Kazakova et al.,

TABLE 3 | We verify the efficiency of prioritized WDIN through Fisher’s exact test.

All All
Tissue Item Top100 candidates Top200 candidates
Adipose Test gene covered 18 82 29 171
Test gene uncovered 120 1593 109 1504
Fisher’s exact p-value = 0.0003 p-value = 0.0003
Muscle  Test gene covered 16 84 25 175
Test gene uncovered 138 1663 129 1572
Fisher’s exact p-value = 0.0069 p-value = 0.0198
Liver Test gene covered 13 87 23 177
Test gene uncovered 131 1667 121 1577
Fisher’s exact p-value = 0.0492 p-value = 0.0336
Adipose Test gene covered 16 84 26 174
Test gene uncovered 114 1591 104 1501
Fisher’s exact p-value = 0.0019 p-value = 0.0019
Muscle  Test gene covered 14 86 22 178
Test gene uncovered 132 1661 124 1569
Fisher’s exact p-value = 0.0310 p-value = 0.0490
Liver Test gene covered 11 89 21 179

Test gene uncovered 125 1665 115 1575

Fisher’s exact p-value = 0.0989 p-value = 0.0435

2018) and CAMK2B (Sacco et al., 2016) also have higher
ranks in muscle-WDIN which were 289 and 257 respectively.
PPARG (Voight et al, 2010) was ranked 533 in adipose-
WDIN, while CPS1 (Matone et al., 2016) had an unsatisfied
rank 1,272. In general, the ranked results of these 8 genes
were basically consistent with their published results associated
with T2D. Furthermore, our results could offer tissue-specific
insights into T2D.

Cross-Tissue Functional Analysis

Based on Prioritized Genes

In order to reduce the effect of ascertainment bias in genes
loosely or less associated with the disease, we set a threshold,
and only focused on the prioritized genes above this threshold
in three tissue-dependent WDINs. Thus we can perform a
local and more delicate functional analysis on tissue non-
specific and tissue-specific genes among them separately with
less noise. Our experiments show that the effect of the
selection of the threshold is minor. If the threshold is too
small such as less than 50, the genes chosen to perform
functional enrichment analysis would be insufficient to achieve
statistical significance; whereas if the threshold is too large
such as higher than 200 (according to the results of the
previous subsection), the follow-up functional analysis would
be dilute on account of genes loosely associated with T2D.
Therefore, we set a cutoft value for prioritized genes at 100 to
conduct the cross-tissue functional analysis, and the results were
shown in Figure 5.

We found that the enriched terms were more specific
and striking with T2D when considering only the topl00
prioritized housekeeping genes, such as type II diabetes mellitus,
insulin signaling pathway, and glucose metabolic process. When
restricting tissue-specific genes in the top100 prioritized genes,
the tissue specificity became more visible. In detail, the immune
effector process and positive regulation of phosphatidylinositol
3-kinase activity were not enriched in adipose, while specific
genes in liver were not involved in negative regulation of
transferase activity, positive regulation of phosphatidylinositol
3-kinase activity and epithelial cell differentiation process which
also means that only adipose takes part in epithelial cell
differentiation. When compared with the other two tissues, the
muscle displays significant enrichment in regulation of kinase
activity process and MAPK signaling pathway. And also from
the overall view, the enriched functional items for adipose and
muscle were closer.

Characterizing the Molecular Functions of Each
Predicted T2D-Associated Gene
After ranking candidates through random walking on tissue-
dependent WDINs, we found that some genes were ranked ahead
while they did not appear in the RGD database or T2D-pathway.
For clarity, we focused on top50 nodes and considered them as
potential T2D-associated genes. Below, we respectively list their
gene information in Table 4, and corresponding pathway and
process enrichment in Table 5.

