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Recent studies have revealed that the RNAN6-methyladenosine (m6A) modification plays

a critical role in a variety of biological processes and associated with multiple diseases

including cancers. Till this day, transcriptome-wide m6A RNA methylation sites have

been identified by high-throughput sequencing technique combined with computational

methods, and the information is publicly available in a few bioinformatics databases;

however, the association between individual m6A sites and various diseases are still

largely unknown. There are yet computational approaches developed for investigating

potential association between individual m6A sites and diseases, which represents a

major challenge in the epitranscriptome analysis. Thus, to infer the disease-related m6A

sites, we implemented a novel multi-layer heterogeneous network-based approach,

which incorporates the associations among diseases, genes and m6A RNA methylation

sites from gene expression, RNA methylation and disease similarities data with the

Random Walk with Restart (RWR) algorithm. To evaluate the performance of the

proposed approach, a ten-fold cross validation is performed, in which our approach

achieved a reasonable good performance (overall AUC: 0.827, average AUC 0.867),

higher than a hypergeometric test-based approach (overall AUC: 0.7333 and average

AUC: 0.723) and a random predictor (overall AUC: 0.550 and average AUC: 0.486).

Additionally, we show that a number of predicted cancer-associated m6A sites are

supported by existing literatures, suggesting that the proposed approach can effectively

uncover the underlying epitranscriptome circuits of disease mechanisms. An online

database DRUM, which stands for disease-associated ribonucleic acidmethylation, was

built to support the query of disease-associated RNA m6A methylation sites, and is freely

available at: www.xjtlu.edu.cn/biologicalsciences/drum.
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INTRODUCTION

Epigenetic regulation, such as, RNA methylation, DNA
methylation and post-translational modification (PTM),
participates in a variety of important cellular processes, including
embryonic development, maintenance of chromosome stability
and X-chromosome inactivation (Wu and Zhang, 2014).
Over the past decade, DNA methylation has been considered
to play a critical key role in gene expression regulation to
moderate various biological functions. It has been found that
dysregulated DNA methylation is associated with various
diseases. For example, epigenetic defects, like the global genomic
hypo-methylation or locus-specific hyper-methylation is one
of the cancer hallmarks (Gopalakrishnan et al., 2008). To
date, there have been a number of works seeking to unveil
the functional relevance of epigenetic modifications to various
diseases. DiseaseMeth (Xiong et al., 2016) contains aberrant
DNA methylation in 679602 disease-gene association collected
from 32701 samples; MethyCancer (He et al., 2007) andMethHC
(Huang et al., 2014) supports the query of cancer and disease
related DNAmethylation profiles. ActiveDriverDB (Huang et al.,
2014), CaspNeuroD (Kumar and Cieplak, 2016), dbPTM (Huang
et al., 2019) and PTMSNP (Kim Y. et al., 2015) investigated
human disease mutations that potentially functional through
post-translational modifications. Recently, Xu and Wang
investigated the disease-associated phosphorylation sites of
protein from a multi-layer heterogeneous network using the
random walk algorithm (Xu and Wang, 2016). These studies
greatly advanced our understanding of the role epigenetic
modifications play in disease pathology. However, the study
of biochemical modifications have been dominated by DNA
methylation and post-translation protein modifications, until
recently, RNA methylation emerged as important layer for gene
expression regulation.

Firstly identified more 40 years ago (Wei et al., 1976),
more than 100 different types of RNA modifications have
also been discovered in cell as epigenetic mark recognized
by other regulators for modulating the genetic information
(Cantara et al., 2011; Boccaletto et al., 2017), among which, N6-
methyladenosine is the most abundant in mRNA (Fu et al., 2014;
Meyer and Jaffrey, 2014). A series of studies reveal that, RNA
methylation plays a crucial role in the regulation of circadian
clock (Fustin et al., 2013), RNA stability (Wang et al., 2014),
cell differentiation (Geula et al., 2015), translation efficiency
(Wang et al., 2015), as well as DNA damage response (Xiang
et al., 2017) and cortical neurogenesis (Yoon et al., 2017). It has
been shown that RNA methylation may be central in disease
pathology especially in various cancers, including breast cancer
(Cai et al., 2018), myeloid leukemia (Barbieri et al., 2017; Kwok
et al., 2017; Li Z. et al., 2017; Vu et al., 2017), liver cancer
(Chen M. et al., 2017), carcinoma (Li et al., 2017a), glioma
(Visvanathan et al., 2017; Zhang et al., 2017), etc. (Hsu et al.,

Abbreviations: m6A, N6-methyladenosine; MeRIP-Seq: methylated RNA

immunoprecipitation sequencing; IP, immunoprecipitation; DRUM, disease-

associated ribonucleic acid methylation ; ROC, receiver operating characteristics;

AUC, area under the ROC curve; Pcc, Pearson correlation coefficient.

