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Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene
expression at single-cell resolution, which greatly revolutionizes transcriptomic studies.
A number of scRNA-seq protocols have been developed, and these methods possess
their unique features with distinct advantages and disadvantages. Due to technical
limitations and biological factors, scRNA-seq data are noisier and more complex
than bulk RNA-seq data. The high variability of scRNA-seq data raises computational
challenges in data analysis. Although an increasing number of bioinformatics methods
are proposed for analyzing and interpreting scRNA-seq data, novel algorithms are
required to ensure the accuracy and reproducibility of results. In this review, we
provide an overview of currently available single-cell isolation protocols and scRNA-seq
technologies, and discuss the methods for diverse scRNA-seq data analyses including
quality control, read mapping, gene expression quantification, batch effect correction,
normalization, imputation, dimensionality reduction, feature selection, cell clustering,
trajectory inference, differential expression calling, alternative splicing, allelic expression,
and gene regulatory network reconstruction. Further, we outline the prospective
development and applications of scRNA-seq technologies.
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INTRODUCTION

Bulk RNA-seq technologies have been widely used to study gene expression patterns at population
level in the past decade. The advent of single-cell RNA sequencing (scRNA-seq) provides
unprecedented opportunities for exploring gene expression profile at the single-cell level. Currently,
scRNA-seq has become a favorable choice for studying the key biological questions of cell
heterogeneity and the development of early embryos (only include a few number of cells), since
bulk RNA-seq mainly reflects the averaged gene expression across thousands of cells. In recent
years, scRNA-seq has been applied to various species, especially to diverse human tissues (including
normal and cancer), and these studies revealed meaningful cell-to-cell gene expression variability
(Jaitin et al., 2014; Grun et al., 2015; Chen et al., 2016a; Cao et al., 2017; Rosenberg et al., 2018).
With the innovation of sequencing technologies, some different scRNA-seq protocols have been
proposed in the past few years, which largely facilitated the understanding of dynamic gene
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expression at single-cell resolution (Kolodziejczyk et al., 2015;
Haque et al., 2017; Picelli, 2017; Chen et al., 2018). One of them
is the highly efficient strategy LCM-seq (Nichterwitz et al., 2016)
which combines laser capture microscopy (LCM) and Smart-seq2
(Picelli et al., 2013) for single-cell transcriptomics without tissue
dissociation. Currently available scRNA-seq protocols can be
mainly split into two categories based on the captured transcript
coverage: (i) full-length transcript sequencing approaches [such
as Smart-seq2 (Picelli et al., 2013), MATQ-seq (Sheng et al.,
2017) and SUPeR-seq (Fan X. et al., 2015)]; and (ii) 3′-end [e.g.,
Drop-seq (Macosko et al., 2015), Seq-Well (Gierahn et al., 2017),
Chromium (Zheng et al., 2017), and DroNC-seq (Habib et al.,
2017)] or 5′-end [such as STRT-seq (Islam et al., 2011, 2012)]
transcript sequencing technologies. Each scRNA-seq protocol has
its own benefits and drawbacks, resulting in that different scRNA-
seq approaches have distinct features and disparate performances
(Ziegenhain et al., 2017). In conducting single-cell transcriptomic
study, specific scRNA-seq technology may need to be employed
in consideration of the balance between research goal and
sequencing cost.

