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Environmental factors such as the gut microbiome are thought to play an important
role in the development and treatment of many diseases. But our understanding
of microbiota compositional dynamics is still unclear and incomplete because the
intestinal microbial community is an easily-changed ecosystem. It is urgently required
to understand the large variations among individuals. These variations, however, will
be an asset rather than a limitation to personalized medicine. For a proof-of-concept
study on individual-specific disease classification based on microbiota compositional
dynamics, we implemented an adjusted individual-specific edge-network analysis (iENA)
method to address a limited number of samples from one individual, and compared
it to the temporal 16S rRNA (ribosomal RNA) gene sequencing data from individuals
in a challenge study. Our identified individual-specific OTU markers or their combined
markers are consistent with previously reported markers, and the predictive score based
on them can perform a better AUROC than the previous 0.83 and achieve about 90%
accuracy on predicting whether an individual developed diarrhea [i.e., were symptomatic
(Sx)] or not. In addition, iENA also showed satisfactory efficiency on another dataset
about bacterial vaginosis (BV). All these results suggest that the combination of high-
throughput microbiome experiments and computational systems biology approaches
can efficiently recommend potential candidate species in the defense against various
pathogens for precision medicine.

Keywords: network, individual-specific edge-network analysis, complex diseases, personalized microbiota
dynamics, omics data

INTRODUCTION

In addition to genetic risks, environmental factors are accumulating more and more evidence
regarding their critical roles in human complex diseases (Qin et al., 2012; Hoyles et al., 2018).
As one of these key factors, the gut microbiome is gradually being accepted to be a key player
in controlling disease development and progression (Claesson et al., 2012; Forslund et al., 2015).
Many studies have concluded that the alterations of commensal microbiota may contribute to a
range of significant pathogen states such as antibiotic-associated diarrhea, inflammatory bowel
disease, irritable bowel syndrome, pseudomembranous colitis, and cancer (Pop et al., 2016). The
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high-throughput sequencing of microbial communities provides
a bio-technical foundation to characterize the associations of the
host microbiome (Blow, 2008; Pushkarev et al., 2018), which is
helpful to detect pathogens and identify the crosstalk between
an organism’s microbiome and the environment (Wagner et al.,
2018). This frontier research not only links intestinal microbial
communities with health or disease phenotypes but also provides
lots of processed data for public requirement and reuse.

As is known, the intestinal microbial community is actually
a more complex ecosystem with essential influences on host
health status in numerous ways, such as regulating metabolism,
developing immunity, and suppressing enteropathogens (Gill
et al., 2006; Round and Mazmanian, 2009; Maynard et al.,
2012). These beneficial co-evolved interactions between host and
microbiota can be disrupted by different environmental stresses
such as changes in dietary habits, natural physiology, virus
infections, and medical treatments (Dethlefsen et al., 2008; Wu
et al., 2011; Pop et al., 2014). Specifically, antibiotic treatments for
enteric infections such as ETEC may even lead to immediate and
significant changes of gut microbiota (Dethlefsen and Relman,
2011), e.g., loss of beneficial species, increase of drug-resistant
strains, and predisposition of pathogen infections. The intestinal
ecosystem is easily changed, although it is able to recover
and is often incomplete (Lozupone et al., 2012). Thus, it is
necessary to carry on long-term observational studies to detect
the possible permanent functional alterations among certain
microbiota (Jernberg et al., 2010).

