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The promoter region is located near the transcription start sites and regulates

transcription initiation of the gene by controlling the binding of RNA polymerase. Thus,

promoter region recognition is an important area of interest in the field of bioinformatics.

Numerous tools for promoter prediction were proposed. However, the reliability of these

tools still needs to be improved. In this work, we propose a robust deep learning model,

called DeePromoter, to analyze the characteristics of the short eukaryotic promoter

sequences, and accurately recognize the human and mouse promoter sequences.

DeePromoter combines a convolutional neural network (CNN) and a long short-term

memory (LSTM). Additionally, instead of using non-promoter regions of the genome as a

negative set, we derive a more challenging negative set from the promoter sequences.

The proposed negative set reconstruction method improves the discrimination ability

and significantly reduces the number of false positive predictions. Consequently,

DeePromoter outperforms the previously proposed promoter prediction tools. In addition,

a web-server for promoter prediction is developed based on the proposed methods and

made available at https://home.jbnu.ac.kr/NSCL/deepromoter.htm.

Keywords: promoter, DeePromoter, bioinformatics, deep learning, convolutional neural network

1. INTRODUCTION

Promoters are the key elements that belong to non-coding regions in the genome. They largely
control the activation or repression of the genes. They are located near and upstream the gene’s
transcription start site (TSS). A gene’s promoter flanking region may contain many crucial short
DNA elements and motifs (5 and 15 bases long) that serve as recognition sites for the proteins that
provide proper initiation and regulation of transcription of the downstream gene (Juven-Gershon
et al., 2008). The initiation of gene transcript is the most fundamental step in the regulation of gene
expression. Promoter core is a minimal stretch of DNA sequence that conations TSS and sufficient
to directly initiate the transcription. The length of core promoter typically ranges between 60 and
120 base pairs (bp).

The TATA-box is a promoter subsequence that indicates to other molecules where transcription
begins. It was named “TATA-box” as its sequence is characterized by repeating T and A base
pairs (TATAAA) (Baker et al., 2003). The vast majority of studies on the TATA-box have been
conducted on human, yeast, and Drosophila genomes, however, similar elements have been found
in other species such as archaea and ancient eukaryotes (Smale and Kadonaga, 2003). In human
case, 24% of genes have promoter regions containing TATA-box (Yang et al., 2007). In eukaryotes,
TATA-box is located at∼25 bp upstream of the TSS (Xu et al., 2016). It is able to define the direction
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of transcription and also indicates the DNA strand to be read.
Proteins called transcription factors bind to several non-coding
regions including TATA-box and recruit an enzyme called RNA
polymerase, which synthesizes RNA from DNA.

Due to the important role of the promoters in gene
transcription, accurate prediction of promoter sites become
a required step in gene expression, patterns interpretation,
and building and understanding the functionality of genetic
regulatory networks. There were different biological experiments
for identification of promoters such as mutational analysis
(Matsumine et al., 1998) and immunoprecipitation assays (Kim
et al., 2004; Dahl and Collas, 2008). However, these methods
were both expensive and time-consuming. Recently, with the
development of the next-generation sequencing (NGS) (Behjati
and Tarpey, 2013) more genes of different organisms have been
sequenced and their gene elements have been computationally
explored (Zhang et al., 2011). On the other hand, the innovation
of NGS technology has resulted in a dramatic fall of the cost
of the whole genome sequencing, thus, more sequencing data
is available. The data availability attracts researchers to develop
computational models for promoter prediction task. However, it
is still an incomplete task and there is no efficient software that
can accurately predict promoters.