2017; Stojković and Fujimori, 2017; Wang S. et al., 2017).
Recent studies revealed the impacts of m6A modification on
specific diseases. E.g., N6-methyladenosine (m6A) modification
of mRNA plays a role in regulating the self-renewal and
tumorigenesis of glioblastoma stem cell (GSC). Studies report
the knockdown of RNA methyltransferase complex METTL3
or METTL14 can dramatically decrease abundance of m6A
methylation and alter mRNA expression of genes (e.g., ADAM19,
EPHA3, KLF4), thereby promoting human GSC growth (Cui
et al., 2017). Meanwhile, the up-regulation of RNA m6A
demethylase ALKBH5 can also induce the proliferation of
GSCs (Zhang et al., 2017). It is found that FOXM1, the cell
cycle regulator, is the downstream target of m6A modification
through inhibition of ALKBH5 by shRNA. Importantly, the
hypo-methylation of target mRNA promotes the binding of RNA
binding protein HuR, resulting in increased FOXM1 expression
and the development of glioma (Zhang et al., 2017). Additionally,
the RNA m6A demethylase FTO is found to be an oncogene
of the Acute Myeloid Leukemia (Li Z. et al., 2017). studies
show that reduced m6A levels in some mRNA transcripts,
such as ASB2 and RARA, can enhance leukemic oncogene-
mediated cell transformation, leukemogenesis, and inhibit AML
cell differentiation (Li Z. et al., 2017). Furthermore, Zhang et al.
found that the breast cancer cells stimulated by hypoxia can cause
upregulation of m6A demethylase ALKBH5 expression, which
is mediated by hypoxic induction factor (HIF). Consequently,
it results in the demethylation of the multipotent factor
NANOG’s mRNA, and hypomethylation increases the stability
of mRNA so as to causes high expression of NANOG, further
inducing the maintenance and metastasis of tumor stem cells
(Zhang et al., 2016a).

Despite the growing interests in m6A RNA modification and
its potential regulatory role in various diseases, the study of m6A
methylation under the context of diseases has been restricted.
The experimental approaches are mostly limited to the study of
m6A mediator genes, i.e., the RNA methyltransferase (writer),
demethylase (eraser) and RNA binding protein (reader). For
instance, the RNA m6A demethylase FTO is also found to play
an important role in neurogenesis, as well as in learning and
memory. Hence, m6A modification is regarded to be related
to Alzheimer’s disease (Li L. et al., 2017). And, another study
reports RNA m6A demethylase ALKBH5 can relate to the major
depressive disorder in Chinese Han population (Du et al., 2015).
These studies are often less detailed in genomic resolution
and could not unveil the disease relevance of a specific RNA
methylation site. Comparing with the research dedicated to the
experimental investigation of m6A site regulatory functions,
bioinformatics is a possible method to identify the putative
disease association of the m6A sites, thereby urgently needed
at present. Till this day, the computational approaches for
studying the association between m6A methylation and diseases
have been limited to the disease-associated mutations that may
potentially disrupt or form an m6A-containing motif, which
may be regulated through epitranscriptome layer. Works of this
category include m6AVar (Zheng et al., 2018), which contains
a number of functional variants involved in m6A modification,
and m6ASNP (Jiang et al., 2018; Mo et al., 2018; Zhang et al.,
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2019), which is a tool for annotating genetic variants from the
perspective of impact on m6A modification. Although generated
fruitful results (Mo et al., 2018,a,b), SNP-based approaches are
limited to existing GWAS analysis results and cannot predict
previously unknown novel associations between m6A sites and
diseases. Other disease association study of the epitranscriptome
focuses on a specific mediator gene of the epitranscriptome,
which could cover the disease association of the epitranscriptome
for only a limited number of diseases (Zhang et al., 2016b, 2019),
but not yet an arbitrary disease.

The accumulation of epitranscriptome high-throughput
sequencing data has provided numerous possibilities for
epitranscriptome analysis. Nowadays, the most widely used
approach for profiling transcriptome-wide RNA methylation is
methylated RNA immunoprecipitation sequencing (m6A-seq or
MeRIP-seq) (Wan et al., 2015), and the technique has been
used in various studies to profile the condition-specific RNA
methylation (Liu H. et al., 2018; Xuan et al., 2018). Them6ARNA
methylation sites has been more accurately identified in human,
mouse and other species with the machine learning approaches.
It is possible and solely needed to develop computational
approaches for understanding the disease relevance of individual
RNAmethylation sites by taking advantage of the large amount of
epitranscriptome data accumulated from existing studies (Chen
X. et al., 2017; Chen et al., 2019). Random walk on a multi-
layer network has been used previously to uncover the important
role of RNA molecules under a pathologic context, including
disease-related long non-coding RNAs (lncRNA) (Zhou et al.,
2015) and miRNAs (Mendell and Olson, 2012). In the field
of epitranscriptome analysis, random walk with start (RWR)
algorithm has been implemented to study the functional protein-
protein network driven by RNA methylation enzymes through
the regulation of epitranscriptome layer (Zhang et al., 2016b).

In this work, we for the first time extracted disease-
associated m6A sites through a multi-layer heterogeneous
network using random walk with restart (RWR) algorithm, and
provided with a more specific regulatory circuit that functions
at epitranscriptome layer. Specifically, a novel multi-layer
heterogeneous network was constructed from gene expression
and RNA methylation data. The nodes of the network are
corresponding to the diseases, the genes and the m6A RNA
methylation sites. The network contains both cross-layer
associations, such as gene-m6A site association, disease-gene
association, as well as the with-layer associations, i.e., gene-gene
association, m6A site-m6A site association and disease-disease
association. Depending on the known gene-disease network
and gene-m6A site network that link the m6A site and disease
layers together, the potential relationships of the m6A sites and
diseases are both implicated (Tong et al., 2008). The within-
layer association networks (e.g., disease-disease association) can
further enhance the confidence of interactions.

