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In the last few years, advances in next-generation sequencing (NGS) technology for

whole genome sequencing (WGS) of foodborne pathogens have provided drastic

improvements in food pathogen outbreak surveillance. WGS of foodborne pathogen

enables identification of pathogens from food or environmental samples, including

difficult-to-detect pathogens in culture-negative infections. Compared to traditional

low-resolution methods such as the pulsed-field gel electrophoresis (PFGE), WGS

provides advantages to differentiate even closely related strains of the same species,

thus enables rapid identification of food-source associated with pathogen outbreak

events for a fast mitigation plan. In this paper, we present UltraStrain, which is a

fast and ultra sensitive pathogen detection and strain typing method for Salmonella

enterica (S. enterica) based on WGS data analysis. In the proposed method, a noise

filtering step is first performed where the raw sequencing data are mapped to a

synthetic species-specific reference genome generated from S. enterica specific marker

sequences to avoid potential interference from closely related species for low spike

samples. After that, a statistical learning based method is used to identify candidate

strains, from a database of known S. enterica strains, that best explain the retained

S. enterica specific reads.Finally, a refinement step is further performed by mapping all

the reads before filtering onto the identified top candidate strains, and recalculating the

probability of presence for each candidate strain. Experiment results using both synthetic

and real sequencing data show that the proposedmethod is able to identify the correct S.

enterica strains from low-spike samples, and outperforms several existing strain-typing

methods in terms of sensitivity and accuracy.

Keywords: metagenomes, next-generation sequencing (NGS), whole genome sequencing (WGS), Salmonella

enterica, strain typing

1. INTRODUCTION

Rapid pathogen identification is one of the most important issues for microbial community studies
for infectious diseases and food security. It is reported that in theUnited States alone, at each year 31
major pathogens cause 9.4million episodes of foodborne illness, resulting in 55,961 hospitalizations
and 1,351 deaths (Scallan et al., 2011). Foodborne illness poses a $77.7 billion economic burden in
the United States annually, excluding indirect costs to the food industry such as reduced consumer
confidence, recall losses, or litigation (Mandernach et al., 2013). The faster the sources linked with
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the outbreak being investigated are identified, the faster the
outbreak can be stopped, limiting the potential loss it may cause.

A large number of laboratory (in vitro) tools have been
developed over the past decades for pathogen identification to
assist the diagnosis, treatment, and monitoring of infectious
diseases. Traditionally, in vitro diagnostics of infectious diseases
have been performed using culture-based testing, which usually
yields diagnostic results in days. In addition, cultivation of
bacteria is not always successful under laboratory conditions due
to possibly unsuitable methods. In recent years, deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA) based molecular
assays (Barghouthi, 2011) have become more routine. A DNA-
based in vitro assay may take the form of a quantitative or
qualitative polymerase chain reaction (PCR) assay where the
target for detection is a pathogen-specific gene or an anti-
microbial resistance marker. The most common bacterial broad-
range PCR methods use primers that recognize conserved DNA
sequences of bacterial genes that encode ribosomal RNA (rRNA
16S or 23S) (Greisen et al., 1994). Such methods allow the
detection of multiple targets in a single experiment and are faster
and more sensitive than culture-based methods. However, these
targeted approaches require the clinician’s a priori knowledge of
the potential targets to order the appropriate diagnostic tests.

The application of NGS in metagenomics has revolutionized
the field of microbial ecology and greatly facilitates the
identification and classification of microbes. The enormous
increase in sequencing throughput has enabled the adoption of
metagenomic sequencing approaches in which highly complex
communities of microorganisms are sequenced in parallel.
Compared to the traditional culture-based and assay-based
approaches, metagenomic approaches are less biased because
they do not require any a priori knowledge of the sample
composition. Clinical samplesmay contain amixture ofmicrobes
with varying levels of constituents and additional DNA from
a host organism. Metagenomic sequencing data obtained from
such samples provides a qualitative and quantitative profile of the
individual components of the respective microbial community.
Genus, species and even strain-level taxonomic assignments of
microorganisms, as well as their relative abundance, could be
potentially obtained. For example, metagenomic sequencing data
can identify infections with pathogen-specific strain (Maxson
andMitchell, 2016). It also allows the detection and identification
of antibiotic resistant genes and virulence factors in complex
samples (Jitwasinkul et al., 2016). The ability to rapidly
characterize and identify the entire microbial composition of
a complex sample provides a unique and novel strategy for
pathogen detection and identification in diagnosis and outbreak
investigation of infectious diseases, or to guide treatment options.

