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The progression of complex diseases is generally divided as a normal state, a pre-disease

state or tipping point, and a disease state. Developing individual-specific method that

can identify the pre-disease state just before a catastrophic deterioration, is critical for

patients with complex diseases. However, with only a case sample, it is challenging

to detect a pre-disease state which has little significant differences comparing with a

normal state in terms of phenotypes and gene expressions. In this study, by regarding

the tipping point as the end point of a stationary Markov process, we proposed a

single-sample-based hidden Markov model (HMM) approach to explore the dynamical

differences between a normal and a pre-disease states, and thus can signal the

upcoming critical transition immediately after a pre-disease state. Using this method,

we identified the pre-disease state or tipping point in a numerical simulation and two real

datasets including stomach adenocarcinoma and influenza infection, which demonstrate

the effectiveness of the method.

Keywords: hidden Markov process, single-sample-based diagnosis, dynamical network biomarker (DNB),

pre-disease state, critical transition, early-warning signal

INTRODUCTION

Considerable evidence suggests that during the progression of many complex diseases the
deterioration is not necessarily smooth but abrupt (Litt et al., 2001; McSharry et al., 2003; Scheffer
et al., 2009). In order to describe the underlying mechanism of complex diseases, their evolutions
are often modeled as time-dependent non-linear systems, in which the abrupt deterioration is
viewed as the phase transition at a tipping point (Murray, 2002; Venegas et al., 2005; Hirata et al.,
2010; He et al., 2012; Liu et al., 2012). Therefore, from a dynamical systems’ perspective, the general
progression of complex diseases was modeled as three states or stages (Figure 1A): (i) a normal
state, which represents a relative healthy stage with high stability and robustness to perturbations;
(ii) a pre-disease state, which was defined as the limit of the normal state, and locating just before the
occurrence of sudden deterioration, therefore, with low stability and robustness; (iii) a disease state,
which represents a serious deteriorated stage generally with high stability and robustness, because
it is usually very difficult to return to the normal state even with intensive treatment (Liu et al.,
2014a). In contrast to the irreversible disease state, the pre-disease state is sensitive to perturbation
and thus reversible to the normal state if timely and appropriate treatment is received during this
stage. It is thus crucial to detect the pre-disease state for patients with complex diseases. However,
it is hard to detect a pre-disease state by traditional biomarkers since it is similar to the normal state
in terms of the phenotype and gene expression.
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FIGURE 1 | The outline for identifying the SSI score based on HMM. (A) The progression of complex diseases is generally modeled as three states, i.e., a normal

state, a pre-disease state, and a disease state. The pre-disease state is immediately before the sudden deterioration, which is sensitive to treatment and reversible to

the normal state. The disease state is usually irreversible even with intensive medical care. For an individual, samples from a few initial time points can be regarded as

reference. Each single case sample was added to the reference, forming a series of combining samples. (B) At each time point t = 1, 2, … T, a differential network Nt
was constructed by PCC. (C) The sharp increase of SSI score signals the upcoming critical transition into the disease state.

Recently, the dynamical network biomarker (DNB) method
was proposed to detect the pre-disease state (Chen et al., 2012),
that is, by identifying a group of DNB biomolecules (e.g., genes
and proteins) which together signal the occurrence of pre-disease
state in the following three ways: (i) the DNB members turn to
be widely fluctuating; (ii) the correlation between any two DNB
members increase significantly; (iii) the correlation between a
DNB member and a non-DNB molecule decrease significantly.
Different from traditional biomarkers, DNB aims at signaling
the pre-disease state before the occurrence of catastrophic
deterioration. This method has been employed by many groups
and applied to a number of cases, including detecting the
tipping points of cell fate decision (Mojtahedi et al., 2016) and
cellular differentiation (Richard et al., 2016) studying immune

checkpoint blockade (Lesterhuis et al., 2017) and identifying the
critical transition states during various biological processes (Liu
et al., 2014b, 2018; Chen et al., 2015, 2017, 2018). However, it is
noted that the DNB method works only when there are multiple
case samples, so that the above three statistical conditions can be
evaluated. This limits the practical application of DNB in many
clinical cases because generally it is impossible to collect multiple
samples for each individual at a time point.

