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Neurodevelopmental and psychiatric disorders are a highly disabling and heterogeneous

group of developmental and mental disorders, resulting from complex interactions of

genetic and environmental risk factors. The nature of multifactorial traits and the presence

of comorbidity and polygenicity in these disorders present challenges in both disease risk

identification and clinical diagnoses. The genetic component has been firmly established,

but the identification of all the causative variants remains elusive. The development of

next-generation sequencing, especially whole exome sequencing (WES), has greatly

enriched our knowledge of the precise genetic alterations of human diseases, including

brain-related disorders. In particular, the extensive usage of WES in research studies has

uncovered the important contribution of de novo mutations (DNMs) to these disorders.

Trio and quad familial WES are a particularly useful approach to discover DNMs. Here,

we review the major WES studies in neurodevelopmental and psychiatric disorders and

summarize how genes hit by discovered DNMs are shared among different disorders.

Next, we discuss different integrative approaches utilized to interrogate DNMs and to

identify biological pathways that may disrupt brain development and shed light on our

understanding of the genetic architecture underlying these disorders. Lastly, we discuss

the current state of the transition from WES research to its routine clinical application.

This review will assist researchers and clinicians in the interpretation of variants obtained

from WES studies, and highlights the need to develop consensus analytical protocols

and validated lists of genes appropriate for clinical laboratory analysis, in order to reach

the growing demands.

Keywords: whole exome sequencing, neurodevelopmental and psychiatric disorder, de novo mutation, network

analysis, clinical implementation
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INTRODUCTION

The susceptibility to neurodevelopmental and psychiatric (NDP)
disorders involves polygenic, multi-effect, and complex genetic
structures. Large-scale twin and population-based studies were
able to show that genetics accounts for 30–80% of disease
liability for many neuropsychiatric disorders (Gandal et al.,
2016). An early indication of the genetic involvement in major
NDP disorders was their association with rare Mendelian
disorders, each with distinctive morphologic, cognitive, and
neuropsychiatric phenotypes, such as Fragile X, Angelman,
or Rett syndromes (De Boulle et al., 1993; De Hert et al.,
1996; Inoue and Lupski, 2003; Betancur, 2011; Blair et al.,
2013). Due to the limited power and systematic confounders
such as population stratification bias, the early linkage and
candidate gene studies often yielded disperse findings (Kohler
and Bickeboller, 2006; Price et al., 2010). In contrast, the unbiased
large-scale genome-wide interrogation, such as genome-wide
association studies (GWAS), of common genetic variation in
large cohorts has become a popular detection methodology and
study design to identify risk factors in neuropsychiatric diseases,
such as autism spectrum disorders (ASD), schizophrenia (SCZ),
intellectual disability, and/or developmental delay (ID/DD),
obsessive-compulsive disorder (OCD) or bipolar disorder (BD)
and has yielded more robust results (Epi4k Consortium et al.,
2013; SchizophreniaWorkingGroup of the Psychiatric Genomics
Consortium et al., 2014; Hou et al., 2016; Liu et al., 2016a; The
Autism Spectrum Disorders Working Group of The Psychiatric
Genomics Consortium, 2017; Trampush et al., 2017; Ikeda et al.,
2018; Pasman et al., 2018). Interesting GWAS discoveries have
been made on a wide variety of neuropsychiatric disorders
and clinical traits, many of which have been covered in other
in-depth reviews (Sullivan, 2010; Visscher et al., 2012, 2017;
Collins and Sullivan, 2013; Horwitz et al., 2018). Therefore,
the scope of our review is mainly focused on the usage
of next generation sequencing (NGS) technology, specifically
whole exome sequencing (WES), as an additional approach in
neuropsychiatric disorder studies, in an attempt to uncover
the missing genetic basis of the disease etiology. There are
two commonly used study strategies for discovering disease-
associated variants using WES. One is the exome case-control
study to find the rare inherited variants, which usually require
a large sample size to identify the significant variants, such
as in SCZ (Genovese et al., 2016), BD (Goes et al., 2016),
and OCD (McGrath et al., 2014). A comprehensive review
has been done by Gratten et al. (2014) on exome case-control
studies and has contributed greatly to our understanding of
neuropsychiatric diseases. The other one, is the de novo variants
(DNV) discovery, based on trio/quad studies with relatively
smaller sample sizes as an alternative strategy with great success
in disorders, such as ASD (De Rubeis et al., 2014; Iossifov
et al., 2014; O’Roak et al., 2014) and ID/DD (Gilissen et al.,
2014; Short et al., 2018). Thus, in this review, we focus on the
DNV studies, their significance and clinical translations. Here,
we summarize the recent repertoire of de novo events detected
from WES family-based trio (two unaffected biological parents
and the affected child) or quad (two unaffected biological parents,
the affected child, and one unaffected sibling) studies in NDP

disorders and provide a detailed overview of some of the most
successful integrativemethods for DNManalyses. Finally, we also
review the current state of WES application in NDP disorder
clinical diagnosis.

DISSECTING NEURODEVELOPMENTAL
AND PSYCHIATRIC DISORDERS BY
IDENTIFYING DE NOVO RARE
GENETIC VARIANTS

Usage of Whole Exome Sequencing in NDP
Disorders to Detect DNMs
Over the past decade, NGS has become increasingly popular
for estimating the genetic etiology of Mendelian, complex, and
undiagnosed disorders due to its scale and comprehensiveness
(Bamshad et al., 2011; Goldstein et al., 2013; MacArthur et al.,
2014; Zhu et al., 2014). In WES, the ∼1.5% of the genome,
encoding for proteins, is captured and then sequenced at
lower costs and increases the interpretability of the identified
variants, in contrast to the much more expensive whole
genome sequencing (WGS) that surveys the entire genome
space. To facilitate interpretation and decrease the cost of the
whole genome sequencing (WGS), the portion of the genome
related to protein coding regions is captured and sequenced
in WES. Notably, studies of NDP disorders using WES and
WGS have indicated that de novo mutations (DNMs) detected
from trio- or quad-based familiar studies have important roles
(Table 1), despite the genetic heterogeneity of types of disorders
(Sullivan et al., 2012a; Gratten et al., 2013). Filtering DNV in a
proband against unaffected parents, facilitates the interpretation
of potential de novo pathogenic variants among all the detected
ones (Figure 1A). For example, Neale and colleagues (Neale et al.,
2012) performed one of the four first large WES cohort studies
using a trio-based design to investigate the contribution of DNMs
to ASD (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al.,
2012b; Sanders et al., 2012), which showcased the important role
of DNMs in the pathogenesis of ASD. More importantly, Neale
and colleagues also proposed a statistical framework to analyze
whether individual genes carry significantly more DNMs than
expected by chance. Furthermore, Sanders et al. estimated that
penetrant DNMs in genes contribute to autism risk in ∼11% of
parent-child trio families (Sanders et al., 2015).

