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INTRODUCTION

The Chinese seabass (Lateolabrax maculatus), inhabiting in inshore rocky reefs and estuaries with
a broad adaptability of salinity, is an euryhaline teleost fish native to the margin seas of the
Northwest Pacific Ocean (Figure 1A). The Chinese seabass belongs to genus Lateolabrax that was
first described as a geographic population of Japanese seabass Lateolabrax japonicas. It was recently
re-described as independent species from L. japonicas, based on the differentiated characters of
morphological traits and molecular phylogenies (Liu et al., 2006; An et al., 2014). In contrast
with geographically restricted L. japonicas, L. maculatus is broadly and continuously distributed
along the coasts of China and Indo-China Peninsula (Yokogawa and Seki, 1995). The north most
of wildlife habitats of L. maculatus is latitude 41◦ north in temperate Bohai Gulf and the south
most reaches at least 20◦ north in tropical Beibu Gulf, between which the sea surface temperature
difference frequently reaches 18◦C in winter. The very different environments of L. maculatus that
live in Bohai Gulf and Beibu Gulf make them divergent in genetic structures and phenotypes,
such as life history, behaviors, and breeding season etc., providing us with a feasible fish model for
population genetic studies in continual marginal sea (Zhao et al., 2018). In addition, L. maculatus
is recognized as one of the most important mariculture fish in China, which contributes over
120,000 tons of annual production. Recently, a reference genome of L. maculatus derived from
in the northern population in Bohai Gulf had been reported (Shao et al., 2018). Herein, we
report a chromosome-level genome assembly of L. maculatus from the southern population in
the subtropical region, which provides an important resource not only for basic ecological and
population genetic studies but also for the upcoming breeding program of Chinese seabass.

DATA

Awhole genome shotgun (WGS) strategy was employed in this project. After removal of redundant
and low-quality reads, there are a total of 112.76 Gb (188.87X) clean WGS reads, including 49.63,
31.89, 19.69, and 11.66 Gb reads from 250 bp, 2 Kbp, 5 Kbp, and 10 Kbp libraries, respectively,
obtained for genome size estimation, de novo contig assembly, primary scaffolding. High-through
chromosome conformation capture (Hi-C) sequencing were performed for chromosome-level
scaffolds construction. A total of 159.54 Gb pair-end Hi-C reads were generated with an average
sequencing coverage of 267.06X (Table 1).
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FIGURE 1 | Characteristics of Lateolabrax maculatus genome assembly. (A) A picture showing about Chinese seabass, L. maculatus. (B) A circos plot of 24

chromosomes in L. maculatus genome, the tracks from inside to outside are: 24 chromosomes, gene abundance of the positive strand (red), gene abundance of the

negative strand (blue), and scaffolds which comprised the chromosome (adjacent contigs on a chromosome are painted in different colors). (C) Divergence

distribution of TEs in L. maculatus Genome. (D) A venn diagram indicating the number of genes predicted by three different approaches. (E) A venn diagram showing

orthologous gene families across five fish genomes. (F) Evolutionary relationships among eight species.

Based on all reads mentioned above, we de novo assembled
the draft L. maculatus genome with a size of 597.39Mb
containing 1,639 scaffolds. And the contig N50 size was 182.31 kb
and the scaffold N50 size was 2.79Mb. After integrating the
scaffolds with Hi-C map, we finally obtained 24 chromosomes
constructed from 419 scaffolds (25.56% of all scaffolds) with
a total length of 586.03Mb (98.10% of the total length of
all scaffolds) (Table 1 and Figure 1B). Our new reference
genome has been significantly improved compared with the

previous reference genome of the northern population, which
presents contig N50 length of 31Kb, scaffold N50 length
of 1,040Kb, and chromosome integration rate of 77.68%
(Shao et al., 2018).

A total of 105.5Mb (∼17.66% of L. maculatus genome) were
identified as repetitive elements in the L. maculatus genome,
including 6.09% of DNA transposons, 4.99% of long interspersed
nuclear elements (LINEs), and 2.31% of long terminal repeats
(LTRs) (Figure 1C).
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TABLE 1 | Summary of the L. maculatus genome assembly and annotation.