According to the annotation of genes by Metascape, we
found that some detected genes indeed have close connection
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FIGURE 5 | Heatmap of top100 genes cross three prioritized WDINSs. (A) For tissue non-specific genes. (B) For tissue-specific genes.
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with T2D. Among the top50 potential genes in adipose-
WDIN, PGM1 mainly takes part in Pentose phosphate pathway
and innate immune system and galactose catabolic process.
FBP1 responses to insulin stimulus and pentose phosphate
pathway. STAT4 was ranked in the top50 in both prioritized
adipose- and muscle- WDINs respectively. This gene provides
instructions for a protein that acts as a transcription factor,
which means that it attaches (binds) to specific regions
of DNA and helps control the activity of certain genes.
The STAT4 protein is turned on (activated) by immune
system proteins called cytokines, which are part of the
inflammatory response to fight infection. RASGRF1 appears
in potential T2D-associated gene set in both prioritized
muscle- and liver- WDINSs, and it has been shown to be
upstream from IGF1 (Insulin-like growth factor 1) which is
a star gene about T2D, allowing it to control growth in
mice (Drake et al, 2009). PSMD9 was observed in top50
genes detected in liver-WDIN, and it plays an important
role in negative regulation of insulin secretion processes
(GO:0046676) and positive regulation of insulin secretion
(GO:0032024); GALM is another potential T2D-related gene
detected in liver-WDIN that acts as a part of the galactose
catabolic process (GO:0019388) and the galactose metabolic
process (GO:0006012).

These potential T2D-associated genes would be helpful for
physicians or biologists, as they can be used to determine an
experimental target as the subject of future research.

Module-Level Analysis for the Predicted

T2D Associated Genes

Identifying Core Module From Prioritized WDIN
Based on Edges

In addition to prioritizing candidate nodes, we further ranked
interactions in three WDINSs separately to capture those crucial
interactions in several disorders caused by T2D. Specifically, each
edge of the WDIN would be ranked according to the average rank
of its corresponding two nodes. Theoretically, the edge having
higher ranks (with smaller rank values) tends to have a closer
association with the studied disease.

Our final goal was to identify a minimal set of prioritized
WDIN edges which can reflect copious information about the
disease in some tissues, namely ‘core module’ hereafter. To
achieve this goal, we carried out a series of tests to evaluate the
effectiveness of predicting and detecting disease related genes for
the subnetworks from prioritized tissue-specific WDIN. Firstly,
for each tissue, the series subnetworks were successively exacted
from the prioritized WDIN based on edges from upon top 2.5%
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TABLE 4 | Annotation on predicted potential T2D-assocaited genes.

Gene Rank
Tissue symbol index Description
Adipose CARD9 2 Caspase recruitment domain family, member 9
CHUK 9 Conserved helix-loop-helix ubiquitous kinase
FBP1 6 Fructose-bisphosphatase 1
FOS 7 Fos proto-oncogene, AP-1 transcription factor
subunit
GNB4 15 G protein subunit beta 4
NFKBIB 4 NFKB inhibitor beta
PGM1 3 Phosphoglucomutase 1
PRPS1 12 Phosphoribosyl pyrophosphate synthetase 1
RXRA 5 Retinoid X receptor alpha
SHCH1 10 SHC adaptor protein 1
STAT4 1 Signal transducer and activator of transcription 4
Muscle  ATP50 12 ATP synthase peripheral stalk subunit OSCP
CAMK2A 6 Calcium/calmodulin-dependent protein kinase I
alpha
GLB1 Galactosidase, beta 1
MAP3K7 Mitogen activated protein kinase kinase kinase 7
PDGFRA 1 Platelet derived growth factor receptor alpha
PRKACB 5 Protein kinase cAMP-activated catalytic subunit
beta
RASGRF1 9 RAS protein-specific guanine nucleotide-releasing
factor 1
RPSBKA1 2 Ribosomal protein S6 kinase A1
STAT4 7 Signal transducer and activator of transcription 4
liver CNTFR 5 Ciliary neurotrophic factor receptor
GALM 8 Galactose mutarotase
MAP2K7 9 Mitogen activated protein kinase kinase 7
PSMD9 3 Proteasome 26S subunit, non-ATPase 9
PTPN6 6 Protein tyrosine phosphatase, non-receptor type 6
RASGRF1 1 RAS protein-specific guanine nucleotide-releasing
factor 1
RASGRF2 7 RAS protein-specific guanine nucleotide-releasing
factor 2
RASGRP2 10 RAS guanyl releasing protein 2
RYR3 Ryanodine receptor 3