Despite the critical role of microbiota in human health
attracting more attention, our understanding of microbiota
compositional dynamics is still incomplete, and more well-
designed analytical methods are also required to make full use
of rich data resources. In the gradually increasing observational
studies of the gut microbiota, the microbial communities’
sequencing data, e.g., metagenomics data, are widely tested
and analyzed (Vedoy et al., 2018). Different from the other
high-throughput data in genetic studies (Yu and Zeng, 2018),
metagenomics data can be easily changed within different
conditions and individuals. Thus, individual heterogeneity is
particularly important and individual variation should not
be ignored in analytical approaches. In fact, in the era of
precision medicine, many methods have focused on the common
molecular biomarkers which can diagnose disease states at the
cohort/population level. However, to study the occurrence and
progression of a disease in a given patient (Zeng et al., 2014;
Yu et al., 2015), accurate diagnosis of individuals by sample-
specific biomarkers is a key concept and action (Zeng et al., 2016).
In contrast to the traditional molecular biomarker analysis, our
previously proposed individual-specific edge-network analysis
(iENA) (Yu et al., 2017) combined with dynamic network
biomarker (DNB) (Li et al., 2014) has detected the early-
warning signals or the pre-disease state before serious disease
deterioration based on second-order statistics from the observed
data, e.g., “covariance” for expressions among genes or proteins.

Holding an assumption that the microbiota like genetic
molecules will have significant network characteristics associated
with phenotypes (Rakoff-Nahoum et al., 2016), it is worth
extracting discriminative and interpretative features from the

microbiota community-like gene network to monitor the
disruption of microbial communities during disease occurrence
and development (Wang et al., 2018). To take a proof-of-
concept study on the dynamic change of intestinal ecosystem
and their disease signals, we have adjusted the iENA method
(Yu et al., 2017) with reference group to address the limited
number of samples from one individual, and applied it to analyze
temporal high-throughput 16S rRNA data from individuals,
which is expected to overcome the great individual difference and
changeability of the intestinal ecosystem and reveal biological and
biomedical insights.

To carry out a proof-of-concept study on the individual-
specific disease classification based on microbiota compositional
dynamics, we captured the temporal changes from microbiota
data of volunteers during the ETEC challenge and subsequent
treatment with ciprofloxacin (Pop et al., 2016), and we found
the following: (i) the common microbiota biomarkers (OTUs)
reported in the previous work can be mostly recovered and
are also more effective in distinguishing clinical phenotypes of
individuals; (ii) individual-specific biomarkers can be detected
depending on the temporal 16S rRNA data from each subject
and the given reference data from multiple subjects; (iii) the
individual microbiota data can be used to effectively carry
out statistics, explore and integrate for personalized diagnosis,
prognosis and prediction. In addition, in order to further validate
the efficacy and robustness of our concept and method, we
have employed iENA on another real-world data from the
daily composition and relative abundance of bacteria in vaginal
samples from twenty-five women with and without bacterial
vaginosis (BV), and again satisfactory performance was achieved
on distinguishing BV occurrence from healthy controls. In total,
this work supplied novel evidence of individual biomarkers
to promoting microbiota-based disease classification, while the
high-ranked critical OTUs deserve future clinical validations.

MATERIALS AND METHODS

Description of Data Organization Used in
Proof-of-Concept Study
Escherichia coli (ETEC) has two expected outcomes: watery
diarrhea as symptomatic (Sx), or the host remains asymptomatic
(Asx) (Pop et al., 2016). The wild-type virulent ETEC strain
(E. coli O78:H11) was most frequently used in volunteer studies,
which induces severe diarrhea, with mild fever and vomiting
being reported in a relatively higher proportion of subjects.
The 16S rRNA data from gut microbiota reported in previous
volunteer challenge studies with ETEC H10407 were selected for
our study (Pop et al., 2016), which can be obtained from NCBI
under project ID: PRJNA298336. The simple summary of the
challenge protocol are as follows: the health status of subjects
in this volunteer challenge was assessed before the challenge;
early antibiotic treatment was given to the patients when some
symptoms appear; and starting on day 5, all subjects received a
3-day ciprofloxacin treatment. Importantly, the stool specimens
were collected at 12 time points: prior to ETEC infection (day
−1, 0) and on days 1–7, 9, 28, and 84 after the infection (Pop
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et al., 2016). After sequencing, 124 samples finally passed quality
controls and time matches which were used in our analysis,
corresponding to 50 samples from 5 Sx volunteers and 74 samples
from 7 Asx volunteers (Pop et al., 2016).