Bases (Gb) Depth

SEQUENCING

Illumina reads (short-insert size) 49.63 83.01X

Illumina reads (long-insert size) 63.24 105.86X

Hi-C reads 159.54 267.06X

GENOME ASSEMBLY AND CHROMOSOMES CONSTRUCTION

Contig N50 size (kbp) 182.31

Contig number (>100 bp) 8719

Scaffold N50 size (Mbp) 2.79

Scaffold number (>100 bp) 1639

Scaffold total length (Mbp) 597.39

Number of chromosomes 24

Number of placed scaffolds on

chromosomes

419

Total length of chromosomes (Mbp) 586.03

Integration efficiency of Hi-C map (%) 98.10

GENOME PREDICTION AND ANNOTATION

Protein-coding gene number 23,657

Mean transcript length (bp) 13,943.84

Mean exons per gene 9.75

Proportion of assembled CEGs (%) 94.76

Proportion of complete BUSCO

orthologs (%)

97.03

Gene structure prediction identified 23,657 protein-coding
genes, of which 22,509 genes can be annotated against at least one
database (Figure 1D), and 1,734 candidate non-coding RNAs,
including 676, 644, 99, and 315 miRNA, tRNA, rRNA, and
snRNA genes, respectively (Table 1).

To evaluate the accuracy of the genome assembly, we
mapped Illumina short reads that were used for genome
assembly and identified 904,102 heterozygous SNPs and 12,050
false homozygous SNPs, respectively, accounting to 0.1557 and
0.0004% of the reference genome. The homozygous SNPs were
false because they refer to the SNPs that only retained one
alternative allele in the Illumina short reads (homozygotes for
short reads data), which was different from the reference genome.
The low rate of false SNPs suggests the high accuracy of the
genome assembly.

The completeness and connectivity of this assembly were
accessed using both Core Eukaryotic Genes Mapping Approach
(CEGMA) and Benchmarking Universal Single-Copy Orthologs
(BUSCO) approaches. Two hundred and thirty-five Core
Eukaryotic Genes (CEGs) out of the complete set of 248 CGEs
(94.76%) were covered by the assembly and 818 out of 843
searched BUSCOs (97.03%) had been completely assembled in
the draft genome, suggesting a high level of completeness and
connectivity of the de novo assembly (Table 1).

For better use of this dataset, the evolutionary position of
L. maculatus was accessed based on single-copy genes of L.
maculatus and seven related species (T. rubripes, G. aculeatus, O.
latipes, D. rerio, O. niloticus, L. calcarifer, and D. labrax).

The protein sequences were downloaded from the Ensembl
Core database (release 90). After removing the protein sequences

shorter than 50 amino acids, the set of 245,644 consensus protein
sequences of the seven teleost and Chinese seabass L. maculatus
was used to construct gene families. As a result, a total of 20,788
OrthoMCL families were built (Figure 1E) and 667 single-copy
ortholog protein families in a 1:1:1 manner from all eight teleost
species were used for phylogenetic analysis (Figure 1F).

MATERIALS AND METHODS

Sample Collection, Library Construction,
and Sequencing
A wild adult female Chinese seabass was collected in the Xiamen
Bay, Fujian, China and used to collect blood sample. The total
length and body weight of this fish were 524.6 g and 34.5 cm,
respectively. Total RNA and DNA extraction were performed for
whole genome sequencing and whole transcriptome sequencing
following our previous studies (Jiang et al., 2014; Peng et al.,
2016). Four whole-genome shotgun sequencing libraries were
prepared with various insert sizes ranging from 250 bp to 10
Kbp (250 bp, 2 Kbp, 5 Kbp, 10 Kbp). The 250 bp pair-end
library was constructed for de novo contig assembly and the
other three mate-pair libraries were constructed for scaffolding
contigs. Before sequencing, a quality control step was performed
on Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) by evaluating the distribution of fragment length. Then
libraries were sequenced using the Illumina HiSeq2500 platform
with a read length of 2× 150 bp.

High-through chromosome conformation capture (Hi-C)
were performed parallelly to the Illumina sequencing. DNA
samples, collected from muscle tissue, were snap frozen using
liquid nitrogen for 30min and then stored at −80◦C until
DNA extraction. Firstly, the DNA was fixed by formaldehyde
to maintain the conformation. Then it was digested by MboI
restriction enzyme and repaired by biotinylated residues to form
blunt-end fragments. After in-situ ligation of these fragments,
DNA was reverse-crosslinked and purified. Before sequencing,
end repair, adaptor ligation, and polymerase chain reaction were
successively performed. At last, the well-prepared Hi-C libraries
were sequenced using Illumina Hiseq 2500 platform with a read
length of 2× 150 bp.