Summary of Published Exome DNMs in
Neuropsychiatric Disorders
In the past few years, 66% of the large cohort studies
that investigate DNMs of early onset psychiatric disorders
published were carried out by WES, compared to only 18%
by WGS and the remaining 16% by targeted sequencing,
demonstrating the prominent role of the WES in mutation
discovery (Table 1). These studies have identified, by the end
of 2018 in denovo-db (Turner et al., 2017), more than 57,300
DNMs in 44,200 individuals with a variety of neuropsychiatric
disorders estimating a rate of ∼1.3 DNMs/individual (Table 1).
Also, the decrease in cost of NGS over the years has
resulted in an explosion of small WES studies from limited
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TABLE 1 | Summary of published studies of DNMs found in large cohorts of

patients with psychiatric disorders.

Study Clinical

phenotype*

Number of

individuals

Probands/

controls

Sequencing

method

Vissers et al., 2010 MR 10 proband WES

O’Roak et al., 2011 ASD 20 proband WES

O’Roak et al., 2011 – 20 control WES

Girard et al., 2011 SCZ 14 proband Targeted

Xu et al., 2011 SCZ 53 proband Targeted

Xu et al., 2011 – 22 control Targeted

Sanders et al., 2012 ASD 238 proband WES

Sanders et al., 2012 – 200 control WES

O’Roak et al., 2012b ASD 189 proband WES

O’Roak et al., 2012b – 31 control WES

Neale et al., 2012 ASD 175 proband WES

Iossifov et al., 2012 ASD 343 proband WES

Iossifov et al., 2012 – 343 control WES

Kong et al., 2012 ASD or SCZ 65 proband WGS

Rauch et al., 2012 ID 51 proband WES

Rauch et al., 2012 – 20 control WES

de Ligt et al., 2012 ID 100 proband WES

Xu et al., 2012 SCZ 231 proband WES

Xu et al., 2012 – 34 control WES

Barcia et al., 2012 EE 12 proband WES

O’Roak et al., 2012a ASD 2446 proband Targeted

Michaelson et al., 2012 ASD 10 proband WGS

Veeramah et al., 2013 EE 10 proband WES

Jiang et al., 2013 ASD 32 proband WGS

Gulsuner et al., 2013 SCZ 105 proband WES

Gulsuner et al., 2013 – 84 control WES

Epi4k Consortium et al.,

2013

EE 264 proband WES

Fromer et al., 2014 SCZ 623 proband WES

McCarthy et al., 2014 SCZ 57 proband WES

Takata et al., 2014 SCZ 231 proband WES

Gilissen et al., 2014 ID 50 proband WGS

Francioli et al., 2014 – 250 control WES

Appenzeller et al., 2014 EE 356 proband WGS

Hamdan et al., 2014 ID 41 proband WES

De Rubeis et al., 2014 ASD 2303 proband WES

Iossifov et al., 2014 ASD 2500 proband WES

Iossifov et al., 2014 – 1911 control WES

O’Roak et al., 2014 ASD 3486 proband Targeted

O’Roak et al., 2014 ID 3486 proband Targeted

O’Roak et al., 2014 – 2493 control Targeted

Guipponi et al., 2014 SCZ 53 proband WES

Yuen et al., 2015 ASD 170 proband WGS

van Bon et al., 2016 ASD 7162 proband Targeted

Krumm et al., 2015 ASD 2377 proband WES

Krumm et al., 2015 – 1786 control WES

Parker et al., 2015 ID 10 proband WES

Kranz et al., 2015 SCZ 14 proband WES

Kun-Rodrigues et al.,

2015

Parkinson

early-onset

21 proband WES

(Continued)

TABLE 1 | Continued

Study Clinical

phenotype*

Number of

individuals

Probands/

controls

Sequencing

method

Hashimoto et al., 2016 ASD 30 proband WES

Turner et al., 2016 ASD 53 proband WGS

Turner et al., 2016 – 43 control WGS

Helbig et al., 2016 EE 1131 proband WES

Cappi et al., 2016 OCD 20 proband WES

Kataoka et al., 2016 BD 79 proband WES

Tlemsani et al., 2016 ID 210 proband Targeted

Halvardson et al., 2016 ID 39 proband WES

Lelieveld et al., 2016 ID 820 proband WES

Yuen et al., 2016 ASD 200 proband WGS

Wang et al., 2016 ASD 1045 proband Targeted

Deciphering

Developmental Disorders

Study et al., 2017

DD 4293 proband WES

Stessman et al., 2017 ASD 4787 proband Targeted

Stessman et al., 2017 ID 151 proband Targeted

Stessman et al., 2017 DD 1133 proband Targeted

Yuen et al., 2017 ASD 1740 proband WGS

Kim et al., 2017 ADHD 11 proband WES

Chen et al., 2017 ASD 116 proband WES

Lanoiselée et al., 2017 Alzheimer

early-onset

10 proband Targeted

Willsey et al., 2017 Tourette

Disorder

325 proband WES

Nishi et al., 2017 SCZ 18 proband WES

Hamdan et al., 2017 DEE 197 proband WGS

Werling et al., 2018 ASD 519 proband WGS

*ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; BD,

Bipolar Disorder; ID, Intellectual Disability; DD, Developmental Delay; DEE, Developmental

and Epileptic Encephalopathies; EE, Epilepsy; MD, Mental Retardation; OCD, Obsessive-

Compulsive Disorder; SCZ, Schizophrenia.

collections or index cases from all over the world (Smedemark-
Margulies et al., 2016; Zhu et al., 2018). Manual curation
and time are needed for all these variants to progressively
be introduced in variant databases, such as 1000 Genomes
(Gibbs et al., 2015), the National Heart Lung and Blood
Institute’s Exome Sequencing Project (ESP) (Exome Variant
Server (http://evs.gs.washington.edu/EVS/), Database of Short
Genetic Variations (dbSNP) (Sherry et al., 2001), expert-
curated databases focused on variant information (locus-
specific databases; LSDB) (Fokkema et al., 2011) or clinical
information e.g., GeneReviews (http://www.ncbi.nlm.nih.gov/
books/NBK1116/) and ClinVar (Landrum et al., 2016), where
mutations are deposited by submitters, or collected by the
private Human Mutation Database (HGMD) (Stenson et al.,
2017). As for DNMs, a few databases are being developed
hosting the collection of the DNMs across developmental and
neuropsychiatric disorders and controls, such as denovo-db
(Turner et al., 2017) and NPdenovo (Li et al., 2016). The same
team also developed mirDNMR, a gene-centered database of
background DNM rates in humans (Jiang et al., 2017). Still, these
databases focus on the variant information, such as locations
and frequencies. Therefore, a freely available unified systematic
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variance repository collecting the results from all the currently
published variants fast, includingmedically relevant information,
is needed to ensure the rapid translation of novel information to
researchers and clinicians.