Temporal Microbiota Data Analysis by
Individual-Specific Edge-Network
Analysis (iENA)
We previously developed an advanced computational
framework, i.e., iENA, based on our proposed high-order
correlation measurement as shPCC for one-sample omics
data (Yu et al., 2017). In brief, iENA provides a powerful
network-analysis tool for studying temporal omics data of
complex diseases in a manner of individual samples, which is
suitable for applications in precision medicine or personalized
medicine. As noted in previous iENA analysis, each individual
used some samples in the early stages as network references
in dynamics analysis. However, when the number of samples
for each individual is limited, this strategy cannot work.
Thus, to investigate the microbiota dynamics in this work, we
implemented an adjusted iENA particularly using samples from
the baseline of individuals as the network reference and applied
it for analyzing the temporal 16S rRNA data (or even other
metagenomics data) as in Figure 1.

Collecting Data
To apply iENA, we downloaded temporal 16S rRNA datasets
from NCBI, which include the ETEC challenge infection samples
on individual subjects.

Selecting Reference Samples
In order to obtain the mean and variance of microbiota
compositions used for evaluating each new single sample (i.e.,
for each sample of one subject at one time point), a group of
reference samples (i.e., control samples, or normal samples) is
required to be confirmed ahead of follow-up analysis. Here, we
set the samples from the normal stage, i.e., the samples at baseline
as a reference group. Whether these samples came from the
same subject or different subjects are depending on the data
organization. Any sample with similar properties could serve as a
reference group in theory.

Selecting OTUs Based on Non-zero Value
One difficulty for processing 16S rRNA data is to deal with the
large number of zero values for iENA, e.g., during any division
computation; thus, similar to previous studies, we deleted OTUs
with a large percent of zero values (i.e., 85% or other percent
determined by a given threshold) to reduce the bias impact.

Constructing Microbiota Network by sPCC
Calculation
When we had reference samples, we were able to construct
the co-expression network of one sample by our single-sample
measurement of the Pearson correlation coefficient (sPCC),
consistent with previous studies (Yu et al., 2017). Considering the
absence of background network for microbial communities, we
selected edges (i.e., one edge represented the association between

two microbiota, represented by a pair of OTUs here) from a direct
rank cut-off for correlations because the distribution of the new
PCC values is not the normal distribution. Then, the top-ranked
edges with strong relations were finally selected, which consisted
of conventional node-network or microbiota community (Wang
et al., 2016; Sung et al., 2017), and were used as the background
“nodes” for constructing the following edge-network (e.g., a
network of OTU-pairs).

Constructing Microbiota-Pair Network by shPCC
Calculation
Between two OTU-pairs, we carried out the estimation of the
fourth-order single-sample correlation coefficient for each edge-
pair (i.e., two OTU-pairs) by shPCC (Yu et al., 2017) for each
single-sample (e.g., for each sample of one subject at one time
point). Note that, in this step, we actually only computed the
correlations between the pre-selected OTU-pairs from the above
steps, and thus we could reduce the unnecessary computations
drastically. Finally, we obtained the microbiota-pair network
model corresponding to each sample at a particular time point,
and each subject had personalized features on a time series in the
OTU-pair networks.

Recognizing Individual OTU-Pair Biomarkers
Similar to the OTU-pair selection, we selected top-ranked edge-
pairs as edge-biomarkers (i.e., OTU-pair biomarkers), which have
strong relations with each other in terms of the high-order
compositional correlations. Those strong correlated OTU-pairs
can be viewed as DNB candidates, represented as a set called
“Marker.” Then, for each individual, the OTU-pairs in the edge-
network were used as individual OTU-pair biomarkers, and these
OTUs were applied in the clinical phenotype prediction.