On the other hand, metagenomic data brings new
challenges for downstream analysis and biologically meaningful
interpretation. First of all, the vast amount of sequencing
data which contains billions of short reads leads to high time
consumption. The short read length and low coverage would
result in many short contigs and unassembled sequences, leading
to the prediction of a large number of small, fragmented genes
which may not exhibit any matches in the reference sequence
database, or match with low confidence. The second challenge

lies in the sample complexity (Rose et al., 2015), as the target
pathogens could be surrounded by a complex background of
commensal organisms at a range of abundances in addition to
hosting nucleic acids. In addition, problems arise from variation
between similar subspecies, genomic sequence similarity
between different species, the difference in abundance for species
in a sample, and different sequencing depths for individual
species, etc.

In pathogen identification frommetagenome data, strain-level
bacterial typing from uncultured food samples is an especially
challenging task. Advances in metagenome bioinformatics over
the last decade have refined the resolution of microbial
community taxonomic profiling from phylum to the species, but
it is still challenging to characterize microbes in communities
at strain level (Truong et al., 2017). Strain typing distinguishes
between different strains of the same species, and is more
valuable in a number of specialized fields including epidemiology,
compared to species level typing. More specifically, strain
typing helps to trace the source of food poisoning and relate
individual cases to an outbreak of infectious disease. Strain level
variants within microbial species are crucial in determining their
functional capacities within the human microbiome (Truong
et al., 2017). Strain typing of a single genome has been well
studied (Li et al., 2009). However, the tools built under the
assumption of assembling a single genome often underperform
when used for complex metagenome assemblies. Salmonella is a
diverse genus of Gram-negative bacilli and a major foodborne
pathogen responsible for more than a million illnesses annually
in the United States alone. In particular, strain typing for
foodborne pathogen such as S. enterica is of special interest and
importance (Bell et al., 2016). Methods specific for Salmonella
detection and identification have been proposed in the literature,
including serotyping (Zhang et al., 2015; Yachison et al., 2017),
multilocus sequence typing (MLST) (Ranjbar et al., 2017), and
strain typing (Hong et al., 2014b; Wood and Salzberg, 2014; Ahn
et al., 2015; Truong et al., 2015), etc. However, as different S.
enterica strains share many common genome regions that are
very similar to those from other bacteria in food samples, the
accuracy of traditional strain typing methods is not satisfactory
especially when the target strain has very low abundance.

In this paper, we introduce UltraStrain, which is a highly
sensitive strain typing method based on shot-gun sequencing
data. The method exploits the concept of species-specific marker
genes (Segata et al., 2012) that are used as genetic proxies of
species to efficiently extract high-confidence S. enterica reads
from the metagenomics sample, whereby subsequent strain
typing is performed on a large pool of S. enterica reference
database based on the high confident S. enterica reads. More
specifically, in UltraStrain, we first perform a denoise filtering
step to remove ambiguous reads that may come from other
bacteria or species other than S. enterica. This is done bymapping
the raw shot-gun sequencing reads to a synthetic reference
genome that contains only specific genome regions for S. enterica,
and keeping only reads that could be successfully mapped to
the synthetic reference genome on certain criteria. After that,
we compare the resulting high-confidence S. enterica specific
reads against a pool of known S. enterica strains, and formulate
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strain identification as statistical learning problem, as to identify
the probabilities of S. enterica strains that could be able to
produce those reads if they were present in the original sample.
A preliminary version of UltraStrain was used in our submission
to PrecisionFDA’s CFSAN Pathogen Detection Challenge in 2018
and was one of the top performers in this competition (https://
precision.fda.gov/challenges/2/view/results).

2. RELATED WORK

Taxonomic profiling of metagenome data can be done by
aligning every read to a large database of genomic sequences
using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). However,
this is always not clinically applicable due to the large data
amount. Other methods for strain typing frommetagenome data
include de novo assembly based methods and mapping based
methods. Depending on how the reference sequence library is
constructed, mapping based methods further include k-mer and
marker-gene based methods, and those that map reads to full
reference genomes.