To evaluate the performance of the proposed approach,
a 10-fold cross-validation was implemented. Our RWR-based
predictor achieved a reliable prediction performance and the
area under the receiver operating characteristic curve (AUC)
is equal to 0.83, compared with an alternative hypergeometric
test-based approach (AUC: 0.73) and a random predictor (AUC:

0.48). A website DRUM, which stands for disease-related ribo-
nucleic acid methylation, is built to support the query of the
RNA methylation sites most probable related to 705 diseases.
The DRUM website is freely available at: www.xjtlu.edu.cn/
biologicalsciences/drum.

MATERIALS AND METHODS

To infer disease-associated RNA methylation site, a multi-
layer heterogeneous network was constructed, which consists
of three types of nodes, i.e., the diseases, genes and m6A
sites, and five types of associations, i.e., gene-gene association,
gene-disease association, gene-m6A site association, disease-
disease association, and m6A site- m6A site association (see
Figure 1). The network was constructed by integrating the RNA
methylation profiles, the RNA expression profiles and gene-
disease associations, which will be detailed in the next.

RNA Methylation Data
The locus information of 477,452 m6A RNA methylation sites
in human was extracted from RMBase V2 (Xuan et al., 2018),
which collected the m6A RNA methylation sites reported by
multiple techniques including m6A-seq, miCLIP, m6A-CLIP, and
PA-m6A-seq (Li et al., 2017b). In the site filtering stage, 182,358
sites, which are supported by more than 10 experiments, are
kept. To further select the most robust m6A methylation signal,
we selected the methylation sites with average methylation level
within the 70 percentile. Additionally, the m6A sites with the
variance of methylation level ranked in the top 80 percentiles
were retained, which represent the most actively regulated set
of m6A sites, whose functional relevance may be more reliably
inferred. In the end, 28278 RNA methylation sites were retained
for further analysis.

Although there exists base-resolution m6A profiling
techniques, technique either cannot be used for methylation
level quantification (e.g., miCLIP and m6A-CLIP), or the
limited number of available samples is insufficient to infer
reliably the associations (e.g., PA-m6A-seq). Instead of using
data generated from base-resolution techniques, the RNA
methylation levels of each m6A sites were estimated from
MeRIP-seq data, which profiled the m6A epitranscriptome under
38 different experimental conditions (see Table 1). The raw data
was downloaded from GEO and aligned to human reference
genome hg19 with HISAT2 (Kim D. et al., 2015). The reads
associated with each RNA methylation sites were counted under
R enrironment, and the methylation status were quantified
using the M-value, which is essentially the log2 fold change of
reads in the IP sample compared to the input control sample of
MeRIP-seq data, as is shown in (1):

M-value = log2

(

RPKMIP + 0.1

RPKMInput + 0.1

)

(1)

where, RPKMIP and RPKMInput represent the reads abundance
of a specific m6A site (101 bp flanked region) in the IP and
Input control sample of MeRIP-seq data, respectively. The reads
abundance was measured in terms of the Reads Per Kilobase of
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FIGURE 1 | The constructed multi-layer heterogeneous network. To infer disease-m6A site association, a multi-layer heterogeneous network was constructed, which

consists of three types of nodes, i.e., the disease, gene and m6A site, and five types of associations, i.e., gene-gene, gene-disease, gene-m6A site, disease-disease,

and m6A site-m6A site.

transcript per Million mapped reads (RPKM). When multiple
biological replicates from the same experimental conditions were
available, they were merged during the data processing stage.
Quantile normalization was then performed to remove potential
batch effect.

Gene Expression Data
The gene expression profiles under the same 38 experimental
conditions, (matched with the RNA methylation data) were
extracted from the input control samples of the MeRIP-seq data,
which measures the expression level of genes. Similar to the
processing of RNA methylation data, the gene expression levels
were measured in RPKM, multiple biological replicates were
merged, and the quantile normalization was performed to reduce
batch effect.

Disease-Gene Association
The human gene-disease associations used in our analysis were
directly collected from OUGene, which collects the over- and
under-expressed genes under a specific disease condition (Pan
and Shen, 2016). A total of 41,269 associations between 705
human diseases and 1080 genes from OUGene were integrated
into our multi-layer heterogeneous network.

Disease-Disease Similarities
Since similar diseases are often associated with similar gene
sets, the association between diseases was also considered

(Xu and Wang, 2016). The disease-disease similarity network
was constructed based on MeSH (medical subject headings
vocabulary) terms (Lowe and Barnett, 1994), and the diseases
share significant number of MeSH terms are considered more
associated. Specifically, the similarity of two diseases Vij is
denoted by the number of shared MeSH terms panelized by
the total number of terms in their disease titles, as shown in
the following

Vij =

∣

∣di ∩ dj
∣

∣

∣

∣di ∪ dj
∣

∣

, (2)

where, di and dj strand for all the MeSH terms of the disease
i and j , respectively. And |∗| denotes the total number of
terms. Please note that the OUGENE database does not contain
the MeSH terms information. The MeSH terms associated with
various diseases was extracted from the semantically integrated
database of disease SIDD (Liang et al., 2013). No additional cut-
off threshold was further applied. All the pair-wise associations
between diseases were kept for the analysis.