DNMs including single nucleotide variants (SNVs) and small
insertions/deletions (indels) in exonic regions, are rare and
generally considered to have a stronger disruptive effect on
biological functions than inherited variants (Crow, 2000). Thus,
DNMs provide a valuable insight into the genetic understanding
and clinical interpretation of sporadic cases in which inheritance
may be limited to explain disease etiology (Veltman and Brunner,
2012; MacArthur et al., 2014; Samocha et al., 2014). As a
result, the number of WES studies and identified DNMs have
increased rapidly over the past few years (Figure 2A). To
facilitate the interpretation of DNMs from exonic and exon-
flanking regions, they are usually categorized by their functional
impacts (Figure 2B) as synonymous (23%) or non-synonymous
variants (77%). As the former mutations typically have a silent
effect, even some of them may contribute to alternative splicing
and protein fold change (Sauna and Kimchi-Sarfaty, 2013),
but their predictions are limited except biological experiments
showing the results of these variants. Thus, we chose to focus
on the non-synonymous DNMs. The latter is further classified
into likely gene-damaging loss-of-function (LoF) variants (15%)
(nonsense, frameshift indels, and splice-site mutations) and
missense variants (62%). However, only a fraction of these DNMs
is responsible for the clinical phenotypes. In an extensive study
of >2,500 simplex families with ASD, 43% of LoFs, and 13% of
the missense DNMs were estimated to be pathogenic (Iossifov
et al., 2014). We observe that mutations from ASD and ID/DD
contribute the most (86.6%) to the current repertoire of WES
DNMs (Figure 2A), which is not surprising since 85% of the
trio/quad samples presented these disorders and have been more
systematically interrogated than others. Also, the distribution of
variant types identified is similar across disorders (Figure 2B).

The excessive comorbidity between various neuropsychiatric
diagnoses, such as ASD, ID/DD, SCZ, BD, OCD, Tourette
syndrome, and ADHD makes the interpretation of the
underlining disease etiology extremely difficult (Ronald et al.,
2008; Lichtenstein et al., 2010; Rommelse et al., 2010; Faraone
et al., 2012; Sullivan et al., 2012b; Chen et al., 2016; Hirschtritt
et al., 2018; Liu and Wu, 2018; Shen et al., 2018). Another
limiting factor is the large polygenicity of these diseases. Almost
all NDP disorders are associated with potentially thousands
of disease risk genes, each conferring variable effects. To this
extent, accumulation of the genes carrying DNMs from WES in
multiple NDP disorder studies provides an excellent opportunity
for interrogating the underlying shared genetic component
among various disorders. We used pLI scores (Lek et al., 2016)
to prioritize and summarize the overlapped genes. The pLI score
of a given gene indicates the probability that it belongs in the
haploinsufficient category, wherein a single functional copy of
a gene is insufficient to maintain its normal function and is
extremely intolerant of LoF variation. Thus, we summarized the
overlapped genes (Supplementary Table 1) with high pLI scores
(pLI ≥ 0.9, extremely LoF intolerant) carrying DNMs between
four different disorders, ASD, SCZ, ID/DD, and BP, in Figure 2C.

The disorders that shared the larger number of genes are ASD
and ID/DD, but these observations could be explained by the
extensive shared clinical phenotypes. These observations need
to be considered with caution due to a large number of WES
studies performed in these disorders. There are some noticeable
genes carrying DNMs in patients from at least three different
disorders, such as Chromodomain Helicase DNA Binding
Protein 8 CHD8 (ASD, ID/DD, SCZ), Lysine Methyltransferase
2C KMT2C (ASD, BP, ID/DD, SCZ), Chromodomain Helicase
DNA Binding Protein 5 CHD5 (ASD, ID/DD, SCZ), Sodium
Voltage-Gated Channel Alpha Subunit 2 SCN2A (ASD, ID/DD,
SCZ), Neurexin 1 NRXN1 (ASD, ID/DD, SCZ), or Period
Circadian Regulator 1 PER1 (ASD, BP, ID/DD), suggesting
that some biological processes are probably shared between
neuropsychiatric disorders.

Unique Contribution of de novo Events to
the Understanding of Disease Etiology
A chromosomal structural variation (SV) is usually a
rearrangement of a genomic region with variable size (50
bp−5Mb) that can cause Mendelian disease and contribute
to complex diseases (Stankiewicz and Lupski, 2010; Girirajan
et al., 2011). It includes different types of alternations, such as
inversions and balanced translocations or genomic imbalances
(duplications and deletions), the latter commonly known as copy
number variants (CNVs) (Weckselblatt and Rudd, 2015). The
advent of chromosomal microarrays enabled the detection of
large genomic de novo structural variants such as recurrent de
novo (or inherited) CNV in trio studies (e.g., 1q21.1, 16p11.2,
or 22q11.21) or ultra-rare or unique de novo CNVs. These
discoveries provided an additional aspect of disease etiology
and brought rare variants with large effect sizes to the forefront
(Malhotra and Sebat, 2012). Especially with the advent of the
high sequencing coverage, CNV calling fromWES/WGS became
more reliable (Trost et al., 2018), and a machine-learning
algorithm based software (SV2) improved performance of the
SV detection, including CNV, for genotyping deletions and
duplications from paired-end sequencing data (Antaki et al.,
2018; Brandler et al., 2018). It has been estimated that CNVs are
responsible for a considerable percentage of the genetic causes
in some psychiatric disorders such as ∼10% of simplex cases of
ASD (Sebat et al., 2007). However, de novo CNVs discovered
in NDP disorders pose many challenges for interpretations,
such as pleiotropy, incomplete penetrance, and difficulty to
directly identify the pathogenic genes due to the fact that the
affected region may contain no known gene (potentially affecting
regulatory elements) or, on the contrary, a large and diverse set
of genes. When overlapping the genes carrying DNMs from
WES to the genes hit by de novo CNVs from arrays of four
different disorders (ASD, BD, ID/DD, and SCZ), only <30%
of them are shared (Figure 2D). These issues emphasize the
need for different detection methods for interrogating the
differential impact of molecular pathologies by different types
of disease mutations. In consequence, WGS that covers the
entire genome in trio or quad family-based studies is more
comprehensive and capable of detecting a complete set of SNPs,
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FIGURE 1 | The analytical pipeline for DNMs detected from exome studies in psychiatric disorders. (A) The discovery flow of DNMs from trios, including sample

collection, data Quality Control (QC), alignment, variants calling, annotation. (B) The functional annotation step, e.g., applying computational tools, such as SIFT and

CADD to predict the functional consequences of the detected mutation. (C) The large-scale data integration step to investigate the underlying disease genetics. (D)

The functional enrichment analyses and interpretation step, which help understand the disease etiology. (E) The functional studies phase is the experimental validation

step. (F) The clinical application step of the DNM pipeline, which can utilize the verified DNMs as the mutation screening profile for clinical diagnosis in

psychiatric patients.

SNVs, indels, and CNVs of an individual at the same time.
Also, it could be a choice to replace the usual strategy of using
multiple sequencing technologies to investigate all the variants
in neuropsychiatric disorders.

INTERPRETING RARE GENETIC VARIANTS
FROM EXOME STUDIES

With the abundance of the genomic variants obtained fromWES
and WGS studies, one of the most significant challenges is to
systematically interrogate the functional impact of the detected
variants and identify the underlying affected pathway. Though
the ultimate proof of DNMs contribution to the phenotypes
is functional assays (Figure 1E), these tests are generally
difficult to implement in such large scales systematically. To
overcome this limitation, computational methods have been
developed to investigate DNMs consequences and involve
typically multiple steps: evaluation of the DNMs potential
pathogenicity; incorporation of other variants such as CNVs or
inherited DNMs; and finally, integrative analyses of data from

other sources of evidence to enhance the understanding of the
disease functional pathways (Figures 1B–D).

