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Improvement of the growth rate is a challenge in the pig industry, the Average Daily

Gain (ADG) and Days (AGE) to 100 kg are directly related to growth performance. We

performed genome-wide association study (GWAS) and genetic parameters estimation

for ADG and AGE using the genomic and phonemic from four breed (Duroc, Yorkshire,

Landrace, and Pietrain) populations. All analyses were performed by a multi-loci GWAS

model, FarmCPU. The GWAS results of all four breeds indicate that five genome-wide

significant SNPs were associated with ADG, and the nearby genomic regions explained

4.08% of the genetic variance and 1.90% of the phenotypic variance, respectively.

For AGE, six genome-wide significant SNPs were detected, and the nearby genomic

regions explained 8.09% of the genetic variance and 3.52% of phenotypic variance,

respectively. In total, nine candidate genes were identified to be associated with growth

and metabolism. Among them, TRIB3 was reported to associate with pig growth, GRP,

TTR, CNR1, GLP1R, BRD2, HCRTR2, SEC11C, and ssc-mir-122 were reported to

associate with growth traits in human and mouse. The newly detected candidate genes

will advance the understanding of growth related traits and the identification of the novel

variants will suggest a potential use in pig genomic breeding programs.

Keywords: GWAS, pig, growth traits, ADG, AGE

INTRODUCTION

Growth rate is a vital economic trait and significantly affected pig production (Fontanesi et al.,
2014; Ding et al., 2018). It is usually measured by Average Daily Gain (ADG), which is average
daily weight gain within a certain period as well as Age (AGE) that adjusted to a certain weight.
ADG and AGE are directly related to the pig growth and commonly used in pig breeding. Both
traits are in moderate heritability and can be efficiently selected by modern breeding techniques
(Hoque et al., 2007).

Many growth traits relevant candidate genes were identified since the development of
sequencing technology. Up to now, 609 Quantitative Trait Loci (QTLs) were reported that
associated with ADG and AGE (Hu et al., 2016). Previous researches have shown a series of
candidate genes of ADG and AGE. XIRP2 andMC4R gene were reported that associated with both
ADG and residual feed intake (RFI) in pure Duroc population (Onteru et al., 2013; Do et al., 2014).
The SOGA1 gene and ZFPM2 gene were identified to associate with both ADG and AGE in pure
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Duroc population (Do et al., 2014; Meng et al., 2017). The IGSF3
and IGF2 gene were detected to associated with ADG in an Italian
Large White pig population (Van Laere et al., 2003; Fontanesi
et al., 2014).

The genetic architectures of growth traits are usually
complex and generally controlled by multiple gene. With the
developments of cost effective genotyping technology, Genome-
wide association study (GWAS) has been widely used for
mapping candidate genes of complex traits (Cantor et al.,
2010; Korte and Farlow, 2013). Mixed linear model (MLM),
which simultaneously incorporates principal components as
fixed effects and individual additive effects as random effects, has
become one of the most popular models used in GWAS (Yu et al.,
2006). Multiple algorithms have been developed to boost both the
computational efficiency and statistical power of MLM methods
(Kang et al., 2008; Zhou and Stephens, 2012). However, previous
studies indicated that the confounding problem decreased the
power of MLM for detecting candidate genes that associated
with population structure, especially in a population with explicit
population structure. Many GWAS analyses for growth traits
were carried out in single breed with limited sample size (Ding
et al., 2018). Therefore, the candidate genes that contributed to
the variation among breeds were always missed. Our previous
study introduced FarmCPU method, which is a multiple loci
model and split the MLM into separated fixed effect model
and random effect model and iteratively uses above two models
(Liu et al., 2016). A series of studies in both livestock and
plant indicated that FarmCPU detected more candidate genes
by solving the confounding problem (Kaler et al., 2017; Kusmec
et al., 2017; Meng et al., 2017; Wang et al., 2018).