Metagenomic assembly of single isolates can be used
to identify strains of uncharacterized species with high
sensitivity. Strain level metagenomic assembly methods, such
as the Lineage (OBrien et al., 2014) and the DESMAN
algorithms (Quince et al., 2017), typically use contig binning and
statistical analysis of base frequencies across different strains in
the sample to resolve ambiguities. The intuition behind is that
the frequencies of variants associated with a strain fluctuate with
the abundance of that strain. However, metagenomic assembly
for multiple strains is computationally challenging. In addition,
especially for complex clinical samples when multiple similar
strains co-exist, it is generally impossible for assembly based
method to achieve high accuracy on strain level due to the
conserved regions between strains. Instead, direct assembly
of multiple similar strains always produces highly fragmented
assemblies which represent aggregates of multiple similar strains.
Therefore, it is difficult to generalize assembly-based approaches
to large sets of metagenomes and low abundance microbes.

Mapping based methods align the reads to a target reference
library and apply statistical and probabilistic analysis techniques
on the alignment results to identify the multiple strains
that present in the sample. Raw reads of a metagenome
can be aligned against full reference genomes for microbe
identification if the library of target reference genomes can
be constructed. Short read alignment-based methods can
achieve high accuracy in strain level identification and are
considerably faster than metagenome assembly based methods.
Sigma (Ahn et al., 2015) is a read mapping based method
that maps the metagenomic dataset onto a user-defined
database of reference genomes. A probabilistic model is
used to identify and quantify genomes, and the reads are
assigned to their most likely reference genomes for variant
calling. PathoScope2 (Hong et al., 2014b) builds a complete
pipeline for taxonomic profiling and abundance estimation
from metagenomic data, integrating modules for reads quality
control (Hong et al., 2014a), reference library preparation,

filtering of host and non-target reads (Byrd et al., 2014),
alignment, and Bayesian statistical inference to estimate the
posterior probability profiles of identified organisms (Francis
et al., 2013), etc. It can quantify the proportions of reads
from individual microbial strains in metagenomic data from
environmental or clinical samples.

To speed up the alignment process, the reference library
may contain only part of the whole reference genomes that
have differentiating power among different but closely related
strains. In such methods, metagenomic reads are aligned to a
set of preselected marker sequences, e.g., k-mers, marker genes,
or even pangenomes, and assigned to its most likely origin
according to the alignment results. The taxonomic classification
can be inferred from phylogenetic distances to these marker
sequences. These methods differ in terms of the selection of the
markers and the probabilistic algorithms for read assignment.
The performance also heavily depends on the completeness of the
reference database, and how the marker sequences are extracted.

Kraken (Wood and Salzberg, 2014) is a fast k-mer based
method for metagenomic sequence classification. Kraken builds
a database that contains records consisting of a k-mer and
the lowest common ancestor (LCA) of all organisms whose
genomes contain that k-mer. The database is built from a
user-specified library of genomes and allows quick look-up
of the most specific node in the taxonomic tree, leading to
fast and accurate strain identification. StrainSeeker (Roosaare
et al., 2017) constructs a list of specific k-mers for each
node of a given guide tree, whose leaves are all the strains,
and analyzes the observed and expected fractions of node-
specific k-mers to test the presence of each node in the
sample. MetaPhlAn (Segata et al., 2012) is a taxonomic
profiling method using marker genes. The method estimates
the relative abundance of microbial cells by mapping reads
against a reduced set of clade-specific marker sequences
that unequivocally identify specific microbial clades at the
species level and cover all of the main functional categories.
MetaPhlAn2 (Truong et al., 2015) further extends the reference
library from species level markers to subspecies markers that
enable strain-level analysis, and increases the accuracy on
taxonomic composition reconstruction. PanPhlAn (Scholz et al.,
2016) builds a pangenome of the species of interest by extracting
all genes from available reference genomes and merging them
into gene family clusters. The method then leverages gene family
co-abundance within a metagenomic sample to identify strain-
specific gene repertoires, with the assumption that single-copy
genes from the same genome should have comparable sequencing
coverage within the sample.

3. METHODS

In this paper, we present an ultra sensitive pipeline for S.
enterica strain typing frommetagenomics samples based on NGS
data analysis. The processing modules involved in the proposed
pipeline are illustrated in Figure 1. The major components of
the pipeline include quality control (QC), reads filtering and
strain identification.
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FIGURE 1 | Flow chart of the proposed method. A synthetic reference genome (B) is first constructed by concatenating S. enterica specific marker sequences, and

used to select the high confidence S. enterica reads (C) from the raw metagenome sample data (A). The selected reads are then aligned to a reference library consisting

of known S. enterica strains (D). Using the alignment results (E) as input, a statistical machine learning algorithm (F) is proposed for high sensitive strain identification.