Promoter predictors can be categorized based on the utilized
approach into three groups namely signal-based approach,
content-based approach, and the GpG-based approach. Signal-
based predictors focus on promoter elements related to RNA
polymerase binding site and ignore the non-element portions
of the sequence. As a result, the prediction accuracy was weak
and not satisfying. Examples of signal-based predictors include:
PromoterScan (Prestridge, 1995) which used the extracted
features of the TATA-box and a weighted matrix of transcription
factor binding sites with a linear discriminator to classify
promoter sequences form non-promoter ones; Promoter2.0
(Knudsen, 1999) which extracted the features from different
boxes such as TATA-Box, CAAT-Box, and GC-Box and passed
them to artificial neural networks (ANN) for classification;
NNPP2.1 (Reese, 2001) which utilized initiator element (Inr)
and TATA-Box for feature extraction and a time-delay neural
network for classification, and Down and Hubbard (2002) which
used TATA-Box and utilized a relevance vector machines (RVM)
as a classifier. Content-based predictors relied on counting the
frequency of k-mer by running a k-length window across the
sequence. However, these methods ignore the spatial information
of the base pairs in the sequences. Examples of Content-based
predictors include: PromFind (Hutchinson, 1996) which used the
k-mer frequency to perform the hexamer promoter prediction;
PromoterInspector (Scherf et al., 2000) which identified the
regions containing promoters based on a common genomic
context of polymerase II promoters by scanning for specific
features defined as variable length motifs; MCPromoter1.1
(Ohler et al., 1999) which used a single interpolated Markov
chain (IMC) of 5th order to predict promoter sequences. Finally,
GpG-based predictors utilized the location of GpG islands as
the promoter region or the first exon region in the human
genes usually contains GpG islands (Ioshikhes and Zhang,
2000; Davuluri et al., 2001; Lander et al., 2001; Ponger and

Mouchiroud, 2002). However, only 60% of the promoters contain
GpG islands, therefore the prediction accuracy of this kind of
predictors never exceeded 60%.

Recently, sequence-based approaches have been utilized for
promoter prediction. Yang et al. (2017) utilized different feature
extraction strategies to capture the most relevant sequence
information in order to predict enhancer-promoter interactions.
Lin et al. (2017) proposed a sequence-based predictor, named
“iPro70-PseZNC”, for sigma70 promoter’s identification in the
prokaryote. Likewise, Bharanikumar et al. (2018) proposed
PromoterPredict in order to predict the strength of Escherichia
coli promoters based on a dynamic multiple regression approach
where the sequences were represented as position weight
matrices (PWM). Kanhere and Bansal (2005) utilized the
differences in DNA sequence stability between the promoter
and non-promoter sequences in order to distinguish them. Xiao
et al. (2018) introduced a two layers predictor called iPSW(2L)-
PseKNC for promoter sequences identification as well as the
strength of the promoters by extracting hybrid features from
the sequences.

All of the aforementioned predictors require domain-
knowledge in order to hand-craft the features. On the other
hand, deep learning based approaches enable building more
efficient models using raw data (DNA/RNA sequences) directly.
Deep convolutional neural network achieved state-of–the-art
results in challenging tasks such as processing image, video,
audio, and speech (Krizhevsky et al., 2012; LeCun et al., 2015;
Schmidhuber, 2015; Szegedy et al., 2015). In addition, it was
successfully applied in biological problems such as DeepBind
(Alipanahi et al., 2015), DeepCpG (Angermueller et al., 2017),
branch point selection (Nazari et al., 2018), alternative splicing
sites prediction (Oubounyt et al., 2018), 2’-Omethylation sites
prediction (Tahir et al., 2018), DNA sequence quantification
(Quang and Xie, 2016), human protein subcellular localization
(Wei et al., 2018), etc. Furthermore, CNN recently gained
significant attention in the promoter recognition task. Very
recently, Umarov and Solovyev (2017) introduced CNNprom
for short promoter sequences discrimination, this CNN based
architecture achieved high results in classifying promoter and
non-promoter sequences. Afterward, this model was improved
by Qian et al. (2018) where the authors used support vector
machine (SVM) classifier to inspect themost important promoter
sequence elements. Next, the most influential elements were kept
uncompressed while compressing the less important ones. This
process resulted in better performance. Recently, long promoter
identification model was proposed by Umarov et al. (2019) in
which the authors focused on the identification of TSS position.

