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Replicative senescence of cells in vitro is often considered as counterpart for aging
of the organism in vivo. In fact, both processes are associated with functional decay
and similar molecular modifications. On epigenetic level, replicative senescence and
aging evoke characteristic modifications in the DNA methylation (DNAm) pattern, but
at different sites in the genome. Various epigenetic signatures, which are often referred
to as epigenetic clocks, provide useful biomarkers: Senescence-associated epigenetic
modifications can be used for quality control of cell preparations or to elucidate
effects of culture conditions on the state of cellular aging. Age-associated epigenetic
modifications hold high expectations to determine chronological age in forensics or to
identify parameters that impact on biological aging. Despite these differences, there
are some striking similarities between senescence- and age-associated DNAm, such
as complete rejuvenation during reprogramming into induced pluripotent stem cells
(iPSCs). It is yet unclear what makes epigenetic clocks tick, but there is evidence that
the underlying mechanisms of both processes are related to similar modifications in the
histone code or higher order chromatin. Replicative senescence therefore appears to
be a suitable model system to gain better insight into how organismal aging might be
governed epigenetically.
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INTRODUCTION

Primary cells, which are taken directly from living tissues, can only be culture expanded for a
limited number of cell divisions before entering irreversible proliferation arrest (Campisi and
d’Adda di Fagagna, 2007). Since the first description of this phenomenon by Hayflick and Moorhead
(1961) it has been discussed if replicative senescence is merely a cell culture artifact, or if it is
directly related to aging of the organism. In fact, both processes are associated – and potentially
caused – by telomere attrition (Harley et al., 1990; Allsopp et al., 1992). Furthermore, accumulating
DNA damage and functional decline of mitochondria may contribute to metabolic dysfunction
(Sun et al., 2016; McHugh and Gil, 2018). Additional commonalities of senescence and aging
include alteration of cellular morphology, metabolic changes, loss of differentiation potential,
activation of the p53/p21CIP1 and p16INK4A/pRb signaling pathways, increased senescence-
associated β-galactosidase activity (SA-β-gal), formation of senescence-associated heterochromatic
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foci (SAHF), and the senescence-associated secretory phenotype
(SASP) (Lopez-Otin et al., 2013). Cellular senescence is even
considered as a hallmark of aging, as senescent cells accumulate
in aged tissues (Lopez-Otin et al., 2013), but it remains to be
proven if the underlying mechanisms for senescence and aging
are directly related (Campisi, 2013).

The phenomenon of cellular senescence is quite diverse.
Decreasing proliferation of cells in culture is not only evoked
by long-term expansion, but it can also be triggered, e.g.,
by irradiation or oncogene induced senescence (Campisi
and d’Adda di Fagagna, 2007). While these different
types of cellular senescence result in similar functional
and morphologic changes on cellular level, they can
clearly be distinguished by molecular means. Unless
stated otherwise, I will particularly focus on replicative
senescence in this mini review. Furthermore, I apologize
that due to space constrains for this format it will not
be possible to give credit to all the important studies in
this field and I will particularly discuss the possible link
between DNA methylation (DNAm) changes in aging and
replicative senescence.

There is a growing perception that culture expansion toward
replicative senescence and aging are both reflected by specific
modifications in the DNAm pattern, which might indicate
that they are evoked by epigenetic processes (Wagner et al.,
2016). DNAm plays a crucial role in mammalian development
(Meissner et al., 2008). It occurs predominantly in the context
of cytosine-guanine dinucleotides – so called CpG sites. The
methylation pattern of CpG sites is maintained and modified
by DNA methyltransferases (DNMTs) (Liao et al., 2015). On
the other hand, demethylation can be mediated indirectly by
ten-eleven translocation (TET) family enzymes, which oxidize
5-methylcytosine into 5-hydroxymethylcytosine that can either
be passively depleted through DNA replication or actively
reverted to cytosine by iterative oxidation and thymine DNA
glycosylase (TDG)-mediated base excision repair (Kohli and
Zhang, 2013). However, it is largely unclear how DNAm changes
are regulated at specific sites in the genome. Furthermore,
the functional relevance of specific DNAm changes remains
largely elusive. In 2010, our group has demonstrated that
aging as well as senescence are reflected by DNAm changes
at specific CpG sites (Bork et al., 2010). Since then, many
other groups have fine-tuned epigenetic signatures that can be
used to track these processes independently and for different
purposes (Figure 1), demonstrating that replicative senescence
and aging are epigenetically distinct (Wagner et al., 2016;
Kabacik et al., 2018).