In this study, GWAS was conducted in a population of 4,865
pigs composed of four pure breeds (Duroc, Yorkshire, Landrace,
and Pietrain) for mapping candidate genes underlying ADG and
AGE traits. Estimation of genetic parameters, such as heritability
was also carried out. The detected candidate genes, potential
breeding markers, and the better understanding on genetic
architectures of ADG and AGE will benefit breeding programs.

MATERIALS AND METHODS

Animals and Phenotypes
Animals used in this study were from two isolated farms, and
composed of four pure breeds, including Duroc, Yorkshire,
Landrace, and Pietrain (Supplementary Table S1). ADG and
AGE were measured from 70 to 115 kg, and then adjusted to
100 kg. AGE was adjusted to 100 kg using formula below:

AGE adjusted to 100kg=Measured age

−

[

(

Measured weight − 100KG
)

Correction factor

]

where correction factors are different for sire and dam, and the
formulas are shown below:

Sire: Correction factor=
Measured weight

Measured age
∗1.826

Dam: Correction factor=
Measured weight

Measured age
∗1.715

ADG was calculated by following equation:

ADG adjusted to 100kg=
100 kg

AGE adjusted to 100 kg

In total, 31,173 phenotypic observations from farm 1 and 24,374
phenotypic observations from farm 2 were recorded. Tail and ear
tissue samples were collected and preserved with 75% alcohol and
were stored in−20◦C freezers.

Genotyping, Imputation, and Quality
Control
Genomic DNA was extracted from frozen collected ear tissue
samples using Tecan Freedom EVO NGS workstation and
TIANGEN magnetic animal tissue genomic DNA kit. DNA
samples with concentration ≥40ng/µl, quantity ≥ 1 µg, and
passed gel electrophoresis test were used for genotyping. A total
of 4,865 DNA samples, including 1,595 samples from farm 1
and 3,270 samples from farm 2 were genotyped by Illumina
PorcineSNP50 Bead Chip, which includes 50,697 SNPs, and all
SNP markers were mapped to Sus scrofa genome build 11.1
(Ramos et al., 2009). The data in PLINK binary format is available
at https://figshare.com/articles/pig-growth-data_zip/7533020.

Missing genotype data were fully imputed by FImpute version
2.2 (Sargolzaei et al., 2014). Data quality control was performed
by PLINK and G2P software before and after imputation (Chang
et al., 2015; Tang and Liu, 2019). The data was filtered by
genotype call rate >0.9, Minor Allele Frequency (MAF) < 0.01,
and individuals with SNP marker call rate <0.9 and missing
phenotypic records were also removed. The remaining data was
used for the subsequent analysis (Supplementary Table S1).

Estimation of Genetic Parameters
Genetic parameters, including genetic variance, residual variance,
and heritability were estimated using Average Information -
Restricted Maximum Likelihood algorithm (AI-REML) in an
R procedure (Gilmour et al., 1995). The parameters were
estimated by three methods, including pedigree-based Best
Linear Unbiased Prediction (aBLUP), genomic BLUP (gBLUP),
and single-step BLUP (ssBLUP) (Henderson, 1975; VanRaden,
2008; Aguilar et al., 2010). All BLUP models can be written as:

y=Xb+ Zu+ e

where y is a vector of phenotypic observations; b and u represent
fixed effects and breeding values, respectively; X and Z were
design matrices for b and u, respectively; e represents the residual
error vector with a normal distribution of e∼N(0,Iσ 2

e ), where
I was an identity matrix and σ 2

e is residual variance. In aBLUP
model, u∼N(0,Aσ

2
u), in which σ 2

u is additive genetic variance
and A is an additive genetic relationship matrix that derived
from pedigree records; In gBLUP model, A is replaced by G and
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u∼N(0,Gσ
2
u), G is derived from genomic information and can be

constructed by VanRaden method:

G=
M

′

M

2
∑m

i=1 pi(1−pi)

whereM is am×n standardized genotypematrix,m is themarker
size and n is the number of genotyped individuals, pi is the minor
allele frequency of the ith genetic marker; In ssBLUP method,
u∼(0,Hσ

2
u) and the relationship matrix H is derived from both

pedigree records and genomic information simultaneously using
the following equation:

H =

(

A11−A12A
−1
22 A21+A12A

−1
22 GA

−1
22 A21 A12A

−1
22 G

GA−1
22 A21 G+αA22

)

Individuals are assigned to different groups based on available
information. The group with footer 1 represents individuals
that only have pedigree information and group with footer 2

represents individuals that have both pedigree and genomic
information. The A11 and A22 represent the relationship among
individuals within group 1 and group 2, respectively, A12

represents the relationship among individuals between group 1

and group 2 and A21 is the transpose of A12, α is the ratio for
combing G and A22 matrix and set to 0.05 in this study.