3.1. Quality Control
The first step of the metagenomic sequencing data
processing is quality control (QC). The QC procedure
usually includes identification and filtration of sequencing
artifacts such as low-quality reads and contaminating
reads, which would significantly affect and sometimes
mislead downstream analysis. In our method, we apply
fastp (v.0.19.4; http://opengene.org/fastp/fastp) (Chen et al.,
2018) to trim the reads in the front and the tail. For all
the raw reads used in our experiments, we trim the front

of both reads in a pair with fastp options (-f 15 -

F 15), and perform per-read cutting by quality in the
tail (--cut_by_quality3).

3.2. Reads Filtering
Metagenomics samples could be contaminated with DNA from
host genomes or commensal species. Such background noise
will often dominate metagenomics samples, which can swamp
out target signal, resulting in inaccurate analysis and even
leading to incorrect strain identification results. To mitigate
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this issue, in this step we filter out reads that are not specific
to S. enterica to minimize potential false positive results in
strain identification. This is achieved by aligning the reads after
QC to a synthetic reference genome which is composed of
S. enterica specific regions. Only the properly mapped paired
reads that meet certain criteria will be retained for further
analysis. The read filtering module consists of the following
two steps.

3.2.1. Generating a Synthetic Reference Genome
We follow the method in Laing et al. (2017) to identify species-
specific regions for S. enterica. First of all, Panseq Laing
et al. (2010) is used to identify regions of 1000 bp
from closed S. enterica genomes in GenBank. These
regions are then screened against the online GenBank
non-redundant (nr) database to filter out genomic
regions that also present in other bacterial genomic
sequences. The resulting 403 regions, 1,000 bp each,
are identified as marker genomic regions that represent
S. enterica species.

These regions are concatenated into a single sequence to
create a synthetic reference genome that represents the S.
enterica species. During the concatenation, we insert “separating
regions” of repeating N’s in-between of the adjacent regions,
as shown in Figure 1B. The purpose of inserting such
separating regions is to avoid the unfavorable case when a
read is mapped to a subsequence on the synthetic reference
genome that overlaps with two different S. enterica specific
regions. The length of the separating regions, or the number
of N’s, can be set to one more than the maximum read
length. In our experiments, we use a large number of 500.
The resulting synthetic reference genome is then used to
identify reads that can be mapped to unique S. enterica
genome regions from the shotgun sequencing data for further
strain typing.

3.2.2. Read Filtering Through Alignments
We align the sample reads after QC to the synthetic reference
genome using BWA (v.0.7.12-r1039; https://github.com/lh3/bwa.
git) (Li, 2013). We then analyze the resulting SAM file to filter
the reads such that only high confidence S. enterica specific reads
that are “properly mapped” to the synthetic reference genome
are retained.

A read is considered to be “properly mapped” if all
the following criteria are met. First of all, its edit distance
to the reference genome is no larger than a predefined
threshold, with default value of 5 in our implementations.
Secondly, the total length of soft clipping bases is no larger
than a predefined threshold, with default value 10. Lastly,
paired-end reads are retained only if both reads satisfy
the above two criteria. The filtering is implemented in
Python using the pysam (https://github.com/pysam-developers/
pysam) module.

The alignments in the SAM file that pass the filtering
are then converted back to fastq format using Picard
tools (http://broadinstitute.github.io/picard) as input to the
strain identification module.

3.3. Strain Identification
3.3.1. Building a Reference Library of S. enterica

Genomes
A basic step for strain identification from metagenomics
sequencing data is to build a library of reference genomes,
which contains all the possible strains that may exist in the
sample. In this work, we also create a reference genomes
library containing known S. enterica strains. First, we download
all the closed S. enterica reference genomes from NCBI. At
the time when experiments presented in this paper were
performed, we downloaded 380 whole S. enterica genomes and
157 chromosomes from NCBI which contain the main sequence
and plasmids. We remove the plasmids and keep only the
main sequence.

3.3.2. Identification of S. enterica Strains
At this stage, we try to identify a subset of S. enterica strains from
the reference library that best explains the S. enterica specific
reads present in the sample. The strain identification problem
can be formulated as a statistical inference problem that identifies
a set of S. enterica strains that maximizes the likelihood of the
observed S. enterica specific reads, as it is unlikely that those reads
are from non S. enterica strains. Let 8 = {φm|m = 1, . . . ,M}

denote the reference library where each φm represents a known S.
enterica strain. Let R = {rn|n = 1, . . . ,N} denote the set of high
confidence S. enterica specific reads after QC and read filtering
steps. The strain typing problem can be formulated as:

argmax
I∈8

[

L(R|I)− γ |I|
]

, (1)

where L(R|I) is the likelihood of R under the assumption that a
subset of S. enterica strains I are present in the sample under test,
| · | is the cardinality of a set, and γ is a regulator parameter
introduced to avoid trivial solutions such as using the entire
reference library as the optimal solution. Note that the parameter
γ controls the sparsity level of the solution. The larger the value
γ is, the fewer potential candidate strains will be included in
the solution.