AN EPIGENETIC CLOCK THAT
UNDERLIES THE HAYFLICK
PHENOMENON

Almost 30 years ago, it has been suggested that cell culture
is associated with a continuous loss in the general DNAm
level, and that this loss might be related to the number of
cell divisions (Catania and Fairweather, 1991). These authors

FIGURE 1 | Utility of epigenetic clocks for aging and senescence. Aging and
replicative senescence are both reflected by highly reproducible DNA
methylation (DNAm) changes and there is a significant overlap between these
epigenetic modifications. On the other hand, the two processes can be
tracked independently by epigenetic signatures, which can be utilized for
different applications.

speculated that the progressive loss of DNAm could generate
a multi-step cell division “clock” which underlies the Hayflick
phenomenon. The today available global DNAm profiles reveal
a more complex picture. Whole-genome single-nucleotide
bisulfite sequencing has demonstrated widespread DNA
hypomethylation and focal hypermethylation upon replicative
senescence (Cruickshanks et al., 2013). In fact, a relatively
large proportion of the genome reveals reproducible and
highly significant changes of DNAm during culture expansion,
particularly in developmental genes (Koch et al., 2013).
Furthermore, chromatin conformation analysis demonstrated
that replicative senescence is associated with an unidirectional
loss in local chromatin connectivity, suggesting that senescence
is an endpoint of the continuous nuclear remodeling process
during differentiation (Chandra et al., 2015; Criscione et al.,
2016). Yet, senescence-associated DNAm changes are relatively
consistent across different cell types (Franzen et al., 2018;
Zirkel et al., 2018).

In our previous work, we have utilized DNAm profiles of
mesenchymal stromal cells (MSCs) and fibroblasts, which at
the time were analyzed with 27k Illumina BeadChip arrays, to
select six CpGs that revealed almost linear hyper- or hypo-
methylation with subsequent passages (Koch et al., 2012). Thus,
DNAm levels at these six CpGs can be used to estimate
the number of passages during in vitro expansion or the
number of cumulative population doublings (cPDs) (Koch and
Wagner, 2013). This relatively small Epigenetic Senescence
Signature facilitates a targeted analysis by pyrosequencing in
a fast and cost-effective manner. Tracking of the state of
senescence is of particular importance for MSCs, which raise
high hopes in regenerative medicine and are currently tested
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in a multitude of clinical trials (Wagner and Ho, 2007).
In comparison to other biomarkers for senescence, such as
telomere attrition (Bernadotte et al., 2016) or staining of
SA-β-gal (Itahana et al., 2007), the DNAm changes provide
a more quantitative measure. Notably, gamma irradiation
of MSCs resulted in typical senescence-associated changes
in morphology, gene expression, and loss of differentiation
potential, but in contrast to replicative senescence it did not
evoke any significant DNAm changes (Koch et al., 2013).
This exemplifies that the different types of senescence –
e.g., oncogene induced senescence, DNA damage induced
senescence, or replicative senescence – seem to be triggered
by different mechanisms (Koch et al., 2013; Lowe et al., 2016;
Kabacik et al., 2018).

AGING IS REFLECTED BY SPECIFIC
DNA METHYLATION CHANGES

Already in 1973 it was described that aging is reflected by a global
decrease in the 5-methylcytosine content of various tissues, and
this led to the assumption that DNAm may regulate gene activity
and somehow trigger the process of aging (Vanyushin et al.,
1973) – a hypothesis that is still valid. Presently, it is estimated
that almost one third of the CpG sites reveal age-associated
DNAm changes, of which 60% become hypomethylated and 40%
hypermethylated upon aging (Johansson et al., 2013). Overall,
the age-associated DNAm changes are similar across different
tissues, while they are certainly influenced by the very different
epigenetic makeup of different cell types (Teschendorff et al.,
2010; Koch and Wagner, 2011).

The first epigenetic clocks to estimate donor age were again
derived from the 27k Illumina Bead Chips (Bocklandt et al.,
2011; Koch and Wagner, 2011). These signatures were further
improved in the advent of more available datasets and refined
bioinformatics approaches (Hannum et al., 2013; Horvath, 2013;
Weidner et al., 2014). For example, Hannum et al. (2013) used
DNAm profiles of 656 whole blood samples of donors aged
19–101 and integrated 71 CpG sites into a multivariable linear
regression model enabling age-predictions with an error of
4.9 years in an independent validation dataset of blood samples.
In analogy, we derived similar epigenetic aging signatures for
blood (Weidner et al., 2014; Lin et al., 2016). Horvath established
a very robust multi-tissue predictor by an elastic net regression
model that was trained on 7,844 samples from 82 datasets
(including 51 different tissues and cell types) (Horvath, 2013).
This model is based on 353 age-associated CpG sites and
facilitates good precision of age-estimation in various tissue types.
The relatively high precisions of age-predictions hold high hopes
in forensics to estimate the donor age of blood traces or of
people with allegedly unknown age. Furthermore, epigenetic age-
predictions do not only correlate with chronological age, they are
also indicative for life expectancy (Marioni et al., 2015, 2018; Field
et al., 2018). Particularly specific hypomethylated CpGs seem to
correlate with all-cause mortality (Lin et al., 2016). This indicates
that epigenetic age-predictors may be trained to rather correlate
with biological age (Levine et al., 2018).