Owing to the low amount of starting material, scRNA-seq
has limitations of low capture efficiency and high dropouts
(Haque et al., 2017). Compared to bulk RNA-seq, scRNA-
seq produces nosier and more variable data. The technical
noise and biological variation (e.g., stochastic transcription)
raise substantial challenges for computational analysis of
scRNA-seq data. A variety of tools have been designed to
conducting diverse bulk RNA-seq data analyses, but many
of those methods cannot be directly applied to scRNA-
seq data (Stegle et al., 2015). Except short-read mapping,
almost all data analyses (such as differential expression, cell
clustering, and gene regulatory network inference) have certain
disparities in methods between scRNA-seq and bulk RNA-
seq. Due to the high technical noise, quality control (QC) is
crucial for identifying and removing the low-quality scRNA-
seq data to get robust and reproducible results. Furthermore,
some analyses including alternative splicing (AS) detection,
allelic expression exploration and RNA-editing identification
are not suitable for the 3′ or 5′-tag sequencing protocols
of scRNA-seq, but these analyses could be applicable to the
data generated by whole-transcript scRNA-seq. On the other
hand, an increasing number of tools are specially proposed for
analyzing scRNA-seq data, and each method has its own pros
and cons (Stegle et al., 2015; Bacher and Kendziorski, 2016).
Therefore, to effectively handle the high variability of scRNA-
seq data, attention should be paid to choosing appropriately
analytical approaches.

This Review aims to summarize and discuss currently available
scRNA-seq technologies and various data analysis methods.
We first introduce distinct single-cell isolation protocols and
various scRNA-seq technologies developed in recent years. Then
we focus on the analyses of scRNA-seq data and highlight
the analytical differences between bulk RNA-seq and scRNA-
seq data. Considering the high technical noise and complexity
of scRNA-seq data, we also provide recommendations on the
selection of suitable tools to analyze scRNA-seq data and ensure
the reproducibility of results.

ISOLATION OF SINGLE CELLS

The first step of scRNA-seq is isolation of individual cells
(Figure 1), although the capture efficiency is a big challenge
for scRNA-seq. Currently, several different approaches are
available for isolating single cells, including limiting dilution,
micromanipulation, flow-activated cell sorting (FACS), laser
capture microdissection (LCM), and microfluidics (Gross et al.,
2015; Kolodziejczyk et al., 2015; Hwang et al., 2018). Limiting
dilution technique uses pipettes to isolate cells by dilution, the
main limitation of this method is inefficient. Micromanipulation
is a classical approach used to retrieve cells from samples with
a small number of cells, such as early embryos or uncultivated
microorganisms, while this technique is time-consuming and
low throughput. FACS has been widely used for isolating single
cells, which requires large starting volumes (>10,000 cells) in
suspension. LCM is an advanced strategy used for isolating
individual cells from solid tissues by using a laser system aided
by computer. Microfluidics is increasingly popular due to its
property of low sample consumption, precise fluid control and
low analysis cost. These single-cell isolation protocols have their
own advantages and show distinct performances in terms of
capture efficiency and purity of the target cells (Gross et al., 2015;
Hu et al., 2016).

CURRENTLY AVAILABLE SCRNA-SEQ
TECHNOLOGIES

To date, a number of scRNA-seq technologies have been
proposed for single-cell transcriptomic studies (Table 1). The
first scRNA-seq method was published by Tang et al. (2009),
and then many other scRNA-seq approaches were subsequently
developed. Those scRNA-seq technologies differ in at least
one of the following aspects: (i) cell isolation; (ii) cell lysis;
(iii) reverse transcription; (iv) amplification; (v) transcript
coverage; (vi) strand specificity; and (vii) UMI (unique molecular
identifiers, molecular tags that can be applied to detect and
quantify the unique transcripts) availability. One conspicuous
difference among these scRNA-seq methods is that some of
them can produce full-length (or nearly full-length) transcript
sequencing data (e.g., Smart-seq2, SUPeR-seq, and MATQ-seq),
whereas others only capture and sequence the 3′-end [such
as Drop-seq, Seq-Well and DroNC-seq, SPLiT-seq (Rosenberg
et al., 2018)] or 5′-end (e.g., STRT-seq) of the transcripts
(Table 1). Distinct scRNA-seq protocols may possess disparate
strengths and weaknesses, and several published reviews have
compared a portion of them in detail (Kolodziejczyk et al.,
2015; Haque et al., 2017; Picelli, 2017; Ziegenhain et al., 2017).
A previous study demonstrated that Smart-seq2 can detect
a bigger number of expressed genes than other scRNA-seq
technologies including CEL-seq2 (Hashimshony et al., 2016),
MARS-seq (Jaitin et al., 2014), Smart-seq (Ramskold et al.,
2012), and Drop-seq protocols (Ziegenhain et al., 2017). Recently,
Sheng et al. (2017) showed that another full-length transcript
sequencing approach MATQ-seq could outperform Smart-seq2
in detecting low-abundance genes.
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FIGURE 1 | Overview of various analyses for scRNA-seq data.