to upon top 25% at an internal of 2.5, and then the maximum
connected component (MCC) of each subnetwork was retained
for further analysis. In total, we had 10 MCCs for each tissue.
Secondly, we compute the numbers and the coverage rates of
the disease related genes collected from T2D-pathway and RGD
database hit by each MCC (Supplementary Figure S1).

We then identified our core module through investigating
the clustering coefficient of each MCC because the clustering
coefficient can reflect the modular feature of biological function
module (Caroline and Ralf, 2006). In most cases, a complex with
larger clustering coefficient frequently tends to form a biological
functional module. Generally, the clustering coefficient ranges
from 0 to 1, and for a stochastic network with N nodes the value
of it is approximately equal to N~ 1.

We calculated the clustering coeflicient for each MCC and
the corresponding results were listed in Figure 6. Besides, we
compute the clustering coefficients of three tissue-dependent
WDINs which are 0.011, 0.011, and 0.016 for adipose, muscle,
and liver respectively. For each tissue, the MCC with the
largest clustering coeflicient was selected as our core module,
that is to say, top 15% of adipose-WDIN, top 17.5% of
muscle-WDIN and top 12.5% of liver-WDIN are taken as
our tissue-dependent core modules. It should be noted that
the clustering coeflicients (0.018, 0.013, and 0.021) belonging
to three identified modules are all larger than that of their
corresponding WDINs.

Analysis of core modules and a focus on the difference be-
tween the edges/interactions instead of nodes/genes individually
would provide some important information from another
viewpoint. We will illustrate this point in the next subsection.

Creating Merged Core Module (MCM)

Through Jaccard Index

Here we created the merged core module (MCM) by integrating
three tissue-dependent core modules through introducing
TJaccard index’ (Knaack et al., 2014). For each pair of core
modules, we calculated the Jaccard index, which for a pair of sets
is defined as the ratio between the size of the intersection and the
size of the union of two sets. If the Jaccard index of an interaction

TABLE 5 | Key issues of motif enrichment analysis on predicted potential T2D-assocaited genes.

Tissue Category Description Log10 (P) Hit genes
Adipose Reactome Gene Sets Signaling by Interleukins —6.77 Nfkbib, Shc1, Chuk, Fos, Stat4
KEGG Pathway Th1 and Th2 cell differentiation —6.64 Nfkbib, Chuk, Fos, Stat4
KEGG Pathway Pentose phosphate pathway —-6.12 Fop1, Pgm1, Prps1
Reactome Gene Sets Innate Immune System —5.75 Pgm1, Card9, Nfkbib, Shc1, Chuk, Fos
KEGG Pathway Chemokine signaling pathway -5.57 Nfkbib, Shc1, Gnb4, Chuk
Reactome Gene Sets Fc epsilon receptor signaling —4.63 Shc1, Chuk, Fos
GO Biological Processes Cellular response to insulin stimulus —3.47 Fbp1, Rxra, Shci
Muscle KEGG Pathway MAPK signaling pathway —7.15 Pdgfra, Rps6kal, Rasgrf1, Prkacb, Map3k7
KEGG Pathway Long-term potentiation —5.41 Camk2a, Rps6kal, Prkacb
KEGG Pathway Wnt signaling pathway —4.38 Camk2a, Prkacb, Map3k7
KEGG Pathway Calcium signaling pathway —4.04 Pdgfra, Camk2a, Prkacb
Liver KEGG Pathway MAPK signaling pathway -5.30 Rasgrf2, Rasgrf1, Rasgrp2, Map2k7
GO Biological Processes Regulation of cation transmembrane —3.31 Rasgrf2, Ptpn6, Rasgrf1

transport

Frontiers in Genetics | www.frontiersin.org

March 2019 | Volume 10 | Article 252


https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Sun et al.