Epigenetic age-predictions are less precise for cells in culture,
due to the above mentioned impact of in vitro expansion on
the epigenetic makeup (Horvath, 2013; Frobel et al., 2014;
Sheng et al., 2018). There is a moderate correlation between
age-associated and senescence-associated DNAm changes (Bork
et al., 2010; Pasumarthy et al., 2017) and hence it is not
surprising that several epigenetic clocks for aging are also
increasing with higher passage numbers (Horvath et al.,
2018). However, as mentioned above, replicative senescence
and aging are overall rather reflected by independent CpGs,
indicating that the different types of epigenetic clocks might be
modulated independently.

RESETTING OF EPIGENETIC CLOCKS
BY REPROGRAMMING INTO IPSCS

It is possible to rejuvenate cells by reprogramming into induced
pluripotent stem cells (iPSCs). While in pluripotent state,
iPSCs can be passaged virtually infinitively without any signs
of cellular aging. Furthermore, iPSCs derived from elderly
organisms can give rise to young organisms that pursue
normal aging, as for example demonstrated in mice (Boland
et al., 2009). Also on molecular level iPSCs seem to be fully
rejuvenated: their telomeres become elongated and other age-
related molecular parameters are reset upon reprogramming
(Marion et al., 2009). Notably, age-associated as well as
senescence-associated DNAm patterns are completely reversed
in iPSCs (Horvath, 2013; Koch et al., 2013; Weidner et al.,
2014). This epigenetic switch apparently occurs simultaneous
with DNAm changes in pluripotency associated CpGs, indicating
that the epigenetic rejuvenation belongs to the fundamental
changes in reprogramming (Franzen et al., 2018). However, it
has also been demonstrated that the loss of cell-type specific gene
expression, e.g., for fibroblast lineage, follows different kinetics,
which may suggest that there might be a safe time window
for rejuvenation without complete erasure of somatic identity
(Olova et al., 2018).

Upon re-differentiation of iPSCs toward other cell types
the senescence-associated DNAm patterns are continuously
reacquired as observed during culture expansion of primary cells
(Frobel et al., 2014). In contrast, the estimates for epigenetic
age remain overall rejuvenated in the iPSC-derived cells and are
only very slowly accelerated upon differentiation (Frobel et al.,
2014). Direct conversion of cells, e.g., into induced neurons
(iNs), at least initially retains age-associated transcriptomic and
epigenetic signatures (Mertens et al., 2015; Huh et al., 2016).
Furthermore, direct conversion into induced neuronal stem cells
(iNSCs) maintained some of the age-related DNAm patterns,
which further erode upon culture expansion (Sheng et al., 2018).
This epigenetic rejuvenation of iPSC and iPSC-derived cells needs
to be taken into account when studying age-related diseases – to
better address such research questions there is a need to identify
ways to artificially accelerate epigenetic aging clocks.

To investigate if overexpression of the catalytic subunit
of the human telomerase (TERT) would be enough to stop
aging, we have immortalized fibroblasts and MSCs with TERT.
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While this facilitated elongation of telomeres and long-term
expansion without any signs of replicative senescence, it did
not reset senescence-associated DNAm changes – in fact, these
epigenetic modifications were even further acquired during
culture expansion of immortalized lines (Koch et al., 2013).
This was more recently validated also for age-associated DNAm
changes (Kabacik et al., 2018; Lu et al., 2018). Furthermore,
age-associated DNAm changes were not generally accelerated in
telomeropathies, such as dyskeratosis congenita (Weidner et al.,
2016). Thus, TERT and telomere length have apparently no
immediate impact on the epigenetic clock, but this may be further
analyzed in the future.

HOW ARE EPIGENETIC CLOCKS
REGULATED?