Genome-Wide Association Study
Association tests were performed by a multi loci model,
FarmCPU (Liu et al., 2016). FarmCPU model iteratively uses
fixed effect model and random effect model. The top three
columns of principal components, sex, farm effects, and pseudo
QTNs (Quantitative Trait Nucleotides) were added as covariates
in the fixed effect model for association tests and the model can
be written as:

y=Pbp+Mtbt+Sjdj+e

where y is phenotypic observation vector; P is a matrix of fixed
effects, including top three principal components, sex, and farm
effects; Mt is the genotype matrix of t pseudo QTNs that used
as fixed effects; bp and bt are the relevant design matrices for
P and Mt , respectively; Si is the ith marker to be tested and dj
is the corresponding effect; e is the residual effect vector and
e∼N(0,Iσ 2

e ). Random effect model is used for selecting the most
appropriate pseudo QTNs. The model is written as:

y=u+e

where y and e stay the same as in fixed effect model; u is the
genetic effect and u∼N(0,Kσ

2
u), in which K is the relationship

matrix that defined by pseudo QTNs.
The Bonferroni correction threshold for multiple tests was

used for detecting the genome-wide significant SNPs, which
defined as α/K (α = 0.05 and K is the number of SNPs)
(Nicodemus et al., 2005).

Variance Explained by Candidate Regions
Candidate region is defined as the genomic region that
located within 1Mb upstream and downstream of the genome-
wide significant SNPs. The proportion of genetic variance
and phenotypic variance explained by candidate regions are
estimated in a mixed linear model with multiple random effects.
The model can be written as:

y=Xb+ Ziui + e

where y, Xb, and e are the same as described in 2.3. ui represents
the ith random effect and ui∼N(0,kiσ

2
ui), in which ki and σ 2

ui

represent the variance covariance matrix and variance of the
ith random effect, respectively.

In this study, k1 is a relationship matrix that defined by
all SNPs within the candidate regions and k2 is constructed
by the rest of SNPs. The ratio between σ 2

u1 and the sum of
σ 2
u1 and σ 2

u2 is defined as the proportion of genetic variance
explained by candidate regions. The proportion of phenotypic
variance explained by candidate regions can be calculated as the
ratio between σ 2

u1 and the phenotypic variance. Additionally, the
variance explained by randomly selected genomic regions was
recognized as null distribution and compared with the variance
explained by the candidate regions.

Identification of Candidate Genes
The candidate genes nearby the genome-wide significant SNPs
were identified by Ensembl database using the gene annotation
information of Sus scrofa genome version v11.1 (www.
ensembl.org/biomart/). The genomic locations were downloaded
from https://www.animalgenome.org/pig/ and genes within the
candidate region are considered as candidate genes.

RESULTS

Summary Information of Phenotype Data,
Genotype Data, and Population Structure
Summary statistics of both ADG and AGE were analyzed
and shown in Table 1 and Supplementary Table S2. Both traits
followed normal distribution and phenotypic distribution is
plotted in Supplementary Figure S1. The genotype data of
the four breeds includes 4,260 individuals with 47,157 SNPs
and SNP density plot of each chromosome is shown in
Supplementary Figure S2. Principal component analysis (PCA)
was carried out and the scatterplot of the first two principal
components are displayed in Supplementary Figures S3, S4.