Multi-Level Comparative Framework for T2D

0.025
0.021
£ 002
9
2
£ 0015
<}
9
(Y
£ o001
g
3
S 0.005 I
0
Top Top 5% Top Top Top Top Top Top Top Top25
2.5% Pisi 7.5% 10% | 12.5% | 15% | 17.5% | 20% | 22.5% %
M Adipose | 0.012 | 0.006 | 0.016 | 0.011 | 0.008 | 0.018 | 0.015 | 0.013 | 0.013 | 0.015
B Muscle 0] 0 0 0.006 | 0.012 0.01 0.013 0.01 0.009 0.01
o Liver 0 0 0.018 | 0.015 | 0.021 0.02 0.02 0.017 | 0.016 | 0.014
FIGURE 6 | Clustering coefficient of MCCs for each tissue.
A B
D ‘\.
N S\ g
C D
[
:’;ﬂ‘:;:gc, were colored based on the weighted
coefficient, red represents the active edge (positive
weight), while green means the inactive edge
range of this function under T2D.

FIGURE 7 | Tissue-specific edges displayed in MCM. (A) Adipose. (B) Muscle. (C) Liver.

is higher than a threshold in at least one pair of modules,
we added this interaction to the merged core module along
with their weights. To find a suitable threshold, we separately
calculated a series of clustering coefficients of complexes which
were generated when the threshold was set as 0.3, 0.2, 0.1, and
0.05, and the resulting clustering coeflicients were 0, 0, 0.027,
and 0.026. Hence, the parameter o = 0.1 was finalized as the best
threshold to create our MCM. Finally, we had an MCM composed
of 198 edges among 154 nodes.

We then investigated the inferred MCM to identify the
specific and common components of dysfunctions between
different tissues.

Cross-Tissue Analysis Based on Merged Core
Module

To systematically assess the extent to which the dysfunctions were
shared among different tissues, we split the edges of MCM into
three categories:

(1) Tissue-specific edge: the edge was significantly dysfunctio-
nal in only one tissue (as shown in Figure 7).

(2) Differential edge: the edge was significantly dysfunctional
in at least two tissues. While their statuses were different,
for example, the edge was active in tissue A whereas
inactive in tissue B (shown in Figure 8).
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edge here have the same meaning as in Figure 7.

FIGURE 8 | Differential edges displayed in MCM. The two subgraphs in each row show the differential edges between tissue | and tissue II. The different status
between the tissue pair under T2D can be exhibited through the dysfunctional weight of the edge in different tissue-dependent WDIN. (A,B) Show the differential
edges between adipose and muscle, respectively. (C,D) Show muscle and liver, respectively. (E,F) Show adipose and liver, respectively. The color and width of the

(3) Common edge: the edge was significantly dysfunctional in
at least two tissues. When the status was consistent, for
example, the edge was active in tissue A whereas inactive
in tissue B (shown in Figure 9).

We found that in MCM, most adipose-specific edges appeared
in links to hub gene PIK3R1, and a large proportion of them were
active under T2D, such as the function occurred between PIK3R1
and INS1, the function between PIK3R1 and IRS2, the function
between PIK3R1 and IGF1 etc. Taking muscle-specific edges in
MCM into consideration, it can be seen that PIK3R1, PIK3CB,
and EGFR were key nodes. The corresponding functions linked

to PIK3R1 (such as the function occurred between PIK3R1 and
IGFIR) were inactive which made the condition different than
in adipose, and the corresponding functions around EGFR were
active (such as functions linked between this node and IGF1).
Though the distribution of liver-specific edges in MCM was
decentralized when compared with other two tissues, PIK3R1 and
PIK3CB were still two key nodes, interactions between PIK3R1
and other nodes (such as INS2) were active, while PIK3CB was a
balanced node in terms of the hallmark of interactions.