Compared to 3′-end or 5′-end counting protocols, full-length
scRNA-seq methods have incomparable advantages in isoform
usage analysis, allelic expression detection, and RNA editing
identification owing to their superiority of transcript coverage.
Moreover, for detecting certain lowly expressed genes/transcripts,
full-length scRNA-seq approaches could be better than 3′
sequencing methods (Ziegenhain et al., 2017). Notably, droplet-
based technologies [e.g., Drop-seq (Macosko et al., 2015), InDrop
(Klein et al., 2015), and Chromium (Zheng et al., 2017)] can
generally provide a lager throughput of cells and a lower
sequencing cost per cell compared to whole-transcript scRNA-
seq. Thus, droplet-based protocols are suitable for generating
huge amounts of cells to identify the cell subpopulations of
complex tissues or tumor samples.

Strikingly, several scRNA-seq technologies can capture both
polyA+ and polyA− RNAs, such as SUPeR-seq (Fan X. et al.,
2015) and MATQ-seq (Sheng et al., 2017). These protocols
are extremely useful for sequencing long noncoding RNAs
(lncRNAs) and circular RNAs (circRNAs). Lots of studies
have demonstrated that lncRNAs and circRNAs play important
roles in diverse biological processes of cells and may serve
as crucial biomarkers for cancers (Barrett and Salzman, 2016;
Chen et al., 2016b; Quinn and Chang, 2016; Kristensen
et al., 2018); therefore, such scRNA-seq methods can provide
unprecedented opportunities to comprehensively explore the
expression dynamics of both protein-coding and noncoding
RNAs at the single-cell level.

Compared to traditional bulk RNA-seq technologies, scRNA-
seq protocols suffer higher technical variations. In order to
estimate the technical variances among different cells, spike-
ins [such as External RNA Control Consortium (ERCC)
controls (External, 2005)] and UMIs have been widely used
in corresponding scRNA-seq methods. The RNA spike-ins are
RNA transcripts (with known sequences and quantity) that are
applied to calibrate the measurements of RNA hybridization
assays, such as RNA-Seq, and UMIs can theoretically enable
the estimation of absolute molecular counts. It is worth noting
that ERCC and UMIs are not applicable to all scRNA-seq
technologies due to the inherent protocol differences. Spike-
ins are used in approaches like Smart-seq2 and SUPeR-seq but
are not compatible with droplet-based methods, whereas UMIs
are typically applied to 3′-end sequencing technologies [such as
Drop-seq (Macosko et al., 2015), InDrop (Klein et al., 2015),
and MARS-seq (Jaitin et al., 2014)]. Consequently, users can
select the suitable scRNA-seq method according to the technical
properties and advantages, number of cells to be sequenced and
cost considerations.

READ ALIGNMENT AND EXPRESSION
QUANTIFICATION OF SCRNA-SEQ DATA

The mapping ratio of reads is an important indicator of the
overall quality of scRNA-seq data. Since both scRNA-seq and
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TABLE 1 | Summary of widely used scRNA-seq technologies.