The optimization problem Equation (1) is a minimum set
cover problem, which is typically solved using integer linear
programming (ILP) (Garfinkel and Nemhauser, 1972). However,
the optimal solution of minimum set cover problem is NP-
hard and intractable for large data sets. Instead, in this work we
propose an alternative statistical learning based method to solve
this problem. More specifically, denote xnm = 1 if a read rn is
from strain φm, and xnm = 0 otherwise. We notice that xnm is
a random variable of which the probability distribution by and
large depends on how well rn maps to φm, and the number of
reference genomes in 8 that rn can be successfully mapped to.

Denote such a conditional probability as P(xnm = 1|µnm, νn),
where µnm is the editing distance from read rn to reference
φm, and νn denotes the number of reference genomes in the
library that read rn has successfully mapped to. The probability of
whether a strain φm is present in the sample is given by 1 minus
the joint probability of xnm = 0 for all the reads rn ∈ R, i.e.,

f (m) = 1−
∏

∀rn∈R

[

1− p(µnm, νn)
]

, (2)
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where p(µ, ν) , P(x = 1|µ, ν). In actual implementation, p(µ, ν)
can be trained from generated metagenomic samples with spike-
in reads from known S. enterica strains. Once the values for
p(µ, ν) are trained, for a given sample under test, strain-typing
can be accomplished by identifying strains with highest f (m)
calculating using Equation (2) from the alignment information
(µnm, νn) of all the S. enterica specific reads from the sample.

3.3.3. Refinement
In our experiments, we observed that for sample with very low
S. enterica abundance, there could be more than one candidate
S. enterica strains with highest f (m) since there are not enough
S. enterica specific reads to identify the true target strain using
Equation (2). To further improve the specificity of the proposed
algorithm, in this case an additional reassignment step is
conducted where the statistical inference procedure Equation (2)
is performed again on a subset of reference library that contains
only the top N candidate strains obtained from previous step
using all the reads from the entire sample after the quality control
step. The final candidate strains are identified from the highest
probability f (m) after the refinement step.

4. EXPERIMENTAL RESULTS

In this section, we first describe the training of the conditional
probability distribution table from simulated training data.
Then, we evaluate the sensitivity of the proposed UltraStrain
method and compare with three existing methods, namely,
Kraken (Wood and Salzberg, 2014), Sigma (Ahn et al., 2015),
and Pathoscope2 (Hong et al., 2014b). For all the algorithm
test, the same library of S. enterica genomes as described
in section 3 was used. Simulated metagenome sequencing
data, which were created by merging reads from target
strains with reads from real background microbial samples at
various spike-in levels, were used in performance evaluation
as they provide necessary ground truth information. We then
further evaluated the performance of the proposed method
using data from PrecisionFDA’s CFSAN Pathogen Detection
Challenge (https://precision.fda.gov/challenges/2). Finally, we
compared the runtime performance of these methods using two
set of samples generated from dataset of PrecisionFDA CFSAN
Pathogen Detection Challenge.

4.1. Training of Conditional Probability
Distribution Table
First, we created a training data set for the purpose of learning
the conditional probability distribution table. The training set
included 1,100 simulated samples, which were created using
ART simulator (Huang et al., 2011) from various S. enterica
genomes. All simulated reads were created with 250 bases long
with error profile that mimics typical MiSeq v1 sequencing
machine (options: “-ss MSv1 -p -l 250 -m 300 -s

10 -na”). The generated simulated reads were then filtered
using the synthetic S. enterica specific reference to obtain reads
that mapped to the S. enterica specific regions for constructing
the conditional probability distribution table as follows.

The S. enterica specific reads rn obtained from previous step
were mapped to the reference library 8, and a condition matrix
CN×M was extracted from the alignment results, whereN denotes
the total number of reads being analyzed andM denotes the size
of the reference library. Each element of C is a 2-tuple Cnm =

(µnm, νn), where µnm is the editing distance from read rn to
reference φm, and νn denotes the number of reference genomes
in the library that read rn has successfully mapped to. Note that
read rn could map to different reference genomes with different
editing distance values. For each read rn, the ground truth label
xnm is also available for all reference strains φm, i.e., xnm = 1 if
read rn comes from strain φm and xnm = 0 otherwise.