Quantifying the Predictive Markers by sCI
As is known, the DNB has been developed to identify the
pre-disease state before a sudden deterioration during disease
development and progression as general disease-warning signals
(Chen et al., 2012; Zeng et al., 2013). Recently, the DNB model
with its quantification criterion (i.e., CI, composite index) based
on multiple samples has been widely adopted:

CI =
PCCin

PCCout
× SDin (1)

In our previous work on gene networks, the DNB criterion is
further re-defined from the above correlation measurements in a
manner of single-sample, i.e., sCI is defined as:

sCI =

∑
x,y∈Marker |sPCC(x, y)|∑

x∈Marker,y/∈Marker |sPCC
(
x, y

)
|

×

∑
x∈Marker

|x− ux| (2)

where PCCin
is the average PCC of the compositions of OTUs

in the dominant group or DNB (e.g., a group of marker OTUs
or molecules) in absolute value in one sample; PCCout

is the
average PCC of the compositions of OTUs between the dominant
group and other in absolute value in one sample; SDin

is the
average standard deviation of the compositions of OTUs in the
dominant group or DNB. “Marker” is the set of DNB members.
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FIGURE 1 | Concept of edge-network and individual-specific edge-network analysis (iENA).

Then, the sCI of individual OTU markers was used to indicate
the disease-warning signals when its value was greater than a
given threshold.

Comparing OTU Markers and Their Disease
Classification
For each individual, we obtained the differential OTU-pairs in
each single-sample (i.e., the edge associations in each time point)
as novel edge-biomarkers to indicate the disease-warning signal.
We obtained the sCI value with edge biomarkers for each subject
or sample, and we observed different sCI scores at consecutive
time points. Thus, the value of sCI changed with time and we
defined a threshold to indicate the criticality, i.e., warning disease
or not for a subject. In addition, for the challenge data, we also
examined the OTU markers induced from each subject, and
compared them with previously reported 32-OTU markers from
the original research of the experimental data (Pop et al., 2016).

RESULTS AND DISCUSSION

Parameter Setting of the Analysis on
ETEC Challenge Data
To make full use of iENA, we used 16S rRNA (ribosomal RNA)
gene sequencing data to describe changes in the fecal microbiota
from 12 human volunteers during the challenge study with
ETEC (H10407), where three males and two females developed

diarrhea symptoms while four males and three females did not
(Pop et al., 2016).

As shown in Figure 2, according to iENA, we divided subjects
into two groups according to clinical symptoms: a Sx group with
5 subjects (subjects 4, 11, 16, 17, and 38 in Figure 2) and an
Asx group with 7 subjects (subjects 3, 13, 22, 29, 30, 33, and
41 in Figure 2). Samples before infection from baseline time
(green in Figure 2, days −1 and 0) were used as the reference
group. After selecting OTUs (non-zero percent > 0.85), we could
calculate the sPCC (with mean and variance from the reference
group) for each sample. We focused on the edges with strong
correlations and finally determined the 1500 strongest relations
at each time point. Then, these pre-selected edges were used as
the background “nodes” for constructing the edge-network, and
the significant signal peaks of edge-biomarkers were captured for
each subject across multiple time points, which were candidate
DNB members. Different from previous iENA applications, there
was another parameter to control; the number of final OTU
markers, due to the tested microbiota, was much less than tested
human genes or proteins.

OTU Markers Identified by iENA Are
Consistent With Reports in the Literature
Based on the above temporal data, we determined different
numbers of OTUs as marking features on each time/sampling
point of each subject by iENA, and the OTU-index score (i.e.,
CI index of OTU markers) is an average measurement against
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FIGURE 2 | The sample organization of ETEC challenges dataset. The subjects are divided into two groups according to the clinical symptom chart based on
standardized symptom scoring: symptomatic (Sx) group with 5 subjects (subjects 4, 11, 16, 17, and 38 in the original data) and asymptomatic (Asx) group with 7
subjects (subjects 3, 13, 22, 29, 30, 33, and 41 in the original data). The samples before the challenge (in green) were used as a reference group; the non-symptom
samples (in gray) have no significant clinical symptom; samples in orange indicate administration of ciprofloxacin; red marks represent diarrhea symptoms; pink
element indicates the overlapping time/day of diarrhea symptoms and administration of ciprofloxacin.