Methods Transcript
coverage

UMI
possibility

Strand
specific

References

Tang method Nearly
full-length

No No Tang et al., 2009

Quartz-Seq Full-length No No Sasagawa et al., 2013

SUPeR-seq Full-length No No Fan X. et al., 2015

Smart-seq Full-length No No Ramskold et al., 2012

Smart-seq2 Full-length No No Picelli et al., 2013

MATQ-seq Full-length Yes Yes Sheng et al., 2017

STRT-seq
and STRT/C1

5′-only Yes Yes Islam et al., 2011, 2012

CEL-seq 3′-only Yes Yes Hashimshony et al., 2012

CEL-seq2 3′-only Yes Yes Hashimshony et al., 2016

MARS-seq 3′-only Yes Yes Jaitin et al., 2014

CytoSeq 3′-only Yes Yes Fan H.C. et al., 2015

Drop-seq 3′-only Yes Yes Macosko et al., 2015

InDrop 3′-only Yes Yes Klein et al., 2015

Chromium 3′-only Yes Yes Zheng et al., 2017

SPLiT-seq 3′-only Yes Yes Rosenberg et al., 2018

sci-RNA-seq 3′-only Yes Yes Cao et al., 2017

Seq-Well 3′-only Yes Yes Gierahn et al., 2017

DroNC-seq 3′-only Yes Yes Habib et al., 2017

Quartz-Seq2 3′-only Yes Yes Sasagawa et al., 2018

bulk RNA-seq technologies generally sequence transcripts into
reads to generate the raw data in fastq format, no differences
exist between these two types of RNA-seq data in read alignment.
The mapping tools originally developed for bulk RNA-seq are
also applicable to scRNA-seq data. Numerous spliced alignment
programs have been designed for mapping RNA-seq data, which
was extensively discussed previously (Li and Homer, 2010;
Chen et al., 2011). Generally, the read mapping algorithms
mainly fall into two categories: spaced-seed indexing based
and Burrows-Wheeler transform (BWT) based (Li and Homer,
2010). Currently popular aligners like TopHat2 (Kim et al.,
2013), STAR (Dobin and Gingeras, 2015), and HISAT (Kim
et al., 2015) perform well in mapping speed and accuracy,
and they can efficiently map billions of reads to the reference
genome or transcriptome (Table 2). STAR is a suffix-array
based method and is faster than TopHat2, but it requires
a huge memory size (28 gigabytes for human genome) for
read mapping (Dobin and Gingeras, 2015). Engstrom et al.
systematically evaluated 26 read alignment protocols (did not
include HISAT) and found that different mapping tools exhibit
distinct strengths and weakness, where some programs are
with a faster mapping speed but a lower accuracy in splice
junction detection (Engstrom et al., 2013). HISAT is developed
based on BWT and Ferragina-Manzini (FM) methods. Kim
et al. (2015) showed that HISAT is currently the fastest
tool that can achieve equal or better accuracy than other
available aligners.

For gene/transcript expression quantification, distinct
approaches are needed, based on the range of transcript sequence
captured by scRNA-seq. The data generated by whole-transcript
scRNA-seq methods (such as Smart-seq2 and MATQ-seq) can

TABLE 2 | Tools for read mapping and expression quantification
of scRNA-seq data.