For each (µnm, νn)-tuple, we counted the number of
occurrences when xnm = 1 and xnm = 0, respectively, as follows:

c+
(µnm,νn)

=

∣

∣

∣

⋃

xnm=1

{(µnm, νn)}
∣

∣

∣
(3)

c−
(µnm,νn)

=

∣

∣

∣

⋃

xnm=0

{(µnm, νn)}
∣

∣

∣
. (4)

The conditional probability of a positive hit can then be
calculated as

p(µnm, νn) =
c+
(µnm,νn)

c+
(µnm,νn)

+ c−
(µnm,νn)

(5)

Due to the large number of strains in the reference library,
the total number of possible conditions is large. This may cause
the so-called “null context” problem where some conditions
may only have very small number of occurrences, leading
to inaccurate estimation of probability. This problem can be
overcome by reducing the number of conditions using non-
uniform binning method on νn. Specifically, we grouped values
of νn into a number of bins with different sizes. The calculation
of conditional probabilities is then performed on the grouped
bins using accumulated counting from those of all the νn
inside each bin. In our simulation, we used 6 bins which are
{[0, 2), [2, 5), [5, 10), [10, 30), [30, 100), [100,∞)} where the last
bin covers all νn values that are not less than 100.

The learned conditional probability table was then used in the
following experiments for strain identification by calculating the
probability of presence of each candidate strain from the library
as described in section 3.

4.2. Experiment on Abundance
To evaluate the performance of the proposed UltraStrain, we
generated 65 synthetic sample data with spike-in of different
S. enterica strains at different abundance levels for testing.
The background reads in the synthetic samples were produced
from a mixture of simulated reads generated from 10 non S.
enterica genomes listed in Table 1, and the foreground reads
were simulated from 13 target S. enterica genomes as listed
in Table 2. In both cases the simulated reads were generated
using ART read simulator (Huang et al., 2011) with the same
parameters as in section 4.1. For the background, the reads
were generated at 10x coverage from the 10 listed non S.
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enterica genomes, respectively. In addition, to avoid potential
contamination from the background sample, reads that could be
aligned to the synthetic S. enterica specific reference genome at
high quality were removed. Finally, the foreground reads were
randomly down-sampled to 5 different abundance levels of 10%,
1%, 0.1%, 0.01%, 0.001% according to the total read number in
the background sample, and mixed with the background sample
to generate the synthetic testing samples.

The strain identification results on the 65 data sets for the
abundance test are showed in Figure 2. In can be seen from the
results that UltraStrain perform best in correctly identifying the
target strains. In particular, UltraStrain correctly identifies all the
13 strains at 0.1%, while Pathoscope2, Sigma, and Kraken2 only
correctly identify 7, 5, and 0 strains, respectively. In addition,
UltraStrain could still correctly identifies 4 out of 13 strains at
0.01% abundance while all the other algorithms under test failed
to identify the correct strain at this abundance level.

4.3. Experiments on Coverage
It is interesting to note that due to the filtering process used in the
algorithm, the sensitivity of UltraStrain will be increased if more

TABLE 1 | The 10 non-S. enterica genomes used as background strains in the

simulated data sets.

Species Strain Taxid ASM name

Escherichia coli UTI89 364106 ASM1326v1

Shewanella putrefaciens 97 24 ASM331542v1DOE

Campylobacter fetus subsp.

testudinum

D6856 1507806 ASM169948v1

Campylobacter jejuni OXC6265 197 7038_3_16

Borreliella burgdorferi IPT92 1408876 BorBurgIPT92

Campylobacter coli BIGS0010 1247735 ASM31420v1

Helicobacter pylori NAB47 1156914 ASM25607v2

Leptospira interrogans

serovar Copenhageni

HAI0156 996862 CLC_glsol191

Buchnera aphidicola LL01 713603 ASM18322v1

Azorhizobium caulinodans ORS 571 438753 ASM1052v1

metagenomic data are available for a given sample. That is, for a
given sample with low abundance of S. enterica contamination,
the chance of UltraStrain to correctly identify its strain will be
higher if it is sequenced to higher coverage. This is because that
with higher coverage of data, more S. enterica specific reads will
be retained after the filtering operation. Hence it will give better
chance for UltraStrain to correctly identify the target strain. Note
that this property is in general not applicable to other strain
typing software since the ratio of reads from S. enterica vs.
other species simultaneously present in the sample will remain
constant without the filtering operation.