FIGURE 3 | The general abundance of OTU markers in Sx and Asx individuals.

the effect of OTU number. To further prove OTU markers’
satisfactory discrimination of the eventual clinical outcomes
of individuals, we identified individual biomarkers comprising
differently numbered bacterial OTUs.

Next, we checked the individual-specific biomarkers by
combining all OTUs detected on each sample for the same
subject. OTU markers found in five Sx individuals were very
different from those identified in Asx individuals, which may
be the reason why these OTUs can be used to predict displayed
symptoms (or disease occurrence). We finally obtained 19
common OTUs in the Sx group, which were also distinguished
from the Asx group in a combination manner (Figure 3).

These 19 common OTU markers represent robust signatures
and most of them have been reported in previous works (Pop
et al., 2016), which demonstrates the effectiveness of iENA
on OTU marker discovery. Patients who eventually developed
diarrhea symptoms were primarily affected by the abundance
of OTUs from the genus Bacteroides as well as Dialister. The
microbiota predictors included previously observed Bacteroides
sp., Blautia sp., Alistipes sp., and our newly found Escherichia and
Lachnospiraceae with a potential role during disease occurrence.
Looking at Figure 3 on the one hand, globally, the abundance of
OTU signatures seems to be absent in samples of Sx individuals
but abundant in samples of Asx individuals; and on the other
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FIGURE 4 | The disease classification performance of OTU markers on the ETEC challenges dataset. (A) The predictive score of OTU markers based on CI index
from DNB theory. The score curves of subjects from the Sx group are in red, and those of subjects from the Asx group are in blue. Generally, the Sx individuals tend
to have a larger score during the disease occurrence. (B) The classification evaluation of OTU marker score by ROC and AUC. (C) The OTU marker scores
correspond to each subject, where the Sx individual will have a large score at earlier time points than Asx individuals.

hand, locally, Escherichia and Lachnospiraceae appeared most
in the samples from Sx individuals. By contrast, some OTUs
from Bacteroides and Dialister are more frequently observed
in samples from Asx individuals. These results indicate the
biological significance of our OTU markers.

OTU Markers Outperform Previously
Reported OTU Signatures
To further explore whether the microbiota could predict the
eventual clinical outcome, we used OTU index scores of above
19 common OTUs to divide individuals into normal and disease
groups. With an optimal threshold, the model was able to achieve
an AUC of 0.9, larger than previously reported 0.83 (Pop et al.,
2016), which means these predictors are robust. Based on these
OTUs, the accuracy is about 90% in Figure 4, much larger than
the previously reported 76% (Pop et al., 2016), which supports
again that the new OTU markers and their quantifications
are efficient in judging whether a patient developed diarrhea
symptoms or not by individual microbiota data. Following our
assumption, the abundance variance rather than abundance level

would have more predictive power according to DNB theory,
meaning that the OTU-index score of OUT-markers based on
abundance variance achieved higher performance.

Another Case Study on Bacterial
Vaginosis (BV)
In order to further validate the efficacy and robustness of our
model, we carried out this method on other data (Ravel et al.,
2013). This data was obtained from the daily composition and
relative abundance of bacteria in vaginal samples from twenty-
five women: 15 SBV women diagnosed with Sx BV, six ABV
women with Asx BV, and four healthy women at twenty time
points during the 10-week study (Ravel et al., 2013). Due to the
great influence of bacteria abundance and the association caused
by SBV treatment, the bacteria data of the Sx group (9 SBV) and
the Asx group (6 ABV and 4 healthy) at the first nine time points
ahead of most treatments were used in following analysis.