Tools Category URL References

TopHat2 Read mapping https://ccb.jhu.edu/
software/tophat/
index.shtml

Kim et al., 2013

STAR Read mapping https://github.com/
alexdobin/STAR

Dobin and Gingeras,
2015

HISAT2 Read mapping https://ccb.jhu.edu/
software/hisat2/
index.shtml

Kim et al., 2015

Cufflinks Expression
quantification

https:
//github.com/cole-
trapnell-lab/cufflinks

Trapnell et al., 2010

RSEM Expression
quantification

https://github.com/
deweylab/RSEM

Li and Dewey, 2011

StringTie Expression
quantification

https://github.com/
gpertea/stringtie

Pertea et al., 2015

be analyzed with the software developed for bulk RNA-seq to
quantify gene/transcript expression. Two main approaches are
available for transcriptome reconstruction: de novo assembly
(does not need a reference genome) and reference-based
or genome-guided assembly (Chen et al., 2017b). De novo
transcriptome assembly methods are primarily applied to the
organisms that lack a reference genome, and are generally
with a lower accuracy than that of genome-guided assembly
(Garber et al., 2011). The popular genome-guided assembly tools
including Cufflinks (Trapnell et al., 2010), RSEM (Li and Dewey,
2011), and Stringtie (Pertea et al., 2015) have been broadly
used in many scRNA-seq studies to get relative gene/transcript
expression estimation in reads or fragments per kilobase per
million mapped reads (RPKM or FPKM) or transcripts per
million mapped reads (TPM) (Table 2). Pertea et al. (2015) stated
that StringTie outperforms other genome-guided approaches in
gene/transcript reconstruction and expression quantification. On
the other hand, for the 3′-end scRNA-seq protocols (e.g., CEL-
seq2, MARS-seq, Drop-seq, and InDrop), specific algorithms
are required to calculate gene/transcript expression based on
UMIs. SAVER (single-cell analysis via expression recovery) is
an efficient UMI-based tool recently proposed for accurately
estimating gene expression of single cells (Huang et al., 2018). In
theory, UMI-based scRNA-seq can largely reduce the technical
noise, which remarkably benefits the estimation of absolute
transcript counts (Islam et al., 2014).

QUALITY CONTROL OF
SCRNA-SEQ DATA

The limitations in scRNA-seq including bias of transcript
coverage, low capture efficiency, and sequencing coverage result
in that scRNA-seq data are with a higher level of technical noise
than bulk RNA-seq data (Kolodziejczyk et al., 2015). Even for the
most sensitive scRNA-seq protocol, it is a frequent phenomenon
that some specific transcripts cannot be detected (termed dropout
events) (Haque et al., 2017). Generally, scRNA-seq experiments
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can generate a portion of low-quality data from the cells that are
broken or dead or mixed with multiple cells (Ilicic et al., 2016).
These low-quality cells will hinder the downstream analysis and
may lead to misinterpretation of the data. Accordingly, QC
of scRNA-seq data is crucial to identify and remove the low-
quality cells.

To exclude the low-quality cells from scRNA-seq, close
attention should be paid to avoid multi-cells or dead cells in
the cell capture step. After sequencing, a series of QC analyses
are required to eliminate the data from low-quality cells. Those
samples contain only a few number of reads should be discarded
first since insufficient sequencing depth may lead to the loss of
a large portion of lowly and moderately expressed genes. Then
tools initially developed for QC of bulk RNA-seq data, such
as FastQC1, can be employed to check the sequencing quality
of scRNA-seq data. Moreover, after read alignment, samples
with very low mapping ratio should be eliminated because they
contain massively unmappable reads that might be resulted from
RNA degradation. If extrinsic spike-ins (such ERCC) were used in
scRNA-seq, technical noise could be estimated. The cells with an
extremely high portion of reads mapped to the spike-ins indicate
that they were probably broken during cell capture process and
should be removed (Ilicic et al., 2016). Cytoplasmic RNAs are
usually lost but mitochondrial RNAs are retained for broken
cells, thus the ratio of reads mapped to mitochondrial genome
is also informative for identifying low-quality cells (Bacher
and Kendziorski, 2016). Additionally, the number of expressed
genes/transcripts can be detected in each cell is also suggestive. If
only a small number of genes can be detected in a cell, this cell
is probably damaged or dead or suffered from RNA degradation.
Considering the high noise of scRNA-seq data, a threshold of 1
FPKM/RPKM was usually applied to define the expressed genes.
Some QC methods for scRNA-seq have been proposed (Stegle
et al., 2015; Ilicic et al., 2016), including SinQC (Jiang et al., 2016)
and Scater (McCarthy et al., 2017), these tools are useful for QC
of scRNA-seq data.