Genome Assembly
All low-quality Illumina read pairs were filtered out if any read
of the pair complies with following criteria: containing adaptor
sequences; the proportion of uncertain bases (represented by
“N”) exceed 10%; the proportion of low-quality base (Q < 5)
exceed 50%. After strict filtration clean, all Illumina reads were
used to generate 17-mers with a window-sliding-like method.
Obviously, there were 417 kinds of different 17-mers. After
calculation of depth distribution of these 17-mers using Jellyfish
(Marcais and Kingsford, 2011) (version 2.2.5), we can estimate
the genome size using Lander/Waterman’s equations:

Cbase = C17−mer×L/(L− 17+ 1) (1)

Gest = N17−mer/C17−mer = Nbase/Cbase (2)
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In these equations, L was the length of reads (150 for Illumina
reads), Nbase and N17−mer were counts of bases and 17-mers;
Cbase and Ck−mer were expectations of coverage depth of bases
and 17-mers; estimated genome size was represented by Gest.
The genome size of Latiolabrax maculatus was then estimated
to contain 641.02Mb, which is similar to Asian seabass (Lates
calcarifer, 668.5Mb) (Vij et al., 2016) and European seabass
(Dicentrarchus labrax, 675Mb) (Tine et al., 2014).

For de novo genome assembly, high quality reads from the
short-insert library (250 bp) were collected and assembled using
SOAPdenovo2 (Luo et al., 2012) with optimized parameters to
build initial contigs. Long-insert reads were then mapped onto
the de novo assembled contigs for scaffolding (2, 5, and 10 Kbp,
in turn). The GapCloser (Luo et al., 2012) was then used to
close the gaps in scaffolds using the pair-end reads, of which
one end uniquely mapped to a contig and another was located
within a gap.

In order to obtain chromosome-level genome assembly,
Hi-C reads were filtered in the same way as short-insert
library reads and subsequently mapped to de novo assembled
scaffolds to construct contacts among scaffolds using bwa (Li
and Durbin, 2009) (version 0.7.17) with default parameters.
Obtained BAM files containing Hi-C read-pairs linking messages
were processed by another round of filtering, in which reads
located further than 500 bp from the nearest restriction enzyme
site were removed. Then LACHESIS (Korbel and Lee, 2013)
(version 2e27abb) was used to chromosome-level scaffolding
by clustering, ordering and orientating the de novo genome
assemblies based on genomics proximity messages between
Hi-C reads pairs. In these steps, all parameters were set as
default except that CLUSTER_N, CLUSTER_MIN_RE_SITES
and ORDER_MIN_N_RES_IN_SHREDS were set as 24, 80, and
10 separately. Note that the parameter CLUSTER_N was used to
specify the number of chromosomes.

Both karyotype analysis and recently published genome
assembly for Chinese seabass (spotted seabass) indicated that
the number of chromosomes of this species is 24 (Sola et al.,
1993; Shao et al., 2018). Besides, genetics maps of two species in
Perciformes, European seabass (Dicentrarchus labrax) and Asian
Seabass (Lates calcarifer), both contain 24 linkage groups (Wang
et al., 2011; Tine et al., 2014).

Repetitive Elements Characterization
We employed two approaches to detect repeat sequences
in L. maculatus genome. Firstly, we used Tandem Repeats
Finder (Benson, 1999) (version 4.04), Piler (Edgar and Myers,
2005) (version 1.0), LTR_FINDER (Xu and Wang, 2007)
(version 1.0.2), RepeatModeler (Tarailo-Graovac and Chen,
2009) (version 1.04), and RepeatScout (Price et al., 2005)
(version 1.0.2) synchronously to detect various kinds of repeat
sequences in L. maculatus genome. The results were then
combined as a single de novo repeat sequence library by
Uclust (Edgar, 2010) (version 1.2.22q). Subsequently, the whole
library was annotated using RepeatMasker (Tarailo-Graovac
and Chen, 2009) (version 3.2.9) based on Repbase TE (Jurka
et al., 2005) (version 14.04) to discriminate between known
and novel transposable elements (TEs). In another approach,

generated genome sequences were mapped on Repbase TE
(Jurka et al., 2005) (version 14.04) using RepeatProteinMask
(Tarailo-Graovac and Chen, 2009) (version 3.2.2), a perl script
included in RepeatMasker, to detect TE proteins in L. maculatues
genome. The results of two approaches were combined and
then the redundancy was removed to obtain a final Repetitive
elements set.