Association Between m6A Sites
The association between m6A RNA methylation sites was
inferred from RNA methylation profiles. We speculate that the
functions of twom6A sites are related if their methylation profiles
are highly correlated across different experimental conditions.
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TABLE 1 | MeRIP-seq data used in the analysis.

Conditions Cell

type

Treatment GEO number References

1–2 HEK293T SYSY*; NEB* GSE29714 Meyer et al., 2012

3–7 HepG2 Ultraviolet, heat shock, hepatocyte growth factor, interferon,

control

GSE37005 Dominissini et al., 2012

8–9 U2OS Control, 3-Deazaadenosine GSE48037 Fustin et al., 2013

10–12 HeLa1 Control, METTL14 KO, WTAP KO GSE46705 Wang et al., 2014

13–14 HeLa2 Control, METTL3 KO GSE46705 Wang et al., 2014

15 hNPC GSE54365 Schwartz et al., 2014

16 hESC GSE54365 Schwartz et al., 2014

17–19 HEK293T WTAP KD, METTL3 KD, control GSE54365 Schwartz et al., 2014

20–22 OKMS 5 days after fully reprogrammed into iPSC induction with/without

Dox, fully reprogrammed into iPSC

GSE54365 Schwartz et al., 2014

23–34 A549 WTAP KD, WTAP KD BR1, METTL14 KD, METTL14 KD BR1,

METTL3 KD, METTL3 KD BR1, GFP KD, GFP KD BR1, KIAA1429

KD, METTL3 and METTL14 KD, control

GSE54365 Schwartz et al., 2014

35–36 H1A Resting (undifferentiated) human H1-ESCs, 48 h of Activin A

induction toward endoderm

GSE52600 Batista Pedro et al.,

2014

37–38 H1B Resting (undifferentiated) human H1-ESCs, 48 h of Activin A

induction toward endoderm

GSE52600 Batista Pedro et al.,

2014

The MeRIP-seq data used in the analysis profiled the epitranscriptome under 38 different experimental conditions. *SYSY and NEB are anti-m6A antibodies made by two

different companies.

Fisher’s asymptotic test was implemented to calculate the Pearson
correlation coefficient (Pcc) P-Values for each m6A site pairs, and
then Bonferroni multiple test correction was used for adjusting
the P-Values. Only the m6A site pairs with the adjusted P <

0.05 cut-off and the homologous Pcc value ranked in the top
or bottom 10 percentile were considered as associated in our
network (Liao et al., 2011). Positive and negative correlations
were not distinguished in the association network, which is
because that the regulatory impact of m6A RNA methylation
is complex. It may both enhances or decreases transcriptional
expression level for different genes, making it difficult to
distinguish the functional consequences of positive or negative
correlation at epitranscriptome layer.

Gene-Gene Association
We constructed the gene-gene association networks from RNA
expression data. The genes that exhibit strong positive or negative
correlation are considered functionally related in our multi-layer
heterogeneous network. And it followed the same procedure of
building the associations between m6A RNA methylation sites.

Association Between m6A Sites and Genes
Similar to gene-association or m6A site-m6A site association, the
association between m6A sites and genes was constructed from
the correlation of their expression and methylation levels. If the
methylation level of anm6A site and the expression level of a gene
are highly correlated across different experimental conditions, we
assume that the two are functionally related. The construction
of gene-m6A site network follows the same procedure of m6A
site-m6A site network.

The Multi-Layered Heterogeneous Network
As shown in Figure 1, the multi-layer heterogeneous network
incorporates three types of nodes and five types of associations,
from which, it is possible to infer disease-associated m6A RNA
methylation sites. We use D{d1, d2, · · · , dN},S{s1, s2, · · · sM} and
G{g1, g2, · · · , gT} successively to represent three types of nodes
within network: the diseases, the m6A sites and the genes.
And N , M and T denote the total number of diseases,
m6A sites and genes, respectively. The associations within the
disease, the gene and the site layer can then be represented
by DD{dij : i, j = 1, 2, · · · ,N}, GG{gi,j : i, j = 1, 2, · · · ,T}and
SS{sij : i, j = 1, 2, · · · ,M}, respectively. While the other two types
of connection between different types of nodes are represented
by DG{dg : i = 1, 2, · · · ,N; j = 1, 2, · · · ,T} and SG{sgij : i =

1, 2, · · · ,M; j = 1, 2, · · · ,T}. Please note that the missing
information of m6A site-disease association is substituted by
DS{dsij : i = 1, 2, · · · ,M; j = 1, 2, · · · ,N}, which is a null network
and used to complement the integrity of the adjacency matrix of
the multi-layer heterogeneous network.