There were 7 differential edges between adipose and muscle
in MCM, which means the corresponding functions presented
opposite status in these two tissues. As documented (Bereziat
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the same meaning as in Figure 7.

FIGURE 9 | Common edges displayed in MCM. The two subgraphs in each row show the common edges between two tissues. The consistent status between the
tissue pair under T2D can be exhibited through the dysfunctional weight of the edge in different tissue-dependent WDIN. (A,B) Are the common edges between
adipose and muscle, respectively. (C,D) Are for muscle and liver, respectively. (E,F) Show adipose and liver, respectively. The color and width of the edge here have

et al., 2002), GRB14 inhibited the catalytic activity of the INSR,
which was identical to our result displayed in Figure 8B.
Actually, according to our result, this inhibition may have
only emerged in muscle tissue, while it would be inverted in
adipose tissue (Figure 8A) This provides a meaningful target for
biological experiments.

All 5 differential edges were identified between muscle and
liver in MCM (Figures 8C,D). Also from the visible changes
in corresponding functions we could reveal more subtle and
interesting difference between tissues. For example, as described
in GeneCards’, SHC1 interacts with the NPXY motif of

Shttps://www.genecards.org

tyrosine-phosphorylated IGFIR. According to our results, we can
further infer that the interaction was active in muscle under T2D
while inhibited in liver. Some similar results would be observed
between adipose and liver.

Inspecting the common edges between tissue pair, a
notable thing was that all the four common interactions
between adipose and liver were inactive. Remarkably, one
of these four edges was between ABCC8 and KCNJI1I,
which are two well-known T2D-related genes encoding
proteins Kir6.2 and Surl, respectively, in pancreatic beta
cells. KCNJ11 interacts with ABCC8 to produce the KATP
channel, which transfers potassium ions across the beta
cells (Haghvirdizadeh et al, 2015). This interaction was
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indirectly linked through CACNAIE and was inhibited in both
adipose and liver.

However, here we only described several edges for each
category. Similar results can be examined from Figures 6-9
which would be useful in studies about disease mechanism
through analyzing the shared and specific components among
tissues under the disease.

DISCUSSION

Type 2 diabetes (T2D) is a complex disease and its dysfunction
involves many tissues. This work systematically investigates
commonalities and specificities of T2D among multiple tissues.
We established a multi-level comparative framework across three
insulin target tissues (white adipose, skeletal muscle, and liver) to
provide a better understanding of T2D.

The first challenge is to represent the tissues from the data.
Starting from the ranks of gene expression, we constructed
the ‘disease network’ through detecting diverse interactions to
provide a well-characterization for disease affected tissues. Based
on the constructed tissue-dependent WDINS, an elementary and
integral comparative analysis at network-level was conducted.
The results of network similarity according to the edges of
network indicated that the similarity among three tissues is lower,
thus justifying the necessity to conduct tissue-specific analysis for
T2D. The differences among tissues were also visible in enriched
motif based on tissue-specific genes, and these differences showed
that some T2D-related pathways or biological processes own
tissue specificity. Besides, we found that among three tissues,
adipose and muscle have more similar components in terms of
both enriched functions and network similarity.

To reduce the negative effects induced by genes loosely
associated with T2D, RWRs algorithm was applied to the disease
network to prioritize its nodes and edges according to their
associations with T2D. Genes ranked higher theoretically are
significantly associated with T2D. Gene-level analysis was carried
out on those genes ranked higher such as in the top100. On
one side, we discussed these genes individually and found
that some of them have been reported to be related with
disease genes, while several are not yet documented and could
be potential T2D-related genes which may be further verified
experimentally. On the other side, we collected these genes
together to survey their combined functions through inspecting
the enriched pathways and biological processes. Compared with
the similar analysis based on the whole disease network, the
analysis based on those closely associated with T2D displayed
more specific and striking enriched issues with T2D (such as
type II diabetes mellitus, insulin signaling pathway, and glucose
metabolic process).
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