Prediction of Functional Consequences
of DNMs
One of the most important steps when the variants are obtained,
is to functionally annotate them to distinguish deleterious
variants from a considerable number of variants from the neutral
background. Numerous efforts have been carried out to develop
computational tools to functionally interpret both coding and
non-coding genomic elements and to estimate the variants
pathogenicity, such as SIFT (Ng and Henikoff, 2003), PolyPhen-2
(Adzhubei et al., 2010), GERP (Davydov et al., 2010), or CADD
(Kircher et al., 2014) (Figure 1B). Pathogenicity evaluation can
be a challenging task as the estimated results of different methods
sometimes lack of the consistency, and functional assays are
not systematically performed. To this end, several studies (Gnad
et al., 2013; Dong et al., 2015; Miosge et al., 2015; Ionita-
Laza et al., 2016) have extensively reviewed these computational
annotation tools. Some of these studies divide the multiple tools
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FIGURE 2 | Summary of DNMs detected from exome studies in psychiatric disorders. (A) The overview of the numbers of WES studies in psychiatric disorders

increased over the past few years (until the end of 2017). (B) The distribution of de novo LoF, missense, and synonymous mutations detected in four different

disorders across large studies (Table 1). (C) Venn Diagram of the overlap of genes hit by DNMs from major studies of patients with psychiatric disorders. (D) The

overlap between the genes carrying DNMs and genes hit by the de novo CNVs in four different disorders. ASD, Autism Spectrum Disorder; ID/DD, Intellectual

Disability, Developmental Delay; SCZ, Schizophrenia; BD, Bipolar Disorder.

according to the variant types predictions (Richards et al., 2015),
while others compared non-coding genome pathogenicity scores
using calculationmethods based onmachine learning approaches
(Telenti et al., 2018). These summaries often include widely
used tools such as SIFT (Ng and Henikoff, 2003), PolyPhen-2
(Adzhubei et al., 2010), orMutationTaster2 (Schwarz et al., 2014),
which are based on the evolutionary conservation, which predicts
the impacts by determining the conservation of an amino acid
across species or based on protein 3D structures features, or both.
Li et al. conducted a comprehensive evaluation of 23 methods
for annotating missense variants using three independent
benchmark datasets with 12 different performance measures (Li
et al., 2018) and indicated that ReVe, a combination of REVEL
(Ioannidis et al., 2016) and VEST3 (Carter et al., 2013a), had
the best performance in prediction. However, comparative results
should be often interpreted casually since the evaluation of these
tools can be hindered by the problem of circularity (Grimm et al.,
2015), such as different variants from the same protein occurring
both in the datasets used for training and for evaluation.

Nevertheless, these predictors are limited to estimate the impacts
of SNVs on coding regions. Other computational tools, such
as CADD (Kircher et al., 2014), LINSIGHT (Huang et al.,
2017), FATHMM (Shihab et al., 2015), etc. have shown certain
but limited power in predicting consequences of non-coding
variants. Some have developed integrative tools that incorporate
several of these algorithms. For example, dnNSFP (Liu et al.,
2016b) integrated various computation tools such as SIFT (Ng
and Henikoff, 2003), PolyPhen-2 (Adzhubei et al., 2010), and
CADD (Kircher et al., 2014), and was developed to be a one-
stop database for variant functional predictions and annotations.
ANNOVAR (Wang et al., 2010) is another comprehensive
annotation tool, which incorporates functional deleteriousness
prediction scores from the dbNSFP, variants reported in the
ClinVar database, variants reported in dbSNP, etc. These tools
intend to interpret SNVs and indels through evaluating their
functional impacts on genes, reporting all functional relevance
scores from different computational tools, assessing conservation
levels of the impacted region, and interrogating the position
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variability frequency in databases such as 1000 Genomes Project
(Gibbs et al., 2015), dbSNP (Sherry et al., 2001), and ExAC
(Lek et al., 2016). Since their development, both dnNSFP and
ANNOVAR have become popular and widely used variants
annotation applications.

Furthermore, applying neural networks (LeCun et al., 2015;
Salakhutdinov, 2015) in annotating genomics information by
sequences has become prevalent in recent years and indicates the
start of the deep learning era for computational biology (Jones
et al., 2017). Several WES studies have reported some small sets
of DNMs hitting the non-coding regions of the genes along with
exonic DNMs (Supplementary Table 2), which would require
additional interpretations. Two recent methods, DeepSEA (Zhou
and Troyanskaya, 2015) and DeepBind (Alipanahi et al., 2015),
are great examples of applying the deep learning to model the
sequence specificity in various level, particularly on variants
hitting at non-coding regions. DeepSEA reached at the single
nucleotide resolution to predict transcription factor binding
and DNAse sensitivity. DeepBind can forecast the sequence
specificity of DNA/RNA- protein binding. Their performance is
found to be better than any existing conventional method for
predicting non-coding variants consequences. DeepSEA predicts
chromatin effects of sequence variations with single-nucleotide
sensitivity, by directly learning a regulatory sequence code from
large-scale chromatin-profiling data, including transcription
factors binding, DNase I sensitivity and histone-mark profiles.
DeepBind interrogates the sequence variants by integrating
experimental data with a deep convolutional neural network to
indicate how variations affect binding within a specific sequence.
Compared to DeepSEA, DeepBind analyzes the binding affinity
between proteins and DNA/RNA and determines whether
mutations could disrupt cellular processes. Overall, the successful
implementation of both DeepSEA and DeepBind methods
undoubtedly illustrates the advances in non-coding mutations
effect annotations.

Also, approximately 10% of disease-causing mutations
are mutations within splice site sequences at the intron-
exon junctions (Krawczak et al., 2007). Thus, splice-site
mutations have been generally considered deleterious (Daguenet
et al., 2015). Several computational tools, such as Human
Splicing Finder (HSF) (Desmet et al., 2009), GeneSplicer
(Pertea et al., 2001), MaxEntScan (http://genes.mit.edu/burgelab/
maxent/Xmaxentscan_scoreseq.html), NNSplice (Reese et al.,
1997), and MutPred Splice (Mort et al., 2014), have been
developed to interpret splice-site mutations and discriminate
pathogenic and tolerated ones. One of the most widely used tools,
HSF (Desmet et al., 2009), contains more than 10 algorithms
including position weight matrices (PWM), maximum entropy
principle, and motif comparison method, to identify splicing
motifs across the imputed human sequence. It evaluates the
disrupted prediction of the natural discovered splice sites.
MutPred Splice, more recent developed machine learning-
based (random forest) prediction tool with 21 features, targets
substitutions that disrupt pre-mRNA splicing (Mort et al.,
2014). A survey of the in silico tools that predict potential
consequences of splicing mutations has been carried out by
Jian et al. (2014).

Furthermore, some researchers have developed tools to
investigate the effects of mutations from their protein structures
using the resolved or predicted protein structures, and the
protein-protein interaction (PPI) information. For example,
Meyer et al. (2018) developed Interactome INSIDER (INtegrated
Structural Interactome and genomic Data browsER), which
is a structurally resolved, multi-scale, proteome-wide human
interactome allowing to explore human disease mutations
functionally. This useful network enables users to analyze disease
mutations from databases or from their studies to identify
enrichments in protein interaction domains, residues, and atomic
3D clustering in protein interfaces.