Estimation of Genetic Parameters
Genetic variance, residual variance, and heritability of ADG and
AGE that adjusted to 100 kg on two farms were estimated by AI-
REML using three models for data of all four breeds. Heritability
was calculated by dividing genetic variance with the sum of
genetic variance and residual variance. All estimated genetic
parameters are shown in Table 2. The heritability estimations
by the three methods are ranged between 0.408 and 0.562, and
0.444 and 0.572 for ADG and AGE, respectively. The results
indicate that the heritabilities of ADG and AGE in two farms
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are similar and Farm2 has higher phenotypic variation compared
with Farm1.

GWAS Results of ADG and AGE for
All Breeds
For ADG trait, 5 genome-wide significant SNPs were detected
and the candidate regions are located on chromosome 1, 3, 6,
10, and 13 (Figure 1). Linkage disequilibrium (LD) analysis was
conducted using pooling data of the four breeds and the LD
decay is shown in Supplementary Figure S5. The results indicate
that LD decay tends to be stable when the distance is 1Mb.
Therefore, genes that located within 1Mb nearby the significant
SNPs are defined as candidate genes. The detailed information of
top ten significant SNPs, including SNP ID, Chromosome (Chr),
Physical positions, P-value, and candidate genes are provided
in Table 3.

We consider the genomic region that located within 1Mb
distance on either side of the significant SNPs as candidate region.
For ADG, the five candidate regions explained 4.08 and 1.90%
of the genetic and phenotypic variance, respectively. In contrast,
a randomly selected five regions across the whole genome
repeated for 50 times, on average, five randomly selected genomic
regions could only explain 0.663 and 0.311% of the genetic and

TABLE 1 | Summary statistics of ADG and AGE that adjusted to 100 kg for all

breeds.

Traits Farm Mean ± SD* Median CV* Population size

ADG Farm1 0.64 ± 0.035 0.64 0.055 1,567

Farm2 0.62 ± 0.052 0.62 0.083 2,693

ALL 0.63 ± 0.047 0.63 0.075 4,260

AGE Farm1 154.38 ± 8.522 154.07 0.055 1,567

Farm2 159.25 ± 13.542 158.27 0.085 2,693

ALL 157.46 ± 12.171 156.33 0.077 4,260

*SD, Standard Deviation; CV, Coefficient of Variation.

phenotypic variance, respectively. The detailed information is
shown in Table 4.

Six genome-wide significant SNPs were detected in AGE trait
and detailed information of top ten significant SNPs is shown
in Table 5. These candidate genomic regions explained 8.09 and
3.52% of the total genetic and phenotypic variance for AGE,
respectively. In comparison, a randomly selected six regions
across the whole genome repeated for 50 times, on average, can
only explained 0.669 and 0.304% of the genetic variance and
phenotypic variance (Table 4), respectively. Due to the genetic
correlation between ADG and AGE, two SNPs that located on
chromosome 1 and chromosome 6 are detected in both traits and
marked with dotted line in Figure 1.

GWAS Results of ADG and AGE for
Single Breed
GWAS analyzes for single breed were also carried out.
Six genome-wide significant SNPs were detected for both
ADG and AGE traits by Duroc population (Figure 2,
Supplementary Table S3). Among the significant SNPs detected
by Duroc population, there are two signals are consistent with
the genome-wide significant SNPs detected by the data of all
breeds. GWAS results of Landrace, Yorkshire, and Pietrain are
displayed in Figures 3–5. The detailed information of top ten
significant SNPs detected by the single breed population are
shown in Supplementary Tables S4–S6.

DISCUSSION

Most target economic traits in livestock are quantitative traits
and usually with a complex genetic architectures. Therefore,
revealing the candidate genes underlying these traits is always
the attractive area of research in livestock genetics and breeding
(Goddard and Hayes, 2009; Hou and Zhao, 2013). Since the
GWAS research on age-related macular degeneration of the
retina was published, GWAS has become one of the most
popular method for identifying candidate genes that associated

TABLE 2 | Estimation of genetic parameters for ADG and AGE that adjusted to 100 kg.