In all the above-mentioned works the negative set was
extracted from non-promoter regions of the genome. Knowing
that the promoter sequences are rich exclusively of specific
functional elements such as TATA-box which is located at
–30∼–25 bp, GC-Box which is located at –110∼–80 bp, CAAT-
Box which is located at –80∼–70 bp, etc. This results in high
classification accuracy in due to huge disparity between the
positive and negative samples in terms of sequence structure.
Additionally, the classification task becomes effortless to
achieve, for instance, the CNN models will just rely on the
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presence or absence of some motifs at their specific positions
to make the decision on the sequence type. Thus, these models
have very low precision/sensitivity (high false positive) when
they are tested on genomic sequences that have promoter
motifs but they are not promoter sequences. It is well known
that there are more TATAAA motifs in the genome than
the ones belonging to the promoter regions. For instance,
alone the DNA sequence of the human chromosome 1,
ftp://ftp.ensembl.org/pub/release-57/fasta/homo_sapiens/dna/,
contains 151 656 TATAAA motifs. It is more than the
approximated maximal number of genes in the total human
genome. As an illustration of this issue, we notice that when
testing these models on non-promoter sequences that have
TATA-box they misclassify most of these sequences. Therefore,
in order to generate a robust classifier, the negative set should be
selected carefully as it determines the features that will be used by
the classifier in order to discriminate the classes. The importance
of this idea has been demonstrated in previous works such as
(Wei et al., 2014). In this work, we mainly address this issue
and propose an approach that integrates some of the positive
class functional motifs in the negative class to reduce the model’s
dependency on these motifs. We utilize a CNN combined with
LSTM model to analyze sequence characteristics of human and
mouse TATA and non-TATA eukaryotic promoters and build
computational models that can accurately discriminate short
promoter sequences from non-promoter ones.

2. MATERIALS AND METHODS

2.1. Dataset
The datasets, which are used for training and testing the
proposed promoter predictor, are collected from human and
mouse. They contain two distinctive classes of the promoters
namely TATA promoters (i.e., the sequences that contain TATA-
box) and non-TATA promoters. These datasets were built
from Eukaryotic Promoter Database (EPDnew) (Dreos et al.,
2012). The EPDnew is a new section under the well-known
EPD dataset (Périer et al., 2000) which is annotated a non-
redundant collection of eukaryotic POL II promoters where
transcription start site has been determined experimentally.
It provides high-quality promoters compared to ENSEMBL
promoter collection (Dreos et al., 2012) and it is publically
accessible at https://epd.epfl.ch//index.php. We downloaded
TATA and non-TATA promoter genomic sequences for each
organism from EPDnew. This operation resulted in obtaining
four promoter datasets namely: Human-TATA, Human-non-
TATA, Mouse-TATA, and Mouse-non-TATA. For each of these
datasets, a negative set (non-promoter sequences) with the same
size of the positive one is constructed based on the proposed
approach as described in the following section. The details on the
numbers of promoter sequences for each organism are given in
Table 1. All sequences have a length of 300 bp and were extracted
from -249∼+50 bp (+1 refers to TSS position). As a quality
control, we used 5-fold cross-validation to assess the proposed
model. In this case, 3-folds are used for training, 1-fold is used for
validation, and the remaining fold is used for testing. Thus, the

TABLE 1 | Statistics of the four datasets used in this study.

Oganism Promoter seq. Non promoter seq. Length (bp) Location

Human-TATA 3,065 3,065 300 –249∼50

Human-non-TATA 26,532 26,532 300 –249∼50

Mouse-TATA 3,305 3,305 300 –249∼50

Mouse-non-TATA 21,804 21,804 300 –249∼50

proposed model is trained 5 times and the overall performance
of the 5-fold is calculated.

2.2. Negative Dataset Construction
In order to train a model that can accurately perform promoter
and non-promoter sequences classification, we need to choose
the negative set (non-promoter sequences) carefully. This point
is crucial in making a model capable of generalizing well, and
therefore able to maintain its precision when evaluated on more
challenging datasets. Previous works, such as (Qian et al., 2018),
constructed negative set by randomly selecting fragments from
genome non-promoter regions. Obviously, this approach is not
completely reasonable because if there is no intersection between
positive and negative sets. Thus, the model will easily find basic
features to separate the two classes. For instance, TATAmotif can
be found in all positive sequences at a specific position (normally
28 bp upstream of the TSS, between –30 and –25 pb in our
dataset). Therefore, creating negative set randomly that does not
contain this motif will produce high performance in this dataset.
However, the model fails at classifying negative sequences that
have TATA motif as promoters. In brief, the major flaw in this
approach is that when training a deep learning model it only
learns to discriminate the positive and negative classes based the
presence or absence of some simple features at specific positions,
which makes these models impracticable. In this work, we aim to
solve this issue by establishing an alternativemethod to derive the
negative set from the positive one.