In this work, by exploring the differential information between
the normal and pre-disease states, we proposed a single-sample-
based hidden Markov model (HMM) to signal the tipping point,
even if there was only one case sample available. Specifically,
the normal state was modeled as a stationary Markov process
due to its highly stable nature in dynamics, while the pre-disease
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state was viewed as a time-varying Markov process considering
its dynamical instability. Taking multiple normal samples as the
references or background, a differential network whose edges
carried the differential information before and after combing a
single sample with references, was obtained specific to the single
sample derived at a time point (Figure 1A). Then, under the
hypothesis that a time point t = T (T > 2) is the candidate
tipping point, a probabilistic score, namely single-sample-based
inconsistency score (SSI score), was developed for quantitatively
measuring the difference between samples from a normal state
and that from a pre-disease state. The calculation of SSI score
was based on an HMM, where the HMM was trained by
taking a series of differential networks derived up to t = T−1
as the training set (Figure 1B). The abrupt increase of such
probabilistic score indicates the occurrence of tipping point
(Figure 1C). Clearly, this approach is individual-specific, and
thus may help to achieve personalized diagnosis based on the
historical information of patients. To validate the effectiveness,
this method has been applied to a numerical simulation and
two real datasets, i.e., stomach adenocarcinoma (STAD) dataset
from TCGA database and influenza infection dataset from
GEO database.

METHODS

Theoretical Basis
The theoretical basis of this study is the DNB theory, which
provide the following generic properties when a dynamical
system approaches a bifurcation point (Chen et al., 2012):

1. SD(x) increases sharply, where x represents the expression of
a DNB member, SD represents the standard deviation.

2. PCC(x1, x2) increases sharply, where x1 and x2 represent
the expressions of any two DNB members, PCC means the
Pearson correlation coefficient.

3. PCC(x, y) decreases sharply, where x and y, respectively,
represent the expressions of a DNB member and a non-
DNB gene.

4. Neither SD(y) nor PCC(y1, y2) has significant change, where
y, y1 and y2 represent expressions of non-DNB genes.

The detailed description and derivation of DNB can be seen in
reference (Liu et al., 2015) and its Supplementary Information.
In view of the dynamical characteristics of the normal state, i.e.,
stable dynamics with little fluctuation and high resilience, it was
modeled as a stationary Markov process. The pre-disease was
modeled as a time-varying Markov process due to its highly
unstable dynamics with strong fluctuation and low resilience.
The disease state can be regarded as another stationary Markov
process because of its dynamical stability (Chen et al., 2016). To
identify the pre-disease state, it is equivalent to detect a switching
point at which a stationary Markov process ends and turns into a
time-varying Markov process.

Algorithm
A sketch of the single-sample-based HMM algorithm was
provided in Figure 2. Specifically, detecting the outset of a pre-
disease state is equivalent to identifying the end of this stationary

Markov process, which requires a detailed model to present such
stationary Markov process. Therefore, an HMM was trained and
employed to describe the dynamical characteristics of the system
in the normal state. And a probability index was proposed to
evaluate the inconsistency between a sample from a testing point
and the trained HMM. We carry out the following algorithm to
identify the tipping point by using only one case sample.

(i) Choosing Reference Samples

A few samples that represents the relatively healthy condition
were chosen as the reference or background. Generally,
for individual-specific samples (e.g., samples for each
symptomatic subject in influenza infection dataset), samples
from a few initial time points of an individual (as shown in
Figure 1A) can be regarded as reference. For stage-course data
(e.g., TCGA data for stomach adenocarcinoma), samples from
a normal cohort or normal tissue can be viewed as reference.

(ii) Training Process

First, we added each single case sample to the reference
(Figure 1A), forming a series of combining samples. In other
words, if there were n samples in the reference, in each time
point we obtained a set of n+ 1 samples, which can be viewed
as a perturbation to n samples in the reference group.

Second, based on the observation samples at each time
point t, a differential network Nt was constructed by
the difference of the corresponding Pearson correlation
coefficient (PCC) between the reference and combined
samples (Figures 1A,B), that is,

1PCC(gi, gj) = |PCCn+1(gi, gj)|−|PCCn(gi, gj)|,

Where gi and gj represent gene expressions for any pair of
genes. Then |1PCC(gi, gj)| was employed to constructed the
differential network, i.e., when |1PCC(gi, gj)| > d, there was a
differential link between gi and gj (Figure 1B), where threshold
d was selected based on specific real data, that is, d was chosen
such that few differential links arising in the initial differential
networks of the normal state, thus highlighting the pre-disease
state when many links appear. After this step, we obtained a
differential-network series {N1, N2, . . . , NT , . . . }.