To illustrate that the sensitivity of UltraStrain will be increased
with higher coverage data, we further evaluated the performance
of UltraStrain on metagenomic data of different coverage. The
same procedure in previous sector was followed to create the
testing data. The synthetic background reads were generated
from 10 non S. enterica strains at 17 different coverage values
ranging from 10×, 15×, · · · , to 500×, and the target S. enterica
reads were spiked-in at constant abundance level of 0.01%. In
total, 102 test data sets were generated for this experiment.
Figure 3 shows the performance of UltraStrain on the testing
data. It can be seen that with increasing coverage, the calculated
probability of target strain is also increased. Note that the
increment is not monotonically due to the randomness nature of
the number of spiked-in reads present in the S. enterica specific
genome region. However, at higher coverage, UltraStrain is able
to correctly identify the target that it is not able to detect at
lower coverage.

We had also tested other three algorithms (Pathoscope2,
Sigma, and Kraken2). However, none of them was able to
correctly identify the target strain under all testing conditions.

4.4. Results on FDA CFSAN Pathogen
Detection Challenge
The PrecisionFDA CFSAN Pathogen Detection
Challenge (https://precision.fda.gov/challenges/2/) aims at
detecting S. enterica in shotgun metagenomic samples from
contaminated cilantro. The goal of the challenge was to identify
and type Salmonella in naturally and in silico contaminated

TABLE 2 | The 13 S. enterica genomes used as target strains in the simulated data sets.

Species Strain Taxid ASM name Genbank accession

Albany ATCC 51960 1173798 ASM48751v2 CP019177.1

Choleraesuis SCB67 321314 ASM810v1 AE017220.1

Enteritidis EC20121178 1412595 ASM62309v2 CP007271.2

Heidelberg SH14009 611 ASM169265v1 CP016581.1

Infantis N55391 595 ASM193159v1 CP016410.1

Newport 0307213 108619 ASM127831v1 CP012599.1

Paratyphi A ATCC 9150 295319 ASM1188v1 CP000026.1

Pullorum ATCC 9120 1029979 ASM33048v2 CP012347.1

Saintpaul SARA26 702982 ASM48616v2 CP017727.1

Typhi CT18 220341 ASM19599v1 AL513382.1

Typhimurium SO2 28901 ASM157627v1 CP014356.1

Montevideo USDAARSUSMARC1903 1454603 ASM94097v1 CP007222.1

Anatum CDC 060532 1454592 ASM94089v2 CP007271.2
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FIGURE 2 | Comparison of UltraStrain, Pathoscope2, Sigma, and Kraken2 in strain identification from 65 simulated data sets. The reads from each of the 13 target

strains, as listed in the rightmost column, are mixed with the reads from the background strains, at 5 different abundance levels from 10% to 0.001%. “1” means that

the method successfully identifies the target strain from the simulated sample data, while “0” means failure, i.e., the method either identifies a different S. enterica

strain as the most probable strain, or did not identify any S. enterica strains from the simulated sample data.

FIGURE 3 | Performance of UltraStrain on the 102 simulated data sets in the coverage experiments. In all the data sets, the abundance level of the target strain is

fixed at 0.01%, while the coverage ranges from 10× to 500×. The probability of the target strain keep increasing with increasing coverage. At a higher coverage,

UltraStrain is able to correctly identify the target strain that it cannot detect at lower coverage. The other three algorithms (Pathoscope2, Sigma and Kraken2) were not

able to identify the correct strains under all testing conditions.

samples. The Challenge provided 24 test samples, and the
participants were asked to identify the serotype, sequence
type (i.e., MLST), and strain of Salmonella present in positive
challenge samples.

We tested the performance of UltraStrain on the 24 challenge
samples, and the results are shown in Figure 4. Among these 24
samples, 13 are positive, including 5 in silico synthetic samples
with a spike-in known S. enterica target strain into the culture-
negative samples, and 8 culture-positive samples. The remaining
11 samples are culture-negative samples. UltraStrain correctly

identified the target S. enterica strain in 8 positive samples
(5 in silico and 3 culture-positive samples). Both Pathoscope2
and Sigma successfully identified the target strain in 7 samples,
while Kraken failed in all samples. However, for culture-positive
samples C01, C08, C18, C21, and C24, none of the four methods
can identify the correct S. enterica strain.