Trait Farm Models Additive genetic variance ± SE* Residual variance ± SE* h2 ± SE*

ADG Farm1 ssBLUP 0.000785 ± 0.0000 0.00105 ± 0.0000 0.428 ± 0.0114

gBLUP 0.000623 ± 0.0001 0.000611 ± 0.0000 0.505 ± 0.0484

aBLUP 0.000725 ± 0.0000 0.00105 ± 0.0000 0.408 ± 0.0112

Farm2 ssBLUP 0.00161 ± 0.0001 0.00134 ± 0.0000 0.544 ± 0.0134

gBLUP 0.00146 ± 0.0001 0.00114 ± 0.0001 0.562 ± 0.0329

aBLUP 0.00136 ± 0.0001 0.00138 ± 0.0000 0.496 ± 0.0139

AGE Farm1 ssBLUP 62.868 ± 2.1715 71.557 ± 1.2309 0.468 ± 0.0122

gBLUP 34.965 ± 4.6381 35.397 ± 2.6717 0.497 ± 0.0486

aBLUP 57.625 ± 1.9962 72.181 ± 1.2182 0.444 ± 0.0120

Farm2 ssBLUP 131.227 ± 4.5365 98.340 ± 2.2884 0.572 ± 0.0134

gBLUP 100.574 ± 9.4161 81.417 ± 4.2342 0.553 ± 0.0331

aBLUP 109.280 ± 3.9940 102.275 ± 2.3317 0.517 ± 0.0141

*SE, Standard Error.
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FIGURE 1 | Manhattan plots and Quantile-Quantile (QQ) plots of both ADG and AGE traits for all breeds. The points of genome-wide significant SNPs are colored in

red. There are two SNPs that detected in both traits are marked with dotted lines.

TABLE 3 | Summary information of top 10 significant SNPs for ADG trait.

SNP ID Chr Physical position (bp) P-value Candidate genes

WU_10.2_1_179575045 1 161,987,727 4.24E-12 GRP, SEC11C

Affx-114707063 6 114,632,185 2.17E-09 TTR

WU_10.2_10_25384240 10 20,774,539 3.70E-09 CAPN2

DRGA0012293 13 34,889,004 1.42E-07 TNNC1

WU_10.2_3_47794141 3 46,520,543 3.62E-07 STARD7

WU_10.2_3_4365368 3 3,714,738 1.79E-06 ACTB

ASGA0072627 16 22,729,510 1.92E-06 NIPBL

MARC0071621 13 48,304,723 3.24E-06 SUCLG2

MARC0005049 13 118,274,633 3.87E-06 ACTL6A

H3GA0020255 7 20,299,952 4.39E-06 SCGN

with target traits (Klein et al., 2005). With the developments of
commercialized high density SNP Chips for multiple livestock
species, the GWAS has been widely used in livestock research
and breeding (Zhang et al., 2012; Wang et al., 2017). In this
study, the ADG and AGE traits of pigs from two separated farms
were obtained. A population of 5,000 individuals of four pure
breeds were genotyped by 50K SNP Chip. For all breeds, a total
of 4,260 individuals with 47,157 SNPs were used for association
tests using the FarmCPU method, which is a multi-loci GWAS
model. For both ADG and AGE, nine genome-wide significant
SNPs were detected using data of all four breeds, including two
common detected signals. The candidate regions were evaluated
in a mixed linear model with multiple random effects for the
variance contribution and explained about 4–8% of the genetic
variance and 2–3% of the phenotypic variance.

ADG and AGE are perfectly correlated after take the
log transformation. A trait and its inverse values or log
transformation values take different assumptions for the genetic
architectures. For a trait with complex genetic architecture,
common used hypothesis assume that the effects of genes are
linear. However, there exist some restrictions of the phenotype

and some genes that don’t directly affect the trait may also restrict
its maximum or minimum. The effects of genes are not always
equally contributed to every level of the trait and the effects
of genes are non-linear sometimes. The linear assumption fits
perfectly near the average value of traits, but it may lose its
fitness near the boundary of the trait. The non-linear assumption
utilizes the information near boundary more effectively. Due
to the inverse relationship of ADG and AGE, the analyzes on
both traits seem like to use different modeling way to detect the
candidate genes underlying the pig growth rate. From the results,
we can also see that ADG and AGE have some common detected
signals and some disagreements were also found as well.