Construct the Adjacency Matrix of the
Overall Network
In RWR algorithm, the multi-layer heterogeneous network
is represented by the W matrix. It is a column-normalized
adjacency matrix and comprises of nine sub matrixes, which
respectively reflects diverse relationships among the nodes (i.e.,
disease, gene, and m6A site). Among them, MDS, MSG,and
MDG strands for the probabilities of nodes transmitting between
different type of nodes, and their transpose matrixes are denoted
by MSD,MGS, and MGD, respectively. While MDD, MSS and MGG

represent the transition probabilities among the same type of
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nodes.MGS,MGD,MDD,MSS, andMGG were estimated previously;
while MSD is set to be 0, as it is unknown. Due to the different
weights used in various types of networks, the adjacency matrix
were further normalized with

W =





1
2 ×MDD

1
3 ×MGD 0

1
2 ×MDG

1
3 ×MGG

1
2 ×MSG

0 1
3 ×MGS

1
2 ×MSS



 (3)

where, all the 5 sub networks were assigned with the equal weight,
despite that their relative importance may be further optimized
(Xu and Wang, 2016).

Random Walk With Restart
(RWR) Algorithm
Random walk with start (RWR) algorithm, as an iterative
network propagation method, was used for inference of
disease-associated RNA methylation site on our multi-layer
heterogeneous network. RWR algorithm is defined that a random
walker starts from a specific node and iteratively transmits
to its neighbor nodes. The pump flow of random workers is
proportional to the weights of edge, and it is synchronously
recycled to the initial position with the certain proportion.
Compared to the conventional random walk approach, RWR
algorithm allows the return of the random walkers, so that it can
avoid all random walkers assembling at a single node location.

When applied to multi-layer heterogeneous networks, another
notable strength of RWR is that it does not restrict movement
of the random walker among nodes of the same type, and allows
walking among all the three layers of the network via the five
types of edges. In the end, when the terminated condition is
satisfied, all the reachable positions can obtain a steady-state
probability, and the nodes are ranked according to the proportion
that random walker reaches. Here, we assume the Ps is the
stopping probability of random walker at each position after the
s-th iteration, which can be calculated as following:

PS+1 = (1− r)×W × PS + r × P0 (4)

PS+1 − PS ≤ 10−10 (5)

where, r is the restart probability, indicating the proportion
of random walkers being recycled at step, and is set to 0.75
arbitrarily. And P0 refers to the initial probability vector of seed
node and W is a matrix that consists of transition probabilities
of movement through different types nodes (discussed in the
next). Here, the stopping criterion for iteration is the difference
of probabilities between the (S+ 1)-th iteration and its prior
iteration falls below a predefined threshold 10−10. We can have
the disease node di as the seed node with initial probability 1,
while the remaining disease nodes are assigned with an initial
probability of 0. With the implementation of RWR algorithm,
we can rank the disease-associated m6A sites according to the

FIGURE 2 | Overall workflow of the prediction. A multi-layer consists of three types of nodes (disease, gene and m6A site) was constructed from gene expression

data, RNA methylation data, disease-gene association data and disease similarities. The disease-associated m6A RNA methylation sites were inferred with the RWR

algorithm.
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stable probability that the random walker di reaches each m6A
site node.

The overall RWR algorithm is summarized in the
following (Figure 2).

Evaluate the Statistical Significance of
Prediction by Random Permutation
In general, of interests are the nodes with highest probabilities
in RWR result, as they are regarded as highly accessible
from the initial node, and thus denotes the association.
To evaluate the statistical significance of the prediction
results, a randomization-based estimation (Jia and Zhao,
2014) is implemented. Specifically, we generated 100 random
networks by building random edges within the multi-layer
heterogeneous network but still maintaining its original topology
characteristics (Liao et al., 2011). This randomization chose
two arbitrary edges (e.g., a-b and c-d) and exchanged
them (e.g., with a-d and c-b), if the new links generated
not already exist in the network after the node exchange.
Then, for each of 100 random networks, RWR algorithm
is applied and ranks all the m6A sites according to the
probabilities of association to the disease. These probabilities
represent the observed probabilities of a negative association
between a disease and an m6A site, with which the statistical
significance of a prediction from the real network can be
assessed (Jia and Zhao, 2014).

DETERMINE THE DIRECTION OF THE
PREDICTED ASSOCIATION

Given an m6A site is predicted to be associated with a disease, we
would like to know whether we should expect a hyper or hypo-
methylation of this site under disease condition. Conceivably,
if the methylation level of this site is positively correlated to
the genes that are overexpressed under disease condition, or
anti-correlated to genes that are under expressed under disease
condition, the site is likely to be hyper-methylated under disease
condition; and vice versa. The median of the correlations of
this site to all the disease-associated genes was used to infer the
direction of the association, and has been provided at our website.