Third, suppose a time point t = T (T > 2) as a candidate
tipping point. Then differential-network series was divided
into training part ranging from t = 1 to t = T−1, i.e.,
observation sequence OT−1 = {o1, o2 , . . . , oT−1} = {N1, N2

, . . . , NT−1}, and testing part starting from t = T, i.e., oT =

{NT}. Let {s1, s2, . . . , st} represents the state sequence up to t.
Symbols P0 and P1, respectively, denote the normal state (P0)
and a possible pre-disease state (P1), which are two unobserved
(hidden) states. Then based on the training samples OT−1 =

{N1, N2 , . . . , NT−1}, a HMM

θT−1 (OT−1) = (AT−1,BT−1,π)

was trained by the Baum-Welch procedures (Bilmes, 1998).
Here, the subscript T-1 of θ denotes that the HMM θ was
obtained from the training samples up to t = T−1. The state
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FIGURE 2 | The algorithm of the single-sample-based HMM. The above flowchart shows how the algorithm works based on a series of single case samples.

Regarding a point t = T (T > 2) as a candidate tipping point, the sample series is divided into training part ranging from t = 1 to t = T−1, and testing part starting from

t = T. If a probabilistic score (single-sample-based inconsistency score, SSI score) increases significantly, then the candidate t = T is determined as the identified

tipping point, and the algorithm ends. Otherwise, if there is no significant change in SSI score, then t = T is classified as a time point belonging to the normal state,

and the algorithm continues with t = T+1 being a new candidate tipping point.

transition matrix at time point T−1 is

AT−1 =
(

aij
)

2×2

with

aij = P(sq = Pi|sq−1 = Pj), i, j ∈ { 0, 1}.

q − 1 ∈ {1, . . . ,T − 2} stands for a time point in the training
process, q stands for the next time point after q − 1. The
observation matrix at time point T−1 is

BT−1 =
(

bjk
)

2×N

with

bjk = P(#1
(

q
)

= k|sq = Pj), j ∈ {0, 1} , k ∈ {0, 1, . . . ,M } ,

Where #1
(

q
)

= k represents that there are k edges in the
differential network NT−1, M is the number of all possible
edges, e.g., M = C2

m if there are m nodes in Nq. The initial
probabilities are

π = {π1, π2}

with πi = P
(

sq−1 = Pi
)

, i ∈ { 0, 1}.

(iii) Testing Process
Based on the testing sample oT−1 = {NT} we tested if
the candidate point t = T is a “real” tipping point.

A single-sample-based inconsistency score (SSI score) was
proposed, i.e.,

SSI (T) = P
(

sT = P1

∣

∣

∣
s1 = P0, s2 = P0, . . . , sT−1 = P0; θ

T−1
)

= 1− P
(

sT = P0

∣

∣

∣
s1 = P0, s2 = P0, . . . , sT−1 = P0; θ

T−1
)

= 1− P
(

sT = P0

∣

∣

∣
sT−1 = P0; θ

T−1
)

= 1−
P

(

sT = P0, sT−1 = P0; θ
T−1

)

P
(

sT−1 = P0; θT−1
) .

Given the HMM θT−1, the SSI score was calculated
by a forward algorithm. According to above settings,
the calculation of probability SSI (T) (the inconsistency
probability) at a time point t = T only relies on the samples
from T−1 and T. If SSI (T) increases significantly, then the
candidate point t = T is determined as the identified tipping
point, and the algorithm ends (Figure 2). Otherwise, if there
is no significant change in SSI (T), then t = T is classified as
a time point belonging to the normal state. Accordingly, the
differential network oT = {NT} is added to the training set, and
the algorithm continues with t = T+1 being a new candidate
tipping point (Figure 2).

According to the DNB theory, there are few differential
edges in a differential network constructed in a normal stage,
due to the high stability nature of the system during the
normal stage. However, when the system approaches the critical
transition point, there are many differential edges appearing
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in the differential network due to the time-varying and
fluctuating dynamics of the system. Specifically, the algorithm
is guaranteed by the generic properties 2 and 3 listed in section
Theoretical Basis.