In conclusion, when combining computational annotation
tools of different purposes, researchers can thoroughly annotate
the detected mutations with comprehensive genetic information
and ensure having the first step toward a global interrogation
of the variant effects (Figure 1B). A proper prioritization
of the variants to detect the one with functional effect is
therefore crucial to translate the basic research into the clinical
intervention for patients’ personalized medicine treatment.

Integrating Inherited and Common Variants
to Interpret Rare Genetic Variation From
Exome Studies
One of the most popular ways to interpret exome data is to
analyze DNMs directly. However, only ∼1 to 3 de novo events
are usually identified in exonic regions in every individual
(Iossifov et al., 2014; Turner et al., 2016; Yuen et al., 2016)
and there are a plethora of inherited variants also detected by
trio WES that might contribute to the disease etiology. One
way to gain a more systematic view of variants effects is to
combine the de novo and the inherited variants effectively. For
this purpose, He et al. (2013) developed a statistical method,
later improved by Sanders et al. (2015), the Transmission and
De novo Association Analysis (TADA), which identifies disease
risk genes by combining de novo and transmitted SNVs and
small indels, with case-control variants data from the same
samples to provide a unified statistical quantification of disease
association. TADAweights multiple types of variaions differently,
e.g., a LoF mutation weights more than a missense mutation,
which in turn weights more than a transmitted LoF mutation. By
combining de novo and transmitted variants in its analysis, TADA
(He et al., 2013; Sanders et al., 2015) assumes that candidate
genes for neuropsychiatric disorders would give different types
of risks to the disease. Some variants may be causative, while
others may be transmitted and play roles as contributors or
modifiers. Therefore, by including the information on the
inherited variants, one may be able to discover pathogenic genes
in cases when DNM information is insufficient. TADA has
already been successfully applied in neuropsychiatric disorder
studies, such as ASD (He et al., 2013; Sanders et al., 2015;Werling
et al., 2018), SCZ (Takata et al., 2014; Nguyen et al., 2017), and can
easily be applied to other datasets as well.

Besides assessing whether a particular variant is associated
with disease by comparing the observed frequency in cases vs.
controls, it is also important to consider the mutation rate of
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the gene carrying DNMs. Samocha et al. (2014) introduced a
statistical metric measure to assess expected vs. observed DNMs
by estimating the statistical likelihood of a DNM occurring
spontaneously in a gene. The model first calculates the mutation
rate for a gene from SNPs in non-coding regions of the genome
for all possible trinucleotide to trinucleotide changes, such as
AGA evolving to ATA, ACA, or AAA. Then sequence context is
considered to determine separate rates for each base changing to
each other base for all bases across from the coding region and
the annotated conserved splice site. By applying this approach,
the consequence of various types of mutation change (e.g., loss-
of-function, missense, synonymous) on the corresponding amino
acid coded for is determined, and the probabilities for each
outcome occurring in a gene are evaluated to create a likelihood
per gene for each type of DNMs. With this, Samocha et al. was
able to identify 1,003 genes that are estimated to be significantly
intolerant to variations that change the coding sequence of the
gene (Samocha et al., 2014).

Another approach to consider mutation rate of the risk
gene carrying DNMs is by incorporating the imputation-based
rare variant burden test using a follow-up cohort after the
DNM identification. It has been shown that the discovery of
a rare variant near a common variant might be particularly
informative to clarify which of the candidate gene is pathogenic
(Teslovich et al., 2010; Voight et al., 2010; Momozawa et al.,
2011). Thus, applying the common variant burden test imputed
to the reference SNP panel on genes carrying DNMs can
be an alternative approach to assess the pathogenicity of
the variants. Recently, Browning et al. (Pullabhatla et al.,
2018) has implemented a DNM study pipeline that includes
variant discovery and burden test with imputation to reference
SNP panel across coding regions of genes. In addition to
discover confident candidates, it shows the SNP with genotype
imputation mainly implemented for GWAS still can be a
powerful supplementary annotation to the rare variant analysis.

Network Approaches to Enhance
Understanding of the Disease
Functional Pathways
With various forms of large-scale genetic association studies,
researchers have detected hundreds to thousands of genetic loci
that are involved in NDP disorder risk (Gratten et al., 2014).
As a consequence, many works adopting rigorous data-driven
integrative networkmethods have been carried out to understand
how all these genetic variants contribute to the disease etiology of
NDP disorders (Geschwind and Konopka, 2009; Parikshak et al.,
2015). The network approaches use the experimentally measured
or predicted relationships between genes to link them to each
other and provide an organized structural system for placing
each gene in the context of its molecular framework. Networks
usually model genome-wide data by displaying molecular
entities, such as genes carrying DNMs from WES or protein
products of the impacted genes, as nodes and the associations
between nodes as network edges. Edges can be the statistical
similarities between genes, such as brain-expression correlations,
or physical interactions between proteins. Edges define the

network connectivity and consequently define the hierarchical
structures of the nodes, which can usually be organized into a
relatively small group of highly interconnected modules expected
to represent functional module entities. Both the inter-modular
connectivity and intra-modular connectivity are used to reflect
the important biological relationships: the first one reveals a
higher-order organization of the network and the latter one can
identify which genes are biological modulators within modules.
They are often employed in the integrative analysis pipeline to
identify causal functional pathways and molecular drivers of
cellular and brain-wide pathology in disorders (Carter et al.,
2013b; Furlong, 2013; Mitra et al., 2013).

Here, we describe two main network approaches (Figure 1C),
co-expression and protein-protein interaction (PPI), to illustrate
the network analysis of genes in NDP disorders (Gilman et al.,
2012; O’Roak et al., 2012b; Gulsuner et al., 2013; Parikshak
et al., 2013; Willsey et al., 2013). Gene expression has been
widely used to investigate biological and functional relationships
between human genes. The co-expression analysis was mainly
designed to explore shared expression patterns in data from
different experiments, tissues, or species (Stuart et al., 2003;
Zhang and Horvath, 2005; Prifti et al., 2010). As results,
the co-expression network utilizes the gene expression pattern
correlation between genes to generate links between nodes to
relate disease genes to each other (e.g., DNM genes) for the
systems-level analysis, followed by the module discovery to
identify topologically highly connected network modules (Cline
et al., 2007; Amar et al., 2013; van Dam et al., 2017). Next, one can
perform the module functional enrichment analysis to identify
possible disease or brain-related pathways by using pathway
databases such as the Gene Ontology (GO) (Ashburner et al.,
2000), the Kyoto Encyclopedia of Genes, and Genome Elements
(KEGG) (Kanehisa and Goto, 2000), with the aim to facilitate
the discovery of potential therapeutic targets or biomarkers. The
multiple publications in different disorders have demonstrated
the effectiveness of this method in identifying disease related
pathways, such ASD (Parikshak et al., 2013, 2016; Gupta et al.,
2014) or SCZ (Fromer et al., 2014). For instance, Fromer
et al. (2014) has applied the co-expression network approach
on the set of genes hit by DNMs in patients and identified
co-expression modules related to neuronal functions, including
axon guidance, postsynaptic membrane, which supported the
significance of the findings. Also, co-expression network analysis
has also been successfully applied in cross-psychiatric-disorder
studies which analyzed collective DNMs to investigate the genetic
convergence among psychiatric disorders (Shohat et al., 2017;
Gandal et al., 2018). For example, Gandal et al. found an
astrocyte-related module significantly up-regulated in ASD, BD,
and SCZ, and enriched for glial cell differentiation and fatty-acid
metabolism pathways.