Gene Structure Prediction
To access a fully annotated L. maculatus genome, three different
approaches were employed to predict protein-coding genes.
Ab intio gene prediction was performed on repeat-masked
L. maculatus genome assembly using Augustus (Stanke and
Morgenstern, 2005) (version 2.5.5), GlimmerHMM (Majoros
et al., 2004) (version 3.0.1), SNAP (Korf, 2004) (version 1.0),
Geneid (Parra et al., 2000) (version 1.4.4), and GenScan (Burge
and Karlin, 1997) (version 1.0). Furthermore, homology-based
prediction was performed using downloaded protein sequences
of closely related teleost including Takifugu rubripes (Aparicio
et al., 2002), Gasterosteus aculeatus (Jones et al., 2012), Oryzias
latipes (Kasahara et al., 2007), Danio rerio (Howe et al., 2013),
Oreochromis niloticus (Brawand et al., 2014), Lates calcarifer
(Vij et al., 2016), Larimichthys crocea (Ao et al., 2015), and
Cynoglossus semilaevis (Chen et al., 2014). Subsequently, these
protein sequences were mapped onto the generated assembly
using blat (Kent, 2002) (version 35) with e-value ≤1e-5.
GeneWise (Birney et al., 2004) (version 2.2.0) was employed
to align the homologs in L. maculatus genome against the
other species for gene structure prediction. In addition, we
also applied transcriptome-based prediction by using RNA-
seq datasets of a pooled cDNA library of 12 tissues from
the fish which was used for whole genome sequencing. The
RNA-seq reads were mapped onto the genome assembly using
TopHat (Trapnell et al., 2009) (version 1.2) software. The
structures of all transcribed genes were predicted by Cufflinks
(Trapnell et al., 2010) (version 2.2.1) with default parameters. The
predicted gene sets generated from three approaches were then
integrated to a non-redundant gene set using EvidenceModeler
(Haas et al., 2008) (version 1.1.0). PASA (Haas et al., 2003)
(version 2.0.2) was then used to annotate the gene structures.
Aiming at identifying candidate non-coding RNA (ncRNA)
genes, we aligned repeat-masked genome sequences against Rfam
database (Burge et al., 2013) (version 11.0) using BLASTN to
search homologs.

Functional Annotation of Genes
Genes identified by structure prediction were subsequently
functionally annotated by BLAST searches against
the NCBI nr and SwissProt protein databases.
Unidirectional best-hit of each L. maculatus gene was
assigned as its homolog after discarding those with
E-value <1 × 10−5 by alignments. Gene ontology
(GO) annotations of genes were assigned using the
InterProScan program (version 5.26) (Quevillon et al.,
2005). KEGG annotation was performed against
KEGG database, the KEGG Automatic Annotation
Server (KAAS) (Moriya et al., 2007).
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The Completeness and Accuracy of
the Assembly
The completeness and accuracy of the assembly were further
assessed. We mapped Illumina short reads that were used
for genome assembly using bwa (Li and Durbin, 2009)
(version 0.7.17-r1188). Subsequently, BAM files containing
mapping message were then piled up using samtools (Li
et al., 2009) (version 1.8) to identify SNPs using thresholds
of read depth >10 and quality score >20. Then, the
assembly completeness was evaluated by Core Eukaryotic Genes
Mapping Approach (CEGMA) (Parra et al., 2007) (version 2.3)
and Benchmarking Universal Single-Copy Orthologs (BUSCO)
(Simao et al., 2015) software (version 1.22) using vertebrate-
specific database (vertebrata_odb9).

Ortholog Analysis
Single-copy genes in L. maculatus and related species were
identified based on gene families constructed from protein
sequences of all species employing OrthoMCL (Li et al., 2003)
and BLASTP software with default parameters. As there are
no corresponding CDS sequences of Asian seabass proteins
used in gene family analysis provided, the Asian seabass
transcripts were translated into proteins using ORFinder
(version 0.4.1). Single-copy ortholog proteins were aligned
by MUSCLE (Edgar, 2004) (version 3.8.31). Subsequently, all
obtained alignments were converted to their corresponding
coding DNA sequences using an internal python script.

A combined “supergene” was constructed from all the
translated coding DNA alignments for minimum evolution
(ME) phylogenetic tree construction using MEGA (Kumar et al.,
2016) (Version 7.0.26).
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