Data Accessing and Processing for Real
Datasets
Two gene expression profiling datasets including the time-
course dataset for influenza virus infection process (GSE30550)
downloaded from the NCBI GEO database (www.ncbi.nlm.nih.
gov/geo) and stage-course dataset for stomach adenocarcinoma
(STAD) from TCGA database (http://cancergenome.nih.gov).
For omics data (GSE30550), we discarded the probes without
corresponding NCBI Entrez gene symbol. After removing any
redundancy in dataset GSE30550, we obtained 11,451 molecules
through probe mapping. For each gene mapped by multiple
probes, the average value was employed as the gene expression.

When applied the algorithm to both two disease datasets, there
were two extra steps as follows.

First, the expression profiling information was mapped to
the protein-protein interaction networks from STRING (http://
stringw-db.org) (Szklarczyk et al., 2014) for Homo sapiens. In
such a network, the edges were filtered by the confidence level
with a threshold of 0.700. All the isolated nodes were discarded.
Then we choose the cutoff parameter d so that there are only
10% edges in the first differential network comparing with
original STRING network, that is, over 90% edges disappear
comparing with the original STRING network due to the generic
property that the network structure would remain stable during
the normal stage, and thus there are few edges in a differential
network based on samples generated from normal stage.

Second, the differential network was partitioned into local
networks to reduce computational complexity. Each local
network contained a center node and its first-order neighbors.
The local SSI score for each local network was calculated through
above algorithm. Given k local networks, then a weighted average
SSI score was derived as follows,

SSI =
n1SSI1 + n2SSI2 + . . . + nkSSIk

n1 + n2 + . . . + nk
,

Where ni denotes the number of nodes in the i-th local network
(I = 1, 2,. . . , k) and SSIi stands for the local SSI score of
this subnetwork.

The networks were visualized using Cytoscape (www.
cytoscape.org) and the functional analysis was based on
Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com/
products/ipa) and KEGG enrichment analysis (http://www.
genome.jp/kegg/tool/map/_pathway2.html).

RESULTS

Identifying the Critical Transition for a
Numerical Simulation Model
The proposed computational method and SSI score was applied
to a numerical simulation dataset, which was generated from
a nine-node regulatory network (Figure 3A) with a set of

nine stochastic differential equations Equation (S1) provided in
Supplementary Information. Such model of regulatory network
of Michaelis-Menten form, is usually employed to study genetic
regulations including transcription, translation, diffusion, and
translocation processes (Chen et al., 2009). With varying
parameter p ranging from −0.45 to 0.15, a dataset was generated
for numerical simulation.

In Equation (S1), the parameter value p = 0 was set as
a bifurcation value, at which the system undergoes a critical
transition. The dynamical change in SSI score was exhibited
in Figure 3B. Clearly, there is an abrupt increase of SSI score
when the system approaches the tipping point (p = 0). Thus, the
significant increase of SSI score indicates the upcoming critical
transition at p = 0. In Figure 3C, after 1,000 simulations, the
distribution of differential edges was illustrated for the network
specific to each parameter value. It is seen that the frequency
for the occurrence of differential edges was significantly different
in the vicinity of the tipping point (p = 0), which implies that
much more edges would occur in the differential network when
the system approaches the tipping point.

Identifying the Critical Transition for
Stomach Adenocarcinoma
Cancer of the stomach is difficult to cure unless it is found
at an early stage (before its metastasis). Unfortunately, because
early stomach cancer causes few symptoms, the disease is
usually advanced when the diagnosis is made (Wadhwa et al.,
2013). According to a clinical-stage division (Guide, 2009)
stage IV is generally regarded as a severe deteriorated stage,
at which cancer has spread to nearby tissues and distant
lymph nodes or has metastasized to other organs. Generally,
a cure is very rarely possible at stage IV. Therefore, it is
important to detect the early-warning signal for metastasis
before stage IV.

The proposed method was employed in STAD dataset from
TCGA, and identified the tipping point of distant metastasis
(IIIA stage). This dataset contained RNA-Seq data and included
141 tumor samples and 33 tumor-adjacent samples. The tumor
samples were grouped into seven stages, that is, stage IA (9
samples), stage IB (18 samples), stage IIA (23 samples), stage IIB
(29 samples), stage IIIA (27 samples), stage IIIB (20 samples),
and stage IV (15 samples) of stomach cancer. The tumor-adjacent
samples were regarded as control data and were employed as
reference samples.