Our method is based on the fact that whenever the features
are common between the negative and the positive class the
model tends, when making the decision, to ignore or reduce its
dependency on these features (i.e., assign low weights to these
features). Instead, the model is forced to search for deeper and
less obvious features. Deep learning models generally suffer from
slow convergence while training on this type of data. However,
this method improves the robustness of the model and ensures
generalization. We reconstruct the negative set as follows. Each
positive sequence generates one negative sequence. The positive
sequence is divided into 20 subsequences. Then, 12 subsequences
are picked randomly and substituted randomly. The remaining
8 subsequences are conserved. This process is illustrated in
Figure 1. Applying this process to the positive set results in new
non-promoter sequences with conserved parts from promoter
sequences (the unchanged subsequences, 8 subsequences out of
20). These parameters enable generating a negative set that has
32 and 40% of its sequences containing conserved portions of
promoter sequences. This ratio is found to be optimal for having
robust promoter predictor as explained in section 3.2. Because
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FIGURE 1 | Illustration of the negative set construction method. Green represents the randomly conserved subsequences while red represents the randomly chosen

and substituted ones.

FIGURE 2 | The sequence logo in human TATA promoter for both positive set (A) and negative set (B). The plots show the conservation of the functional motifs

between the two sets.

the conserved parts occupy the same positions in the negative
sequences, the obvious motifs such as TATA-box and TSS are
now common between the two sets with a ratio of 32∼40%.
The sequence logos of the positive and negative sets for both
human and mouse TATA promoter data are shown in Figures 2,
3, respectively. It can be seen that the positive and the negative
sets share the same basic motifs at the same positions such as
TATA motif at the position -30 and –25 bp and the TSS at the
position +1 bp. Therefore, the training is more challenging but
the resulted model generalizes well.

2.3. The Proposed Models
We propose a deep learning model that combines convolution
layers with recurrent layers as shown in Figure 4. It accepts a
single raw genomic sequence, S={N1,N2, ...,Nl} where N∈ {A,

C, G, T} and l is the length of the input sequence, as input and
outputs a real-valued score. The input is one-hot encoded and
represented as a one-dimensional vector with four channels. The
length of the vector l=300 and the four channels are A, C, G,
and T and represented as (1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0
0 1), respectively. In order to select the best performing model,
we have used grid search method for choosing the best hyper-
parameters. We have tried different architectures such as CNN
alone, LSTM alone, BiLSTM alone, CNN combined with LSTM.
The tuned hyper-parameters are the number of convolution
layers, kernel size, number of filters in each layer, the size of
the max pooling layer, dropout probability, and the units of
Bi-LSTM layer.

The proposed model starts with multiple convolution layers
that are aligned in parallel and help in learning the important

Frontiers in Genetics | www.frontiersin.org 4 April 2019 | Volume 10 | Article 286

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Oubounyt et al. DeePromoter

FIGURE 3 | The sequence logo in mouse TATA promoter for both positive set (A) and negative set (B). The plots show the conservation of the functional motifs

between the two sets.