BATCH EFFECT CORRECTION

Batch effect is a common source of technical variation in
high-throughput sequencing experiments. The innovation and
decreasing cost of scRNA-seq enable many studies to profile
the transcriptomes of a huge amount of cells. The large scale
scRNA-seq data sets might be separately generated with distinct
operators at different times, and could also be produced in
multiple laboratories using disparate cell dissociation protocols,
library preparation approaches and/or sequencing platforms.
These factors would introduce systematic error and confound
the technical and biological variability, leading to that the gene
expression profile in one batch systematically differs from that in
another (Leek et al., 2010; Hicks et al., 2018). Therefore, batch
effect is a major challenge in scRNA-seq data analysis, which may
mask the underlying biology and cause spurious results. To avoid
incorrect data integration and interpretation, batch effects must

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

be corrected before the downstream analysis. Because of the data
feature differences between scRNA-seq and bulk RNA-seq, batch-
correction approaches specially proposed for bulk RNA-seq [e.g.,
RUVseq (Risso et al., 2014) and svaseq (Leek, 2014)] may not
be suitable for scRNA-seq. Several methods have been recently
designed to mitigate the batch effects in scRNA-seq data, such
as MNN (mutual nearest neighbor) (Haghverdi et al., 2018) and
kBET (k-nearest neighbor batch effect test) (Buttner et al., 2019).
MNN corrects the batch effects using the data from the most
similar cells in different batches. KBET is a χ2-based method for
quantifying batch effects in scRNA-seq data. These specific batch-
correction approaches for scRNA-seq data can perform better
than the methods developed for bulk RNA-seq (Haghverdi et al.,
2018; Buttner et al., 2019).

NORMALIZATION OF SCRNA-SEQ DATA

To correctly interpret the results from scRNA-seq data,
normalization is an essential step to get the signal of
interest by adjusting unwanted biases resulted from capture
efficiency, sequencing depth, dropouts, and other technical
effects. Technical noise of scRNA-seq is an obvious problem
due to the low starting material and challenging experimental
protocols. Normalization of scRNA-seq data will benefit the
downstream analyses including cell subpopulation identification
and differential expression calling. In general, normalization can
be divided into two different types: within-sample normalization
and between-sample normalization (Vallejos et al., 2017). Within-
sample normalization aims to remove the gene-specific biases
(e.g., GC content and gene length), which makes gene expression
comparable within one sample (such as RPKM/FPKM and TPM).
In contrast, between-sample normalization is to adjust sample-
specific differences (e.g., sequencing depth and capture efficiency)
to enable the comparison of gene expression between samples.
Generally, those simple normalization strategies are based on
sequencing depth or upper quartile. If spike-ins or UMIs are used
in scRNA-seq protocol, normalization can be refined based on the
performance of spike-ins/UMIs (Bacher and Kendziorski, 2016).

A number of approaches have been developed for between-
sample normalization of bulk RNA-seq data, such as DESeq2
(Love et al., 2014) and trimmed mean of M values (TMM)
(Robinson and Oshlack, 2010). DEseq2 calculates scaling factor
based on the read counts across different samples, while
TMM removes the extreme log fold changes (Vallejos et al.,
2017). However, bulk-based normalization approaches may
be not suitable for the data of single-cell transcriptomics.
Because scRNA-seq generates abundant zero-expression values
and has a higher level of technical variation than bulk RNA-
seq, using bulk RNA-seq normalization approaches may cause
overcorrection in scRNA-seq for lowly expressed genes (Vallejos
et al., 2017). Several normalization methods have been proposed
for scRNA-seq data, such as SCnorm (Bacher et al., 2017),
SAMstrt (Katayama et al., 2013) and a recently introduced
deconvolution approach that uses the summed expression
values across pools of cells to conduct normalization (Lun
et al., 2016). SCnorm is based on quantile regression, while
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SAMstrt relies on spike-ins. Bacher et al. (2017) believed that
traditional normalization methods developed for bulk RNA-seq
may introduce artifacts for normalizing scRNA-seq data, while
SCnorm can effectively normalize scRNA-seq data and improve
principal component analysis (PCA) and the identification of
differentially expressed genes.