As shown in Figure 4A, the abrupt increase of average SSI
score indicated the imminent critical transition in tipping point
stage (IIIA), after which cancer would spread to the serosal layer
of the stomach wall (stage IIIA) and ultimately cause distant
metastasis (stage IV). In Figure 4B, the box plot showed that
the expression deviation of deferential expression genes fails
to provide any effective signals for the tipping point, where
the differential-expression genes were obtained by comparing
with tumor-adjacent TA samples at each stage. Figure 4C shows
the dynamical evolution of the whole gene regulatory network
including 3,247 nodes and 22,301 edges. These edges were
selected through the STRING network with high confidence
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FIGURE 3 | The application of SSI score in numerical simulation. (A) The numerical simulation was based on a nine-node regulatory network. (B) The abrupt increase

of SSI score indicates the tipping point at P = 0. (C) From the dynamical changes of differential-edge distribution, it is seen that there is a significantly different

distribution (purple bars) comparing with others (green bars) when the system approaches the tipping point (p = 0).

level (level higher than 0.700). A group of 214 nodes, i.e., genes
with the most significant increases in their local SSI score, were
intentionally arranged at the right bottom corner. This group of
genes together exhibited obvious signal at the tipping point (stage
IIIA), and can be regarded as the dynamical network biomarker
for distant metastasis of STAD. These top 1% genes with the most
significant increase in local SSI scores were considered as the SSI-
signaling genes which is a set of dynamical network biomarker
and may highly relate to the catastrophic deterioration. Thus, we
carried out functional analysis on these SSI-signaling genes.

Based on IPA analysis, the common SSI-signaling genes were
highly related to functions annotation “Digestive organ tumor”
(P-value = 3.0E-34), “Abdominal adenocarcinoma” (P-value =

7.1E-29), “Cancer of cells” (P-value = 2.2E-10), “Metastasis” (P-
value = 2.0E-04), etc. Besides, from KEGG enrichment analysis,
the SSI-signaling genes were enriched in cancer-related pathways
including Pathways in cancer, AMPK signaling pathway, Ras
signaling pathway. Some SSI-signaling genes have been found
in literatures and identified to be associated with the process
of cancer metastasis. For example, COL11A1 was reported as a
remarkable biomarker for carcinoma progression and metastasis
(Vázquez-Villa et al., 2015). BLNK was known as one of the
downstream targets of Pax-5, which plays important role in
metastasis (Crapoulet et al., 2011). HNRNPC, whose specific

siRNA was reported to inactivate Akt pathway (Hwang et al.,
2012) was also identified to control the metastatic potential of
glioblastoma by regulating PDCD4 (Park et al., 2012). MMP1
proteolytically engage EGF-like ligands in an osteolytic signaling
cascade for metastasis (Lu et al., 2009). LIN9 is a component of
the metastasis-predicting Mammaprint gene signature in breast
cancer (Van’t Veer et al., 2002). The functional analysis showed
that the SSI-signaling genes were highly related to metastasis or
related biological functions, which also validated the sensitivity
and effectiveness of the identified SSI-signaling genes. A list of
common SSI-signaling genes for STADwas provided in Table S1.

Identifying the Critical Transition for
Influenza Infection
We applied the proposed method to a time-course dataset of
live influenza infection challenge (GSE30550), in which there
were 17 subjects who received injection of influenza virus
(H3N2/Wisconsin). Among the 17 subjects, nine (subjects 1, 5,
6, 7, 8, 10, 12, 13, and 15) were infected who showed clinic
symptoms and the other eight (subjects 2, 3, 4, 9, 11, 14, 16, and
17) were always stay healthy who didn’t show any clinic symptom
during the whole period of infection challenge (Figure 5A). The
gene expression profiles were derived in the whole peripheral
blood drawn from all subjects at 16 time points, i.e., 24 h before
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FIGURE 4 | The application of SSI score in STAD dataset. (A) The significant increase of SSI score indicates the tipping point at stage IIIA, before the deterioration into

distant metastasis at stage IV. (B) The average expression deviation between each single sample and the reference. (C) The dynamical evolution of the whole gene

regulatory network. The top 1% genes with the largest local SSI scores were arranged at the right-bottom corner.

injection, 0, 5, 12, 21, 29, 36, 45, 53, 60, 69, 77, 84, 93, 101,
and 108 h after the injection. At each time point, there was only
a single sample for each subject. By employing the proposed
method, we obtained the individual-specific SSI score for each
subject either in symptomatic or asymptomatic group.