FIGURE 4 | The architecture of the proposed DeePromoter model.

motifs of the input sequences with different window size. We use
three convolution layers for non-TATA promoter with window
sizes of 27, 14, and 7, and two convolution layers for TATA
promoters with window sizes of 27, 14. All convolution layers are
followed by ReLU activation function (Glorot et al., 2011), a max
pooling layer with a window size of 6, and a dropout layer of a
probability 0.5. Then, the outputs of these layers are concatenated
together and fed into a bidirectional long short-term memory
(BiLSTM) (Schuster and Paliwal, 1997) layer with 32 nodes in
order to capture the dependencies between the learnt motifs
from the convolution layers. The learnt features after BiLSTM
are flattened and followed by dropout with a probability of 0.5.
Then we add two fully connected layers for classification. The
first one has 128 nodes and followed by ReLU and dropout with

a probability of 0.5 while the second layer is used for prediction
with one node and sigmoid activation function. BiLSTM allows
the information to persist and learn long-term dependencies of
sequential samples such as DNA and RNA. This is achieved
through the LSTM structure which is composed of a memory cell
and three gates called input, output, and forget gates. These gates
are responsible for regulating the information in thememory cell.
In addition, utilizing the LSTM module increases the network
depth while the number of the required parameters remains
low. Having a deeper network enables extracting more complex
features and this is the main objective of our models as the
negative set contains hard samples.

The Keras framework is used for constructing and training
the proposed models (Chollet F. et al., 2015). Adam optimizer
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(Kingma and Ba, 2014) is used for updating the parameters with
a learning rate of 0.001. The batch size is set to 32 and the
number of epochs is set to 50. Early stopping is applied based
on validation loss.

3. RESULTS AND DISCUSSION

3.1. Performance Measures
In this work, we use the widely adopted evaluation metrics
for evaluating the performance of the proposed models. These
metrics are precision, recall, and Matthew correlation coefficient
(MCC), and they are defined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Mcc =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

Where TP is true positive and represents correctly identified
promoter sequences, TN is true negative and represents correctly
rejected promoter sequences, FP is false positive and represents
incorrectly identified promoter sequences, and FN is false
negative and represents incorrectly rejected promoter sequences.

3.2. Effect of the Negative Set
When analyzing the previously published works for promoter
sequences identification we noticed that the performance of those
works greatly depends on the way of preparing the negative
dataset. They performed very well on the datasets that they
have prepared, however, they have a high false positive ratio
when evaluated on a more challenging dataset that includes
non-prompter sequences having common motifs with promoter
sequences. For instance, in case of the TATA promoter dataset,
the randomly generated sequences will not have TATA motif at
the position -30 and –25 bp which in turn makes the task of

classification easier. In other words, their classifier depended on
the presence of TATA motif to identify the promoter sequence
and as a result, it was easy to achieve high performance
on the datasets they have prepared. However, their models
failed dramatically when dealing with negative sequences that
contained TATA motif (hard examples). The precision dropped
as the false positive rate increased. Simply, they classified these
sequences as positive promoter sequences. A similar analysis is
valid for the other promoter motifs. Therefore, the main purpose
of our work is not only achieving high performance on a specific
dataset but also enhancing the model ability on generalizing well
by training on a challenging dataset.

To more illustrate this point, we train and test our
model on the human and mouse TATA promoter datasets
with different methods of negative sets preparation. The first
experiment is performed using randomly sampled negative
sequences from non-coding regions of the genome (i.e., similar
to the approach used in the previous works). Remarkably, our
proposed model achieves nearly perfect prediction accuracy
(precision=99%, recall=99%, Mcc=98%) and (precision=99%,
recall=98%, Mcc=97%) for both human and mouse, respectively.
These high results are expected, but the question is whether
this model can maintain the same performance when evaluated
on a dataset that has hard examples. The answer, based on

TABLE 2 | Comparison of the DeePromoter with the state-of-the-art method.

Oganism Method Precision Recall Mcc

DeePromoter 0.93 0.95 0.88

Human TATA CNNProm 0.75 0.91 0.62

DeePromoter 0.97 0.95 0.92

Human non-TATA CNNProm 0.58 0.83 0.26

DeePromoter 0.92 0.95 0.87

Mouse TATA CNNProm 0.68 0.96 0.56

DeePromoter 0.91 0.90 0.82

Mouse non-TATA CNNProm 0.54 0.86 0.17

FIGURE 5 | The effect of different conservation ratios of TATA motif in the negative set on the performance in case of TATA promoter dataset for both human (A) and

mouse (B).
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FIGURE 6 | The saliency map of the region –40 bp to 10 bp, which includes the TATA-box, in case of human TATA promoter sequences.