Another important characteristic of the biological systems is
that proteins function in pairs and groups by interacting with
other molecules (e.g., DNA, RNA) to regulate metabolic and
signaling pathways, cellular processes, even organismal systems.
As a result, PPI integrative network methods can be used to relate
disease risk genes (e.g., DNM genes) to each other and their
topological locations within the network modules in order to
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identify the potential diseases pathways. An essential organized
network can be constructed by using experimentally measured
or predicted associations to place each gene carrying DNM in
the context of its molecular system (Geschwind and Konopka,
2009). Thus, PPI networks have emerged as a powerful resource,
together with other information, to complement genetic data
such as DNMs to elucidate causal molecular drivers of cellular,
circuit level, and brain-wide alterations in pathology (Bergholdt
et al., 2007; Lage et al., 2008; Neale et al., 2012; O’Roak et al.,
2012b) (Figure 1D). For example, DAPPLE (Rossin et al., 2011)
was developed to search for the significant physical connectivity
among proteins encoded by disease risk genes according to PPIs
reported in the literature. Neale et al. (2012) and Xu et al.
(2012) have applied DAPPLE to determine whether there is an
over-represented of PPIs among the genes hit by a functional
de novo event in their results from trio WES studies in NDP
disorders. The fact that different types of mutations, such as
de novo SNVs and de novo CNVs, can be discovered from
genome-scale studies, a network-based analysis that considers
all types of mutations can be a powerful strategy for system-
level understanding of the disease. To this end, NETBAG+
(Gilman et al., 2012), has been developed to consider multiple
lines of mutational data from diseases, such as de novo SNVs, de
novo CNVs, and SNP data from GWAS studies, and performed
the PPI network-based integrative analysis to investigate the
convergence of heterogeneous neuropsychiatric genetic variation
on a functional system level.

In addition, some studies have combined PPIs and gene
expressions to perform an integrative network analysis to better
elucidate the underlining genetic basis of sets of interested genes,
such as the significance of the interconnection between detected
genes hits byDNMs and the overall impact of the variants inNDP
disorders and have achieved successful results (Gulsuner et al.,
2013; Hamdan et al., 2014; O’Roak et al., 2014; Lin et al., 2015).
Supplementary Table 3 shows the characteristics and differences
between different network-based methods.

PROGRESS AND LIMITATIONS IN
TRANSLATING NGS FROM RESEARCH TO
CLINICAL IMPLEMENTATION

Traditionally, diagnosing individuals with neuropsychiatric
disorders is a very long and tedious process, and includes a large
set of clinical assessments, such as dysmorphology evaluation,
development monitoring, intellectual function assessment. With
increasing acknowledgment of a strong genetic influence to the
psychiatric disorders, especially in ASD and ID/DD, with subset
of cases with an underlying genetic syndrome, clinical laboratory
testing to find genomic variants in risk genes is now an important
part of the diagnostic work. Genomic risk variants scanning
would be considered when the clinical symptoms and test results
suggest a suspected diagnose. This strategy resulted in a diagnosis
rate from 5 to 50% in cases (Battaglia et al., 1999; Battaglia and
Carey, 2003; Challman et al., 2003; Moog, 2005; van Karnebeek
et al., 2005). However, clinicians often tussle with the diseases’
phenotypic diversity and are challenged to select a proper genetic
testing for complex cases.

Current NGS Gene-Panels Commercially
Available for Clinical Genetic Testing
Currently, the recommended laboratory genetic test for
disorders, such as ASD and ID/DD, is the chromosomal
microarray (Miller et al., 2010), targeting deleted and duplicated
segments of DNA (CNVs) that only account for 5–25% of cases
(Tammimies et al., 2015). In contrast, the NGS technology
provides in-depth view of genomic landscape and can be used
to target a selection of genes of interest by targeted gene panels,
the entire coding portions of all genes by WES, or the entire
genome by WGS to gain a comprehensive map of the genomic
variants. Compared with the sequential testing of multiple
genes historically, NGS allows the rapid sequencing of various
genes simultaneously at a lower cost and is expected to improve
clinical diagnosis of disorders and patients’ management. NGS
has proven indispensable to discover new neuropsychiatric
disorder risk genes. In addition, integrative analyses of NGS
data have been fruitful in illuminating the underlining genetic
basis of disease etiology. It has also been commercially
available as a second-tier genetic test and has demonstrated
to be a powerful supplementary technique for both risk
gene discovery and clinical application in disease diagnosis
(Figure 1F) (Bainbridge et al., 2011; Kingsmore et al., 2011;
Boycott et al., 2013).

As result, a number of NGS-based clinical testing panels
have been developed and are available as NGS-based Laboratory
Developed Tests (LDTs) for a set of neurodevelopmental
disorders, such as Fragile X syndrome, Prader-Willi syndrome,
and Angelman syndrome. These panels are useful to target a
limited number of well-demonstrated causative genes involved
in these disorders. However, for many psychiatric disorders with
complex genetic basis, the number of genes involved is very
large and the degree of confidence of the implication of these
genes in disorders is in constant re-evaluation. Currently, most
of available commercial genetic testing panels are for two types of
complex psychiatric diseases: autism and intellectual disability.
Hoang et al. (2018) has performed a comprehensive survey in the
clinical sequencing panel test for ASD and found a significant
heterogeneity among different laboratories with respect to the
tests they offer. Their most striking finding was the number of
tested genes on panels used for ASD vary from 11 to 2,562,
with little overlap. Here, we performed a similar comparison on
NGS-based clinical testing panel used for ID/DD and looked
at the number of genes included in panels. We also found a
large difference between different panels and included genes
can range from 13 to 2,562 (Table 2), which is not surprised
since the genetic predisposition may be different in almost every
individual in these complex psychiatric disorders due to their
heterogeneous nature. This shows that it is still a challenging
task to reach consensus gene lists for testing panels in complex
psychiatric disorders currently; and indicates that WES might
be a better alternative for genetic testing when casual variants
are not known since it targets all coding regions of the genome
without biases in the gene pre-selection. Thus, targeted gene
panels would be ideal for analyzing specific mutations or genes
that have suspected associations with disease, while WES could
be a better choice when one is uncertain what genes need to
be tested.
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TABLE 2 | Clinical intellectual disability gene sequencing panels available as of

January 2019.