It can be seen from the results that for some negative
samples, UltraStrain still identify target strains with very high
probabilities. This could possibly be due to two reasons. First,
the negative sample may not be truly negative due to the high
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FIGURE 4 | Comparison of performance of UltraStrain, Pathoscope2, Sigma, and Kraken2 on PrecisionFDA CFSAN Pathogen Detection Challenge data set. For

each testing sample, the most probable strains identified by the algorithms are shown. Correctly identified strains are marked with red color. For UltraStrain,

Pathoscope2, and Sigma, the scores reported in the figure indicate the probabilities of the identified strains present in the sample. For Kraken2, the scores indicate

the related abundances of the identified strains.

FIGURE 5 | Comparison of the runtime performance of UltraStrain,

Pathoscope2, Sigma and Kraken2. (A). Performance on four different samples

(C03, C04, C06, C19 from PrecisionFDA CFSAN challenge) that have different

levels of S. enterica abundance of 0.00 (C06), 0.005 (C03), 0.03 (C04), 0.06

(C19). For fair comparison, all the files are truncated to 1.2 GB. (B)

Performance on four samples with increasing file size from 318 MB (1×) to 1.3

GB (4×) constructed by duplicating testing sample C13. A higher bar indicates

a computationally more expensive process. Note that the runtime results are

shown in logarithmic scale.

sensitivity of UltraStrain. In particular, there are still some
amount of S. enterica specific reads left after the filtering process,
which may suggest that the sample may contain certain level of S.
enterica contamination. Secondly, it is possible that the sensitivity

of UltraStrain could be too high for real-life samples. Therefore,
it is possible that we select a higher cut-off value of probability
(e.g., 0.99) when it is used for S. enterica detection.

4.5. Experiments on Runtime
To compare the computational complexity of UltraStrain in
terms of runtime with other methods, we tested the runtime
performance of all four methods using two sets of samples
selected from PrecisionFDA CFSAN challenge dataset. The
experiments were conducted on an Intel Xeon workstation with
48 CPU threads and 256 GB RAM. All methods were run with
their default settings, and set to utilize up to 44 CPU threads
whenever it is possible. The results are shown in Figure 5.
It can be seen that the runtime performance of these tools
varies dramatically, which can take from 101 to 104 seconds per
test depending on respective method as well as the sizes and
compositions of samples under test. In general, the runtime of
each tool increases as the file sizes of testing samples increase.
In addition, the runtimes of UltraStrain and Pathoscope2 also
increase as the abundances of the target spike-in strains increase,
which is reasonable as there will be more matched reads
to be processed in both algorithms when the abundances of
target strains increase. Overall, Kraken2 has lowest complexity
among all tools. UltraStrain has the second lowest complexity
followed by Pathoscope2. Sigma has the highest complexity in
all cases.

5. CONCLUSIONS

UltraStrain is a highly sensitive, rapid and efficient method
for metagenomic taxonomic classification at strain level. In
UltraStrain pipeline, the reads filtering step uses a synthetic
reference genome consisting of differentiating regions from
known S. enterica strains to filter out the reads that are not
specific to S. enterica species, greatly improving the efficacy as
well as efficiency of the process. Strain identification through
the proposed statistical learning provides a fast and accurate
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solution for metagenome sample data analysis. Experiments
on both simulated data sets and real sample demonstrate that
UltraStrain achieves high accuracy even at very low abundance
level. Ultrastrain achieves both shorter run time and higher
sensitivity, which indicates its usability as a standalone pathogen
identification pipeline. In addition, our experiments show that
the sensitivity of UltraStrain can be further improved by using
deeper sequencing of the sample, which could be particularly
useful when it is necessary to perform strain typing on sample
with extremely low abundance of target strains.

The proposed algorithm can be further improved in many
aspects. For example, although it is developed with the target
of high-sensitivity S. enterica in mind, the proposed framework
can be easily extended to taxonomic profiling and analyze
other bacteria strains by adapting its filter and reference library
designs. In addition, the ability of current algorithm in dealing
with sample with more than one target strains from the same
species still needs further investigation. Importantly, the current
approach, as its primary goal is for ultra sensitive strain typing,
lacks the ability to accurately identify the relative abundance

of multiple bacteria species/strains present in a sample as
provided by other similar tools. Therefore, it is anticipated that it

could be used in conjunction with other metagenomic pipelines
when necessary.
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