Similar to the above case, the samples at the first time
points of all individuals were used as the reference group. After
selecting OTUs (non-zero percent > 0.5), we could calculate
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FIGURE 5 | The disease classification performance of OTU markers on the bacteria in vaginal samples. (A) The predictive score of OTU markers based on CI index
from DNB theory. The score curves of subjects from Sx BV (Sx) group are in red, and those of subjects from Asx BV and healthy (Asx) group are in blue. Generally,
the Sx individuals tend to have larger scores during disease occurrence. (B) The classification evaluation of OTU marker score by ROC and AUC. (C) The OTU
marker scores correspond to each subject.

the sPCC (with mean and variance from the reference group)
for each sample. Due to the limited number of bacteria in
this data, we focused on the edges with strong correlations
and finally determined the 10 strongest relations at each
time point. Then, these pre-selected edges are used as the
background “nodes” for constructing the edge-network and

capturing the significant signal peaks of edge-biomarkers for
each subject. As shown in Figure 5, to explore whether
bacteria could be predictive of the eventual outcome as BV
or not, we again simply used the OTU-index scores to
divide individuals into Sx (BV) and Asx (not BV) groups.
A threshold optimal cutoff led the single OTU-index score
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to achieve an AUC larger than 0.8, which means these
predictors are efficient.

We also checked the individual-specific biomarkers by
combining all OTUs detected on each sample for the same
subject. Finally, we found 3 OTU markers in nine Sx
(BV) individuals—Aerococcus christensenii, Veillonellaceae, and
Bacteria. Meanwhile, in the Asx group (6 ABV and 4 healthy)
the common markers were Gardnerella vaginalis, Aerococcus
christensenii, and Bacteria. In order to observe more OTU
markers distinguishing the two groups, we reduced the selection
conditions, and 13 markers appeared in more than a half of the Sx
members while 9 markers appeared in more than half of the Asx
members. The Sx-special OUT markers were Lactobacillus iners,
BVAB2, Bifidobacteriaceae, Parvimonas micra, and most of them
have been reported in previous works (Pop et al., 2016) or are BV-
associated. These results indicate again the biological significance
of our selected OTU markers.

CONCLUSION

There is growing interest in bolstering resistance to infections
or diseases by altering the microbiota (Jia et al., 2008; Holmes,
2016; Waterman et al., 2016; Delzenne and Bindels, 2018).
Here, we have presented a computational framework, i.e.,
iENA, to identify the key OTU features to distinguish normal
and disease states, by extracting higher-order statistics and
dynamic information from 16S rRNA (ribosomal RNA) gene
sequencing data in a one-sample manner. As a proof-of-concept
study, we carried out iENA on the temporal development
data of twelve subjects (healthy adults) undergoing a challenge
with intestinal microbiota by ETEC. Although the sample
size is relatively small and the variations among individuals
are large, our iENA achieved robust results that may lead
to more confirmed conclusions. The analysis outcome from
iENA indicates the following: (i) for challenged subjects, the
individual symptom-related OTU markers will have stable
relation (higher-order information) rather than sensitive OTU
abundance; (ii) the OTU markers are significantly related

to the disease development and progression (e.g., ETEC
infection) which will be able to predict whether an individual
would develop symptoms or not with reasonable accuracy.
In addition, iENA also showed satisfactory efficiency on
another dataset about BV. These consequences all demonstrate
the effectiveness of iENA with DNB on an individual’s
microbiota dynamics. Excluding the limitations from individual
heterogeneity and sample numbers, network-based approaches
like iENA will actually provide more universal tools on
different types of real sequencing data (Davis-Richardson et al.,
2014), which makes precision medicine more practical in
clinical applications.

On account of the intestinal microbiota, iENA can explore
differential microbiota pair networks based on differential
OTU abundance, variance, and covariance. Although iENA has
previously been validated on transcriptome datasets (Yu et al.,
2017), it is also able to detect the individual-specific OTU markers
on metagenomic datasets like 16S rRNA data, and disclose
the higher-order associations between the microbiota and
clinical symptoms during the ETEC challenge, or other disease
developments like BV. Thus, the combination of new high-
throughput microbiome experiments and computational systems
biology approaches has the power to recommend potential
candidate species in the defense against various pathogens for
precision medicine.
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