So far, it is largely unclear how the very complex DNAm patterns
can be modulated during development by predominantly two
de novo DNA methyltransferases: DNMT3A and DNMT3B.
We have recently demonstrated that different splice variants of
DNMT3A have transcript specific effects on the DNAm pattern
(Bozic et al., 2018), but it remains unclear how these enzymes
are guided to specific sites in the genome. It is conceivable
that this process is mediated by other DNA-binding proteins
or long non-coding RNAs. Various transcription factor motifs
have been associated with senescence-associated DNAm changes,
including binding sites for early growth response protein
1 (EGR1), activating enhancer-binding protein 2 (TFAP2A),
protein C-ets-1 (ETS1), neuroblastoma MYC oncogene (MYCN),
and aryl hydrocarbon receptor nuclear translocator (ARNT)
(Hänzelmann et al., 2015; Pasumarthy et al., 2017). Furthermore,
the long non-coding RNA HOTAIR was suggested to target
such differentially methylated regions, potentially by triple helix
formation (Kalwa et al., 2016).

On the other hand, there is also evidence that the
differentially methylated regions of epigenetic clocks are not
directly mediated. We have used bisulfite barcoded amplicon
sequencing (BBA-seq) to compare senescence-associated DNAm
in different subpopulations of MSCs. Notably, in clonally
derived subpopulations, the DNAm levels of neighboring CpGs
differed extensively, indicating that these genomic regions are
not synchronously modified during senescence (Franzen et al.,
2017). In a more recent study, we have analyzed if senescence-
associated DNAm changes are strand-specific by BBA-seq of
hairpin-linked DNA molecules. In fact, many CpG dyads at these
sites became only methylated on either the forward or the reverse
strand. This hemimethylation was conserved over many passages,
indicating that it was not due to insufficient maintenance of
DNAm (Franzen et al., 2018). Circular chromatin conformation
capture (4C) of senescence-associated CpGs indicated that there
is no specific interaction of these genomic regions with other
regions that undergo senescence-associated DNAm changes
(Franzen et al., 2018). Furthermore, functional annotation of
age-associated CpGs showed enrichment in CCCTC-binding
factor (CTCF), which is relevant for the 3D organization of
the genome (Day et al., 2013; Wang et al., 2018). It appears

that the changes in DNAm partly overlap with changing histone
modifications upon aging (Johansson et al., 2013). These findings
suggest that senescence-associated and age-associated DNAm are
not regulated in a targeted manner but rather evoked by other
chromatin modifications.

WHAT IS THE REASON FOR
EPIGENETIC AGING?

It is still controversially discussed if aging is governed by a
purposeful program or if it rather resembles an accumulation
of stochastic, accidental events (Hayflick, 2007). While several
authors argued that aging cannot be programmed (Blagosklonny,
2013), there is also evidence that it may be evolutionary
purposeful for the species (Longo et al., 2005; Mitteldorf, 2016;
Horvath and Raj, 2018). Aging necessitates a regular generation
cycle, which supports better adaptation to environmental
changes. In analogy, replicative senescence has been suggested
to simply resemble an artificial process caused by the cell
culture conditions, or to reflect a beneficial organized process
that is somewhat related to aging. It has also been postulated
that replicative senescence acts as a safeguard for malignant
transformation (Campisi, 2000). On the other hand, there
seems to be a significant overlap of DNAm changes in
senescence and cancer (Cruickshanks et al., 2013), indicating
that senescence might even promote malignant transformation.
Furthermore, fibroblasts surrounding the tumor are known
drivers of tumor growth by providing a permissive environment
(Campisi, 2005) and hence senescence of neighboring cells
might also be relevant. However, despite global similarities
there are locally distinct DNAm changes in senescence versus
malignant transformation (Xie et al., 2018). Overall, the precision
of epigenetic aging clocks is very low in cancer, which
might be due to the fact that cancer cells capture only the
specific epigenetic state of the tumor-initiating cell (Lin and
Wagner, 2015; Eipel et al., 2019). Most types of malignancies
occur in the elderly and it may hence be speculated, that
the chromatin reorganization upon aging supports specific
mutations – age-associated DNAm changes would then rather
resemble a trigger than a safeguard for malignant transformation
(Wagner et al., 2015).

CONCLUSION

Epigenetic clocks for aging and senescence are certainly
ticking independently, but the striking similarities indicate
that the processes are regulated by similar means. There is
evidence that the epigenetic modifications are not governed
by targeting of regulatory complexes but that the DNAm
changes may rather be orchestrated indirectly by other
types of chromatin organization. Studying of senescence-
associated changes in vitro has several strategic advantages
for aging research: Effects of relevant genes or drugs can be
systematically screened in a high throughput manner and
with large compound libraries. It appears to be plausible
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that such findings can then be extrapolated to understand how to
modulate age-associated epigenetic modifications – and possibly
the process of aging.
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