The individual-specific SSI scores in Figure 5B demonstrated
that there were obvious signals provided by SSI score for all
symptomatic subjects (9 red curves), while there were few
significant changes in the SSI scores for asymptomatic subjects
(8 blue curves). The specific SSI scores for nine symptomatic
subjects were shown in Figure 5C. Clearly, the SSI score
indicated the pre-disease states (the state before the appearance
of clinical symptom) for each symptomatic individual, with 100%
accuracy. However, there was 25% false positive rate (Figure 5A).
To demonstrate the evolution of individual-specific differential
network, two sets of differential networks, respectively, for
two symptomatic subjects, i.e., subject 1 and subject 12, were
illustrated in Figure 6. Clearly, at the respective tipping point,
there were many differential edges arising just before the
emergence of clinic symptoms. At the tipping point of each
symptomatic subject, the top 1% genes with the largest local SSI
scores were regarded as a set of dynamical network biomarker,
which were selected for further functional analysis.

Based on IPA analysis, the common SSI-signaling genes
were highly related to functions annotation “Quantity of
lymphocytes” (P-value = 2.23E-11), “Inflammation” (P-value =
2.47E-10), “Viral Infection” (P-value = 1.06E-09), “Homeostasis

of leukocytes” (P-value = 1.14E-08). From KEGG enrichment
analysis, the common SSI-signaling genes were enriched in
Influenza A, and a variety of cellular pathways including PI3K-
Akt signaling pathway, MAPK signaling pathway, NF-kappa B
signaling pathway, etc. The functional analysis again validated
the effectiveness of SSI-signaling genes. A list of common SSI-
signaling genes for influenza infection was provided in Table S2.

DISCUSSION

Detecting the early-warning signal before a sudden deterioration
into a severe disease state is crucial to patients all over the
world. However, it is generally challenging to signal such critical
transition through only a single case sample, since the lack of
samples disables statistical indices and thus makes conventional
methods fail. In this work, we proposed a computational
method to identify the pre-disease state on the basis of a single
sample. Specifically, given a number of reference samples which
can be the normal samples of an individual (Figure 1A), the
proposed method can distinguish the abnormal single sample
by a differential-network-based HMM scheme. The proposed
method has been validated by both the numerical simulation
(Figure 3) and two real datasets (Figures 4, 5).

Comparing with the traditional methods which are mostly
based on the differential expression of observed biomolecules, the
proposed method aims at exploring the dynamic information of
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FIGURE 5 | The application of SSI score in influenza infection dataset. (A) The overall information of the 17 subjects in the influenza-infection challenge. (B) Line chart

of SSI score for all 17 subjects. The red curves are for symptomatic subjects, while the blue curves represent asymptomatic subjects. (C) The individual-specific SSI

scores for 9 symptomatic subjects. For each SSI curve, the star symbol represents the time point when SSI-score signal arises, the diamond symbol represents the

time point at which the initial flu symptoms appears.
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FIGURE 6 | The dynamical evolution of subject-specific networks. To illustrate the dynamical evolution of the differential network, the individual-specific networks of

two symptomatic subjects (subjects 1 and 12) were exhibited. (A) The individual-specific networks for subject 1. (B) The individual-specific networks for subject 12.

Clearly, at the identified tipping point of each subject, there were considerably more differential edges than that at other time point.

differential associations among biomolecules when a biological
system is in the vicinity of a tipping point. This method thus
possesses several obvious advantages. First, it works when only
a single case sample is available, which benefits the analysis in
personalized medicine. Second, it detects the pre-disease state
rather than a disease state, which may help to achieve early
diagnosis of some complex diseases. Third, it well-exhibits the
critical properties at a network level which may provide new
insights into catastrophic deterioration, such as the abnormally
arising differential associations.

Although the proposed method is merely a step toward the
identification of pre-disease state and the algorithm is expected
to be improved in both sensitive and accurate ways, following
the idea of personalized medicine, it provides a computational
way and achieves individual-specific analysis and prediction by
making use of only a single sample.
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