An Alternative Approach for
Performance Comparison
To evaluate the performance of this approach, we also considered
a naïve hypergeometric test-based approach, which assesses the
association between a disease and an m6A sites by checking
whether they are simultaneously linked to a significant number of
genes in the constructed multi-layer heterogeneous network (see
Figure 3). The statistical significance (P-Value) of the association
can be assessed with a hypergeometric test, with

p
(

Y ≥ y
)

= 1−

y−1
∑

i=0

Cn−i
m−x

Cn
m

(6)

FIGURE 3 | Hypergeometric test-based approach. This method is based on the disease-gene association from OUGene database and the gene-m6A site

association networks derived from the gene expression profiles and RNA methylation profiles. The statistical significance is assessed with the hypergeometric test.
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where, m denotes the total number of genes in the analysis. n
denotes the number of genes linked to a specific disease in the
gene-disease association sub network, x denotes the number of
genes linked to a specific m6A site in the gene-m6A site sub
network; and y denotes the number of genes associated with
both the disease and the m6A site. With the P-Values, it is then
possible to predict the disease-associated RNA methylation sites
given a specific significance level. Please note that the above
alternative approach takes advantage of only two out of the
five types of associations: the gene-m6A site associations and
disease-gene associations.

RESULT

Constructed Multi-Layer
Heterogeneous Network
Utilizing the aforementioned approaches, a multi-layer
heterogeneous network was constructed to incorporate three
types of nodes (m6A site, gene, and disease) and five types of
associations. The numbers of nodes and edges in each layer of
the network were summarized in Table 2.

TABLE 2 | Multi-layer heterogeneous network.

Network Nodes Edges

Disease-disease association 705 111735

Disease-gene association 1785 5246

Gene-gene association 1080 237772

Gene-m6A site association 29358 7161

m6A site- m6A site association 2827 64014

Performance Evaluation
We employed the 10-fold cross-validation to evaluate the
performance of the proposed RWR algorithm. During each
iteration, 10% of disease-gene associations were deleted from the
original multi-layer heterogeneous network and reserved as the
testing data, while the remaining 90% of associations were used
as training dataset.

The proposed approach was also compared to a random
predictor, which is constructed by random permutation of
the multi-layer heterogeneous network, and an alternative
hypergeometric test-based approach.

To compare the performances of the different methods, the
receiver operating characteristics (ROC) curve was implemented
to illustrate the true positive rate (TPR) vs. the false positive rate
(FPR) at different stringency cut-offs, and the performance of
different methods can be measured by the area under the ROC
curve (AUC).

As is shown in Figure 4, the RWR method achieved an
AUC of 0.827, outperformed the hypergeometric test-based
approach (AUC: 0.733) and the random predictor (AUC:
0.550), which is close to the theoretical random performance
(Figure 4A). Additionally, we also calculated the AUCs of
each individual disease. As is shown in Figure 4B, RWR
algorithm achieved superior performance on most of the diseases
(average/median AUC: 0.867/0.913), compared to the other two
methods: Hypergeometric test-based approach (average/median
AUC: 0.723/0.772) and random predictor (average/median AUC:
0.486/0.479). This suggested that the multi-layer network model
coupled with RWR algorithm could effectively predict the
disease-m6A site associations, or potentially unveil the disease
circuits regulated at epitranscriptome layer.

The prediction results are relatively reliable on the
following diseases (Table 3), and they may be more relevant to
epitranscriptome regulation.

FIGURE 4 | Performance evaluation. (A) RWR method achieved an AUC of 0.827, outperformed the hypergeometric test-based approach (AUC: 0.733) and the

random predictor (AUC: 0.550); (B) RWR algorithm achieved superior performance on most of the diseases (average and median AUC: 0.867 and 0.913), compared

to the other two methods: Hypergeometric test-based approach (average and median AUC: 0.723 and 0.772) and random predictor (average and median AUC:

0.486 and 0.479).
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Case of Study: Cancer-Related m6A Sites
We further examined the prediction performance of several
common diseases. For top 100 predictions, the proposed
approach achieved reasonable performance in all the 5 diseases
tested (Table 4). As is shown in Figure 5, the cancer-related m6A
site prediction achieved relatively steady performance. Indeed,
recent studies suggest that m6A RNA methylation plays a crucial
role in the pathologies of breast cancer, myeloid leukemia, liver

TABLE 3 | Diseases achieved highest accuracy.

Disease AUC # of Sites

Prostate cancer 0.808 130

Hepatocellular carcinoma 0.842 121

Glioblastoma 0.801 68

Hypertension 0.847 44

Alzheimer’s disease 0.828 41

Osteosarcoma 0.840 40

TABLE 4 | Number of hits for top 50 predictions of a disease.

Tumors Cancer Obesity Diabetes Hypertension

Hits in

prediction

8 65 1 2 6

By

Random

0.49 3.64 0.10 0.10 0.64

Total 42 314 9 9 55

Enrichment 16.44 17.87 9.59 19.18 9.42

p-value* 8.495E-4 1.394E-20 0.225 8.361E-3 0.371

The p-values are calculated from binomial test.

FIGURE 5 | Prediction accuracy of five common m6A site-associated

diseases. Figure shows the accuracy of disease associated m6A sites for five

common diseases, including cancer (AUC: 0.832), diabetes (AUC: 0.717),

hypertension (AUC: 0.812), obesity (AUC: 0.828) and tumors (AUC: 0.825),

respectively. Among them, the prediction of cancer-related m6A sites achieved

relatively stable performance.

cancer, carcinoma, glioma, etc. (Hsu et al., 2017; Stojković and
Fujimori, 2017; Wang S. et al., 2017). Additionally, the model
works better on cancer may partially due to the samples used
are mostly related to cancer and tumor (see Table 1). As cancer
samples were used, cancer-specific functions are more easily
inferred from the data available. However, the samples were
collected unbiasedly from all the published studies. The collection
only reflects that most existing m6A-seq studies are either based
on cancer cell lines or related to cancer. It suggests that inferring
cancer-associated m6A sites may be more feasible than other
diseases with the data cumulated from existing studies. We
thus used cancer-related m6A sites in the next for a case study
by checking whether our predictions are supported by existing
literatures. Interestingly, many of our predicted associations are
supported (see Table 5).