FIGURE 7 | The saliency map of the region –40 bp to 10 bp, which includes the TATA-box, in case of mouse TATA promoter sequences.

analyzing the prior models, is no. The second experiment is
performed using our proposed method for preparing the dataset
as explained in section 2.2. We prepare the negative sets that
contain conserved TATA-box with different percentages such as
12, 20, 32, and 40% and the goal is reducing the gap between
the precision and the recall. This ensures that our model learns
more complex features rather than learning only the presence
or absence of TATA-box. As shown in Figures 5A,B the model
stabilizes at the ratio 32∼40% for both human and mouse TATA
promoter datasets.

3.3. Results and Comparison
Over the past years, plenty of promoter region prediction tools
have been proposed (Hutchinson, 1996; Scherf et al., 2000; Reese,
2001; Umarov and Solovyev, 2017). However, some of these
tools are not publically available for testing and some of them
require more information besides the raw genomic sequences.
In this study, we compare the performance of our proposed
models with the current state-of-the-art work, CNNProm, which
was proposed by Umarov and Solovyev (2017) as shown in
Table 2. Generally, the proposed models, DeePromoter, clearly
outperform CNNProm in all datasets with all evaluation metrics.
More specifically, DeePromoter improves the precision, recall,
and MCC in the case of human TATA dataset by 0.18, 0.04,
and 0.26, respectively. In the case of human non-TATA dataset,
DeePromoter improves the precision by 0.39, the recall by
0.12, and MCC by 0.66. Similarly, DeePromoter improves the
precision, and MCC in the case of mouse TATA dataset by 0.24
and 0.31, respectively. In the case of mouse non-TATA dataset,
DeePromoter improves the precision by 0.37, the recall by 0.04,
and MCC by 0.65. These results confirm that CNNProm fails to
reject negative sequences with TATA promoter, therefore, it has
high false positive. On the other hand, our models are able to deal
with these cases more successfully and false positive rate is lower
compared with CNNProm.

For further analyses, we study the effect of alternating
nucleotides at each position on the output score. We focus on
the region –40 and 10 bp as it hosts the most important part of

the promoter sequence. For each promoter sequence in the test
set, we perform computational mutation scanning to evaluate
the effect of mutating every base of the input subsequence (150
substitutions on the interval –40∼10 bp subsequence). This is
illustrated in Figures 6, 7 for human and mouse TATA datasets,
respectively. Blue color represents a drop in the output score due
to mutation while the red color represents the increment of the
score due to mutation. We notice that altering the nucleotides to
C or G in the region –30 and –25 bp reduces the output score
significantly. This region is TATA-box which is a very important
functional motif in the promoter sequence. Thus, our model is
successfully able to find the importance of this region. In the rest
of the positions, C and G nucleotides are more preferable than A
and T, especially in case of the mouse. This can be explained by
the fact that the promoter region has more C and G nucleotides
than A and T (Shi and Zhou, 2006).

4. CONCLUSION

Accurate prediction of promoter sequences is essential for
understanding the underlying mechanism of the gene regulation
process. In this work, we developed DeePromoter -which is
based on a combination of convolution neural network and
bidirectional LSTM- to predict the short eukaryote promoter
sequences in case of human and mouse for both TATA
and non-TATA promoter. The essential component of this
work was to overcome the issue of low precision (high false
positive rate) noticed in the previously developed tools due to
the reliance on some obvious feature/motifs in the sequence
when classifying promoter and non-promoter sequences. In
this work, we were particularly interested in constructing a
hard negative set that drives the models toward exploring
the sequence for deep and relevant features instead of only
distinguishing the promoter and non-promoter sequences based
on the existence of some functional motifs. The main benefits of
using DeePromoter is that it significantly reduces the number
of false positive predictions while achieving high accuracy on
challenging datasets. DeePromoter outperformed the previous

Frontiers in Genetics | www.frontiersin.org 7 April 2019 | Volume 10 | Article 286

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Oubounyt et al. DeePromoter

method not only in the performance but also in overcoming
the issue of high false positive predictions. It is projected that
this framework might be helpful in drug-related applications
and academia.
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