Laboratory company # of genes

included

Test name

Ambry Genetics 140 Intellectual Disability (IDNext)

ApolloGen 114 X-Linked Intellectual Disability Panel

Blueprint Genetics 99 X-linked Intellectual Disability Panel

Centogene 178 X-linked Intellectual Disability Panel

CGC Genetics 89 Intellectual Disability, X-linked NGS

panel

DDC Clinic 13 Overgrowth and Intellectual Disability

NGS Panel

EGL Genetics 92 X-linked Intellectual Disability:

Sequencing Panel

Fulgent Genetics 495 Intellectual Disability NGS Panel

Gene DX 2562 Autism/ID Xpanded Panel

GGC (Greenwood Genetic

Center)

114 X-Linked Intellectual Disability (XLID)

Sequencing Panel

Human Genetics

Laboratory (University of

Nebraska Medical Center)

117 Autism / Intellectual Disability /

Multiple Anomalies Panel

Humangenetik 867 Complete Panel (#017): Intellectual

Disability

MGZ (Medical Genetics

Center)

115 X-Linked Intellectual Disability Panel

MNG Laboratories 894 Comprehensive Intellectual

Disability/Autism + MtDNA Panel

Prevention Genetics 256 X-Linked Intellectual Disability

Sequencing Panel with CNV

Detection

Transgenomic 119 Autism and Intellectual Disability NGS

Panel

It is worth mentioning that WGS starts to show its advantage
over WES, such as providing a more uniformed coverage,
able to identify more variants covering both coding, and
non-coding regions of the genome (Wilfert et al., 2017).
It is important to extend the interrogation to non-coding
variants as these represent the majority of DNMs per genome.
A relevant role in neurodevelopmental disorders of these
regions such as the non-coding RNAs has already been
established (Wanke et al., 2018). Although the current
sequencing cost of WGS is still at least three times higher
than WES per sample using NovaSeq technology as of January
2019 (Supplementary Table 4; https://genohub.com/), the
implementation of WGS has the potential to ultimately replace
WES both in research and clinical settings with a decreasing
cost in whole genome sequencing and a rapid maturation of its
analytical platforms.

Translation of WES for Diagnostic of
Neuropsychiatric Disorders From
Research to Clinical Practice
As described above, an alternative strategy is needed that could
take advantage of the recent advance of large-scale sequencing
techniques and yield faster and higher diagnostic rates. The

unbiased nature of WES can reduce the impact of disease
variability on genetic testing strategies by equally weighing
all genes and making assessments for all identified variants
simultaneously in one clinical context (Shashi et al., 2014;
Lencz and Malhotra, 2015). Hence, the true exonic phenotypic
variability of genetic disorders can be assessed byWES. There are
cases in the literature of pathogenic variants identified in patients
that would never have been considered for a genetic testing based
on their phenotypes (Fogel et al., 2014; Guerreiro et al., 2014; Lu
et al., 2014). This also underlines a vital role for clinical input in
bioinformatics analysis when estimating the likely contributions
of new genetic variations in disorders of a particular patient.
Several large studies have already demonstrated a diagnostic
yield of 25–45% for clinical WES (Dixon-Salazar et al., 2012;
Yang et al., 2013, 2014; Lee et al., 2014; Stark et al., 2016).
Moreover, Stark et al. (2016) found that singleton WES as a
first-tier screening method, outperforms the standard care in
infants with suspected Mendelian disorders (57.5 vs. 13.75%
diagnosis rate).

Several large diagnostic sequencing laboratories/institutions,
such as Ambry Genetics Laboratory (Rossi et al., 2017), have
published studies on the efficacy of diagnosis in patients with
suspected genetic disorders using the exome sequencing. They
have shown particularly effective diagnosis rates in patients
with neuropsychiatric or neurodevelopmental diseases based on
Mendelian traits, as shown in Table 3. For instance, in the field
of psychiatric disorders of early onsets, such as ASD, the genetic
diagnostic yield was almost doubled when WES was used in
addition to chromosomal microarrays (Tammimies et al., 2015;
Rossi et al., 2017). The implementation of WES in the field of
rare pediatric disorders has already shown encouraging success
rates, 28–40% when proband-only or trio WES were considered
(Wright et al., 2018). Moreover, a pediatric neurology study
obtained a higher rate of conclusive diagnoses not exceeding
the economic cost supporting the usage of WES as the first-tier
diagnostic test (Vissers et al., 2017). Overall, the promising results
regarding time and diagnostic rates from these psychiatric studies
are genuinely encouraging.

Challenges of NGS Application in NDP
Disorders Clinical Diagnosis
The step toward the implementation of NGS technologies
in large-scale clinical practice is still limited and variable
across countries. The evaluation of the cost-effectiveness and
management of these test remains extremely difficult (Payne
et al., 2018). The application of WES in clinical practice as
a diagnostic tool for neuropsychiatric disorders is challenging,
overall. It is well-known that NDP disorders have strong genetic
components (Gandal et al., 2016), hold a high degree of genetic
and clinical heterogeneity, and present with variable expressivity
and penetrance. Also, it has been demonstrated that diverse
NDP disorders share genetic etiology (Cross-Disorder Group
of the Psychiatric Genomics Consortium et al., 2013). Hence,
using WES is a promising approach to elucidate the genetic
causes of NDP disorders, however, multiple concerns remain to
be addressed.
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TABLE 3 | Rates of diagnosis for psychiatric disorders using clinical exome sequencing.

Study Rate of psychiatric

diagnosis*

Rate of de novo

event

Global average year Phenotype

Yang et al., 2013 26% (55/213) 47% (29/62) 5–18 years (94 individuals) neurologic disorder

<5 years (124 individuals) neurologic disorder and other organ-system disorder

>18 years (28 individuals) specific neurologic disorder

fetus (4 individuals) non-neurologic disorder

Yang et al., 2014 26% (455/1756) 72% (248/345) 5–18 years (845 individuals) neurological disorder

<5 years (900 individuals) neurological plus other organ systems disorder

>18 years (244 individuals) specific neurological disorder

fetus (11 individuals) non-neurological disorder

Lee et al., 2014 26% (175/673) 50% (63/127) 5–18 years (266 individuals) developmental delay

developmental delay and other syndrome

<5 years (254 individuals) ataxia and related neurological disorders

muscular dystrophy and related disorders

>18 years (294 individuals) cardiomyopathy and arrhythmia

cancer predisposition

disorder of sexual development

Retinal disorders

Farwell et al., 2015 31% (99/324) 49% (80/163) prenatal (2 individuals) intellectual disability and/or developmental delay

0–3 months (12 individuals) brain MRI positive

<1 years (36 individuals) multiple congenital anomalies

1–5 years (194 individuals) seizures/epilepsy

5–12 years (117 individuals) progressive phenotype

12–18 years (58 individuals) ataxia

18–40 years (45 individuals) autism spectrum disorder

>40 years (36 individuals) psychiatric abnormality

Tammimies et al., 2015 3% (8/95) 38% (3/8) average 4.5 ± 1.7 years Asperger syndrome

autistic disorder

pervasive developmental disorder - not otherwise

specified

Wenger et al., 2017 10% (4/40) 100% (4/4) 2–5 years (10 individuals) neurologic abnormality

congenital anomalies

5–10 years (12 individuals) metabolic abnormality

musculoskeletal abnormality

<2 years (9 individuals) cancer

gastrointestinal abnormality

>10 years (9 individuals) hearing loss

vascular abnormality

Stark et al., 2016 58% (46/80) 35% (16/46) 0–6 months (37 individuals) congenital abnormalities and dysmorphic features

neurometabolic disorder

6–12 months (25 individuals) skeletal dysplasia

eye abnormality

12–36 months (18 individuals) other abnormality (gastrointestinal, renal, immunological)