The heritabilities of both ADG and AGE traits were estimated
by three models including aBLUP, gBLUP and ssBLUP using
the pooling data of the four breeds. The heritabilities of ADG
and AGE traits are 0.41∼0.56 and 0.44∼0.57, respectively.
Previous research also reported that ADG is a moderate
heritability trait and its heritability is approximately 0.45∼0.49
in a Duroc population (Gilbert et al., 2007; Hoque et al.,
2009). Comparing the heritabilities that estimated by three
models, the standard error of gBLUP model is higher than the
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TABLE 4 | The proportion of genetic variance and phenotypic variance explained by candidate regions.

Trait No. of randomly selected regions Vg ± SE Vp ± SE No. candidate regions Vg Vp

ADG 5 0.663 ± 0.0013% 0.311 ± 0.0006% 5 4.08% 1.90%

AGE 6 0.669 ± 0.0010% 0.304 ± 0.0005% 6 8.09% 3.52%

Vg, Proportion of Genetic Variance; Vp, Proportion of Phenotypic Variance.

TABLE 5 | Summary information of top ten significant SNPs for AGE trait.

SNP ID Chr Physical position (bp) P-value Candidate genes

WU_10.2_1_179575045 1 161,987,727 3.91E-12 GRP

WU_10.2_8_3769689 8 3,371,469 2.74E-08 AFAP1

Affx-114707063 6 114,632,185 6.32E-08 TTR

MARC0065740 1 57,399,350 2.73E-07 CNR1

WU_10.2_3_47139500 3 45,234,651 6.99E-07 ACOXL

MARC0005049 13 118, 274, 633 8.70E-07 DNAJC19

WU_10.2_7_123699934 7 116,483,173 1.41E-06 CLMN

WU_10.2_1_29330685 1 26,181,399 2.47E-06 PEX7

MARC0010417 9 121,197,647 2.88E-06 SOAT1

ASGA0022397 4 115,787,208 3.49E-06 COL11A1

FIGURE 2 | Manhattan plots and Quantile-Quantile (QQ) plots for both ADG and AGE traits of Duroc breed. The signals of genome-wide significant SNPs are colored

in red. There are four SNPs that detected in both traits are marked with dotted lines.

other two models because of the small genotyped population
size (Gutierrez et al., 2018). The ssBLUP method utilizes the
pedigree and genomic information simultaneously and the
estimated genetic parameters are theoretically more accurate
(Meuwissen et al., 2016).

Using data of all breeds, there are two SNPs detected in
both ADG and AGE traits, which are WU_10.2_1_179575045
on chromosome 1 and Affx-114707063 on chromosome 6. GRP,
SEC11C (SEC11 homolog C), and ssc-mir-122 were identified
in the nearby candidate regions on chromosome 1. GRP is
a regulatory neuropeptide that stimulates gastric G cells to
release gastrin and regulate gastric acid secretion and intestinal

movement, which affects the food intake and may lead to
anorexia, bulimia, and obesity if lacked of the genes (Merali et al.,
1999). SEC11C is a homolog of SEC11, which is the only essential
factor for signal peptide processing and plays an important role in
protein processing, localization, and secretion. The lack of SEC11
will cause serious growth defects (Bohni et al., 1988). The ssc-
mir-122 is a highly evolutionarily conserved miRNA and it is
an important regulator of lipid metabolism (Esau et al., 2006).
A previous experiment shows that the weight and cholesterol
levels are increased with the decreased expression of ssc-mir-122
by feeding high-level cholesterol feed to mini pigs (Cirera et al.,
2010). Previous published researches also verified that MC4R

Frontiers in Genetics | www.frontiersin.org 6 April 2019 | Volume 10 | Article 302

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tang et al. GWAS on Growth Relevant Traits in Pigs

FIGURE 3 | Manhattan plots and Quantile-Quantile (QQ) plots for both ADG and AGE traits of Landrace breed. The signals of genome-wide significant SNPs are

colored in red.