Additionally, there are cases when dysregulated RNA
methylation status is observed but does not lead to RNA level

TABLE 5 | Cancer-associated m6A sites supported by literature.

Site ID Host Gene References

m6A_site_102214 GLI1 Das et al., 2009; Carpenter and Lo,

2012

m6A_site_103132 SRGAP1 Feng et al., 2016

m6A_site_98274 BCDIN3D Yao et al., 2016

m6A_site_96139 PRICKLE1 Chan et al., 2006; Daulat et al., 2016

m6A_site_90049 WNK1 Shyamasundar et al., 2016

m6A_site_81948 GDPD5 Wijnen et al., 2014; Cao et al., 2016

m6A_site_82683 KCTD21 Li et al., 2016

m6A_site_84205 KDM4D Berry and Janknecht, 2013; Soini

et al., 2015

m6A_site_85170 ALKBH8 Shimada et al., 2009; Ohshio et al.,

2016

m6A_site_85220 CUL5 Fay et al., 2003; Burnatowska-Hledin

et al., 2004

m6A_site_85837 DIXDC1 Wang et al., 2009; Cong et al., 2016

m6A_site_81777 XRRA1 Mesak et al., 2003; Wang W. et al.,

2017

m6A_site_49878 ZEB1 Spaderna et al., 2008; Schmalhofer

et al., 2009

TABLE 6 | Epitranscriptome layer association with diseases.

Disease Host gene of m6A

site

References

Non-small cell

lung

carcinoma

CENPE, BTN3A1,

LMBR1 and

KBTBD11

Lin et al., 2016

Leukemia BCL2, CYP1A1,

CD83 and ZNF445

Bansal et al., 2014; Chen X. et al.,

2017; Li Z. et al., 2017; Vu et al., 2017

Endometrial

cancer

PHLPP2 Liu J. A. et al., 2018

Glioma POU3F2 Visvanathan et al., 2017

The RNA transcripts of these genes are differentially methylated under the disease

condition, but are not differentially expressed (at transcriptional level) according to the

OUGene database (Pan and Shen, 2016). Their associations to tumors and cancers were

correctly predicted by the proposed approach.
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differential expression. Such associations may still be predicted
by the proposed approach. DRUM works directly with RNA
methylation data, and can thus detect associations that are
observable at epitranscriptome layer only (see Table 6).

To gain more insights, the m6A-seq data from Non-Small Cell
Lung Cancer (NSCLC) cell line (A549) and the normal control
cell line (H1299) were obtained (Lin et al., 2016). Differential
RNA methylation analysis and differential expression analysis
were performed using exomePeak R/Bioconductor package and
the Cuffdiff software, respectively, with their default settings. The
results are then compared to the predictions from the proposed
approach. In the end, 9 sites predicted to be associated with
NSCLC were validated (Please see Supplementary Materials for
more details), including one site located on the gene ING5)
that shows no differential expression (log2 fold change = 0.07,
FDR=0.999) but significant differential methylation (log2 fold
change= 0.762 and FDR= 0.027) (see Figure S3).

Altogether, our case studies indicate that the proposedmethod
is effective in uncovering putative disease-m6A site associations,
especially cancer-related m6A sites. The approach we developed
may be useful to unveil the molecular pathologies regulated at
epitranscriptome layer and provide potentially new perspective
for effective therapeutic strategies of cancer and other diseases.

DRUM: Database for Disease-Associated
RNA Methylation
To facilitate the exploration and direct query of our predicted
results by the research community of RNA epigenetics, we
developed an online database DRUM, which stands for disease-
associated ribonucleic acid methylation. The website hosts the
top 100 m6A sites predicted to be associated to 705 diseases
at significance level of 0.1, and supports queries that may
be a disease or the host gene of m6A site (see Figure 6).
Additionally, the prediction results can be downloaded in batch
for large-scale automated analysis such as result comparison.
The DRUM website is freely available at: www.xjtlu.edu.cn/
biologicalsciences/drum.

CONCLUSIONS

Investigation of N6-methyladenosine (m6A) RNA modification
over the past 4 decade, especially since 2012, has uncovered
its critical biological functions in various cellular processes.
It has been clearly shown that RNA modifications directly
or indirectly contribute to disease development and
play a critical role in the many diseases such as cancers

FIGURE 6 | DRUM Database. DRUM is a public online database for disease-associated m6A sites. It integrates the m6A sites predicted to be associated with 705

diseases. The statistical significance of the prediction was assessed by random permutation. Users can access the data via the name of disease or the hosting gene

of m6A site. It also supports the download of the entire prediction results for automated large-scale analysis.
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(Deng et al., 2017; Wang S. et al., 2017) and virus infections
(Gokhale and Horner, 2017). It is solely needed to cover
the epitranscriptome perspective of disease pathology or
unveil the regulatory circuit of diseases regulated from
epitranscriptome layer.