Rossi et al., 2017 26% (42/163) 62% (26/42) average 9.0 ± 6.7 years neurologic abnormality

Baldridge et al., 2017 43% (67/155) 51% (34/67) average 6 years (3 days−33 years) neurological abnormality

multiple congenital anomalies

mixed, neurological plus

other clinical specifics

Smith et al., 2017 69% (64/96) – – –

Nambot et al., 2017 15% (24/156) 50% (64/128) average 10.5 years congenital anomaly without intellectual disability

neuromuscular disorders

neurodevelopmental disorders

Vissers et al., 2017 29% (44/150) 30% (13/44) average 5.58 years (5 months−18 years) complex neurological disorders

* Rate of psychiatric diagnosis refers to the percent of patients for whom were given a positive genetic diagnosis in this study; Overall diagnostic rate (all presentations) refers to the

percent of patients for whom were given a positive genetic diagnosis in this and previous study; Rate of de novo event refers to the percent of events that patients carrying DNM(s) were

diagnosed as positive result; Sex ratio and Global average year declaim the sex and age contribution of patient samples.
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A major concern for WES, in general, is the interpretation of
the results. The first challenge is how to elucidate the pathogenic
effects of the identified variant(s). Multiple prediction tools
and algorithms have been developed (section Interpreting Rare
Genetic Variants From Exome Studies), but no gold standard
interpretation guide could undoubtedly explain the causality or
benignity of variants. Enormous databases of large populations’
sequencing data are available, such as 1000 Genome Project
(Gibbs et al., 2015) or ExAC (Lek et al., 2016), to filter out
variants that are common in the population and to rank the
mutation tolerance of genes. However, large datasets of multiple
populations still need to be compiled. The American College of
Medical Genetics and Genomics (ACMG) published guidelines
that have helped to manage clinical molecular genetic cases
(Richards et al., 2015; Nykamp et al., 2017; Strovel et al.,
2017). In particular, recommendations on reporting incidental
findings are essential in the clinical application of global
genomic approaches.

Our current knowledge of NDP disorders’ biological
mechanisms is still limited, and the contribution of the majority
of the genes in the genome to these phenotypes remains unclear.
Some disease-related gene databases as ASD genes database
SFARI (Abrahams et al., 2013) have introduced a scoring
parameter that ranks from high confidence to hypothesized but
untested, which is extremely useful to evaluate the association of
a variant within these genes to the neuropsychiatric phenotype.
Besides, the contributing effect of susceptibility or modifier
genes remains to be systematically quantified. Therefore,
advancements in knowledge moving toward these types of gene
and disease potential associations will be an excellent way to help
the variant classification.

WES per se presents some technical limitations. For example,
WES has a low efficiency in detecting microsatellite expansions,
which nowadays, can only be overcome using alternative
techniques such as PCR or Southern blot. WES also presents
a limited power to detect small CNVs and mosaic events,
which require a much deeper read coverage than the regular
clinical WES. Another limitation in neuropsychiatric disorders
is the types of tissues studies, as brain tissues from the
living individuals are not possible to obtain, the detection
of brain-specific mosaic events particular to these tissues
would be missed. Therefore, the complete picture of the
genomic alterations of neuropsychiatric disorders will be difficult
to achieve.

Elucidating the complex nature of the underlying genetics of
neuropsychiatric disorders will ultimately require sophisticated
mathematical models that include a large number of
parameters extracted from genomic, phenotypic information,
pharmacogenomics interactions, and environmental factors,
among others. These complex approaches will only be reached
when systematic high throughput multi-omic studies are
applied to each patient, and consensus annotation terms
and pipelines are used (precision medicine). Compared
to difficulty in characterizing the underlying genetics of
neuropsychiatric disorders, some efforts toward regulating
the phenotypic terms encountered in human diseases have
been made. Human Phenotype Ontology (Köhler et al.,

2017) initiative and gene-associated phenotypes database
as Online Mendelian Inheritance in Man R© (OMIM R©)
are still struggling to build a standardized vocabulary of
phenotypic abnormalities and its likely genetic causes.
Furthermore, recently developed platforms of phenotype-
genotype relationship sharing, by The Matchmaker Exchange
(Philippakis et al., 2015), are already connecting worldwide
clinicians and researchers with the aim to link clinical and
genetic information and to identify novel genes causative of rare
disease phenotypes.

Finally, the extended consequences of reaching a genetic
diagnosis in neuropsychiatric disorders are especially relevant
for family members and caretakers. Besides a better selection
of therapeutic strategies, more accurate prognosis, appropriate
support, and surveillance, risk estimation and counseling are
essential for the future familial organization and reproductive
planning not only for parents but also for other siblings. The
application of WES requires multidisciplinary teams with a
core of medical geneticist and genetic counselors who will help
patients to understand the overwhelming information derived
from these complex tests and ensure they make informed
decisions (Paneque et al., 2017).

LIMITATION OF THE CURRENT REVIEW

We acknowledge that there are many areas of WES in
neuropsychiatric disorders that were not deeply addressed within
this review, such as certain statistical parameters like effect size,
and comparison between different statistical methods used by
different tools, since they could not be easily summarized and
compared, as not all studies used the same criteria. In writing
this review, we relied primarily on the DNM data from denovo-
db (Turner et al., 2017), which collects DNMs from large cohort
studies from the past 10 years and might be missing data from
some small cohort studies. In addition, the impact of DNMs in
disease etiology might vary in different disorders, it exerts a large
contribution for ASD and ID/DD and have smaller contributions
from other disorders, such as BD and OCD, which might be
because of a lack of studies or data. Therefore, how the exome
case-control study might be used as a complementary strategy to
the trio-based study for those disorders can be an excellent topic
for a future review.

The current review is intended to serve as a broad summary,
analysis, and application of neurodevelopmental and psychiatric
DNVs from WES. We believe that future studies and reviews
that approach genomic variants from a different angle with
different NGS technologies, such as WGS or by focusing on
the finer statistical details, even going so far as to scrutinize
clinical data from individuals, and to link them to the
variants for the interpretation, would lead to interesting and
important findings.

CONCLUSION AND FUTURE DIRECTIONS

Despite many complications and challenges associated with
NDP disorders, increasing implications of de novo event’s
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contribute to the disease etiology, together with downstream
functional analyses to explore the disrupted biological process
by these de novo events, indicate the advent of the application
of WES in potential treatments. Moreover, a large number
of ASD drugs currently in the pipeline (Sung et al., 2014)
keeps us optimistic about the future. The application of
WES in clinical practice has the potential to generate
an extraordinarily large dataset for multiple disorders.
Obtaining large cohorts in research studies, particularly
for rare neuropsychiatric diseases, is very difficult or even
impossible. As a consequence, it is imperative that clinicians
and researchers find a comprehensive protocol to share the
genetic information and perform powerful genetic and genomic
studies of diseases, always under strict data sharing protocols
preserving patients’ confidentiality. In the foreseeable future,
we will see the development of well-established and tested
systematic computational pipelines to integrate genetic and
genomic data with expression, interaction and other data
that will ultimately facilitate the implementation of NGS into
the clinical practice.
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