FIGURE 4 | Manhattan plots and Quantile-Quantile (QQ) plots for both ADG and AGE traits of Yorkshire breed. The signals of genome-wide significant SNPs are

colored in red.

and GTF3C5 that located on chromosome 1, are candidate genes
for growth traits (Onteru et al., 2013; Quan et al., 2018). For
Affx-114707063 SNP on chromosome 6, the identified nearby
candidate gene is TTR, which is the main carrier of thyroid
hormone (T4) and plays an important role on growth and
energy metabolism (Richardson et al., 2007). The concentration
of TTR in the blood can be used to assess nutritional status.
Because of its short half-life, the concentration can better reflect
the nutritional levels of recent dietary intake (Shenkin, 2006).
Some researches verified that PGM1 (Phosphoglucomutase-1)
and FTO (Fat mass and obesity-associated protein) that located
on chromosome 6 significantly affected muscle development and
obesity, respectively (Onteru et al., 2013; Fontanesi et al., 2014).

The CNR1 gene located on chromosome 1, which next to
the significant SNP MARC0065740, is an appetite-related gene
and appetite is one of the important factors influencing growth

rate. CNR1 is the major receptor of anandamide that inhibits
gastrointestinal activity (Mathison et al., 2004). The CNR1
receptor inverse agonist rimonabant has been proved to reduce
the food intake in both human and mouse. In addition, when
the stomach is in contraction, which is a relatively active state,
CNR1 will promote the release of ghrelin, which increases the
palatability of food, and it is the origin of the appetite stimulating
effect (De Luca et al., 2012).

The SNP density limits the interpretation of GWAS hits
due to the different LD between SNP and QTLs in various
breeds. Therefore, GWAS was carried out on data of four breeds
separately as well. Two signals that detected in Duroc population
were consisted with GWAS results of all breeds and explained the
variability of the traits among breeds and within Duroc breed.
In addition, several genome-wide significant SNPs were detected
and contributed to the variability of traits within breeds. For
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FIGURE 5 | Manhattan plots and Quantile-Quantile (QQ) plots for both ADG and AGE traits of Pietrain breed. The signals of genome-wide significant SNPs are

colored in red.

Duroc breed, the GLP1R gene is identified nearby the genome-
wide significant SNP MARC0015804. It is a member of the
glucagon receptor family and controls the blood sugar level
(Brubaker and Drucker, 2002), in addition, it is also expressed in
the brain and has a role in appetite control (Kinzig et al., 2002).
The TRIB3 gene, which is identified nearby the M1GA0027226
marker on chromosome 17, was reported to be associated with
meat production traits in Italian heavy pigs (Fontanesi et al.,
2010). For Landrace breed, BRD2 and HCRTR2 genes were
identified nearby M1GA0027226 SNP on chromosome 7. The
knockout of BRD2 gene will cause obesity in mouse andHCRTR2
is a kind of orexin receptor, which plays a vital important role
in feeding behavior and balance of energy metabolism (Spinazzi
et al., 2006; Belkina and Denis, 2012).

CONCLUSIONS

In this study, we performed GWAS on approximately 5,000
purebred pigs that composed of four breeds from two separated
farms. All samples were genotyped by 50K SNP Chip. GWAS
was performed on ADG and AGE that adjusted to 100 kg
using FarmCPU model. A total of 27 genome-wide significant
SNPs were detected and two of them were detected in both
traits using the data of all breeds and Duroc breed. Nine
candidate genes were detected within 1Mb nearby the genome-
wide significant SNPs. Among them, TRIB3 on chromosome 17
was reported to be associated with meat production traits in
pigs; GRP, CNR1, SEC11C, and ssc-mir-122 on chromosome 1,
TTR on chromosome 6 and GLP1R, BRD2, and HCRTR2 gene
on chromosome 7 were reported to be associated with growth
traits in human and mouse. The newly detected significant
SNPs and newly identified candidate genes in this study can
be applied to pig breeding and the information could be also
incorporated in genomic selection for ADG and AGE traits to
achieve faster growth.
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