We presented here a multi-layer heterogeneous network
model coupled with the RWR algorithm, which effectively
incorporated five types of association among the diseases, genes
and m6A sites, to unveil the disease association of individual
m6A RNA methylation sites. To evaluate the performance of the
proposed approach, a ten-fold cross-validation was performed.
Superior performance is achieved by our approach (overall AUC:
0.827, average AUC 0.867) compared with the hypergeometric
test-based approach (overall AUC: 0.7333 and average AUC:
0.723) and the random predictor (overall AUC: 0.550 and average
AUC: 0.486). And a number of cancer-related RNA methylation
sites are validated from existing studies. At last, an online
database DRUM was constructed to enable the query of top m6A
sites related to 705 different diseases.

It is worth noting that, as indicated in equation (1), the
calculation of RNA methylation profiles partially relies on the
expression data, which inevitably induces dependency between
them. Ideally, we want to use independent datasets that profile
RNA methylation and expression, respectively. Additionally, the
detectability of methylated molecule depends on the abundance
of transcripts, i.e., if the expression level of a specific transcript
is low, it is not possible to accurately determine the methylation
level (M-value) of the m6A sites on it. The current formulation
of methylation level, as shown in equation (1), will penalize those
very lowly expressed transcripts, and reports anM-value close to
0, which may induces additional bias to methylation profiles (as
shown in Figure 7A).

Nevertheless, dispute of the bias and dependency that may
be induced to the data, we didn’t observe linear correlation (or
anti-correlated) between the expression of the methylation level
of an m6A site and the expression level of its host gene. The
methylation level of an m6A site is not more linearly correlated
(or anti-correlated) to the expression level of its host gene than a
random gene (see Figure 7B). As suggested by a previous study,
the epitranscriptome regulation changes only the percentage of
methylated molecule, while transcriptional regulation changes
only the abundance (Meng et al., 2014). Although slightly
affecting each other, the two regulation mechanisms are observed
to be largely independent and simultaneously regulate the

FIGURE 8 | Predicting the disease-associated m6A sites. Our computational

framework aims to predict disease-associated m6A sites. It is possible that

multiple sites located on the same transcripts are associated to different

diseases. Compared to general disease-gene association prediction, the

proposed framework provides a more specific circuit of disease mechanism

that functions at epitranscriptome layer.

FIGURE 7 | (A) Distribution of RNA methylation level (M-value). The estimated methylation levels are not strictly centered around 0, suggesting that the formation of

M-value, which penalize lowly expressed transcripts as suggested by equation (1), may induce bias to the estimated methylation profiles on very lowly expressed

transcripts. (B) Little linear correlation is observed between gene expression and RNA methylation profiles. The red line indicates the self-gene Pearson correlation

coefficients, which are the correlation between the methylation level of a site and the expression level of its hosting gene. The gray lines indicate the Pearson

correlation between the methylation level of a site and the expression level of a random gene under the 38 experimental conditions, when the methylation data and

expression data are strictly separated, and thus independent from each other. A total of 1,000 gray lines were obtained from 1,000 random permutations, and serve

as a null model of Pearson correlation distribution. The methylation level of an m6A site is not more linearly correlated (or anti-correlated) to the expression level of its

host gene than a random gene.
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transcriptome and epitranscriptome, which is consistent with our
observation. As little linear correlation is observed between RNA
methylation and gene expression profiles, and the association
network was built based on Pearson correlation that relies on
linear correlation (see section Materials and Methods), the
predicted patterns associated with m6A sites are not likely to be
dominated by gene expression profiles.

It is also worth noting that, by starting from the methylation
profiles of individual m6A sites, our work focused specifically
on the disease circuits that are potentially regulated at
epitranscriptome layer at the resolution of individual m6A
sites (see Figure 8). This work is substantially different from
general disease-gene association prediction, where the gene
and disease may interact at any layer of gene expression
regulation, such as at transcriptional or post- transcriptional
layer (Chen and Yan, 2013). The work is also quite different
from existing works (Zhang et al., 2016b, 2019) that aimed
to predict diseases that may be significantly regulated at
epitranscriptome layer, because these studies unveiled only
the potential association between diseases and m6A RNA
methylation, but didn’t answer specifically which m6A sites
are involved in the regulation process. Compared to existing
works, our computational framework provided a more specific
resolution for the study of disease mechanism functions at the
epitranscriptome layer.

This presented computational scheme can be easily extended
in the future by incorporating additional data sources such as
disease-related functional variants involved in m6Amodification
(Jiang et al., 2018; Zheng et al., 2018), the regulatory specificity
of the RNA methyltransferases and demethylases (Liu H. et al.,
2018), or the associations betweenm6A site to other biomolecules
(Xuan et al., 2018), so as to further improve prediction accuracy.
Additionally, the method can be conveniently applied to other

RNA modification types such as m1A (Dominissini et al.,
2016) and Pseudouridine (Cabili et al., 2011) as well in other
species such as mouse and yeast when sufficient amount of data
is available.
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