IMPUTATION OF SCRNA-SEQ DATA

Single-cell RNA sequencing data generally contain many missing
values or dropouts that were caused by failed amplification of the
original RNAs. The frequency of dropout events for scRNA-seq
is protocol-dependent, and is closely associated with the number
of sequencing reads generated for each cell (Svensson et al.,
2017). The dropout events increase the cell-to-cell variability,
leading to signal influence on every gene, and obscuration of
gene-gene relationship detection. Therefore, dropouts can largely
affect the downstream analyses since a significant portion of
truly expressed transcripts may not be detectable in scRNA-
seq. Imputation is a useful strategy to replace the missing data
(dropouts) with substituted values. Although some methods
have been proposed for imputation of bulk RNA-seq data,
they are not directly applicable to scRNA-seq data (Zhang and
Zhang, 2018). Several imputation methods have been recently
developed for scRNA-seq, including SAVER (Huang et al., 2018),
MAGIC (van Dijk et al., 2018), ScImpute (Li and Li, 2018),
DrImpute (Gong et al., 2018), and AutoImpute (Talwar et al.,
2018). SAVER is a Bayesian-based model designed for UMI-
based scRNA-seq data to recover the true expression level of all
genes. MAGIC imputes the gene expression by building Markov
affinity-based graph. The developers of ScImpute suggested
that SAVER and MAGIC may lead to expression changes of
the genes unaffected by dropouts, while ScImpute can impute
the dropout values without introducing new biases through
using the information from the same genes unlikely affected by
dropouts in other similar cells. DrImpute is a clustering-based
approach and can effectively separate the dropout zeros from
true zeros. AutoImpute is an autoencoder-based method that
learns the inherent distribution of scRNA-seq data to impute
the missing values. Recently, Zhang et al. evaluated different
imputation methods and found that the performances of these
approaches are correlated with their model hypothesis and
scalability (Zhang and Zhang, 2018).

DIMENSIONALITY REDUCTION AND
FEATURE SELECTION

Single-cell RNA sequencing data are with a high dimensionality,
which may involve thousands of genes and a large number
of cells. Dimensionality reduction and feature selection are
two main strategies for dealing with high dimensional data
(Andrews and Hemberg, 2018a). Dimensionality reduction
methods generally project the data into a lower dimensional space
by optimally preserving some key properties of the original data.
PCA is a linear dimensional reduction algorithm, which assumes

that the data is approximately normally distributed. T-distributed
stochastic neighbor embedding (t-SNE) is a non-linear approach
mainly designed for visualizing high dimensional data (van der
Maaten and Hinton, 2008). Both PCA and t-SNE have been
broadly used in diverse scRNA-seq studies to reduce the data
dimension and visualize the cells discriminated into distinct
subpopulations (Chen et al., 2016a; Rosenberg et al., 2018). It is
worth noting that PCA cannot effectively represent the complex
structure of scRNA-seq data and t-SNE has limitations of slow
computation time and different embeddings for processing the
same dataset multiple times. Recently, UMAP (uniform manifold
approximation and projection) (Becht et al., 2018), and scvis
(Ding et al., 2018) were specially developed for reducing the
dimensions of scRNA-seq data. Becht et al. showed that UMAP
provides the fastest run times, the highest reproducibility and
the most meaningful organization of cell clusters than other
dimensionality reduction approaches (Becht et al., 2018).

Feature selection removes the uninformative genes and
identifies the most relevant features to reduce the number of
dimensions used in downstream analysis. Reducing the number
of genes by performing feature selection can largely speed up
the calculations of large-scale scRNA-seq data (Andrews and
Hemberg, 2018b). Differential expression is a widely used method
for feature selection in bulk RNA-seq experiments, but it is
hard to apply to scRNA-seq data since the information of
predetermined and/or homogeneous subpopulations needed for
differential expression calling of scRNA-seq data [e.g., SCDE
(Kharchenko et al., 2014)] is often unavailable. Unsupervised
feature selection algorithms specially designed for scRNA-seq
data can be divided into the following groups: (i) highly
variable genes (HVG) based; (ii) spike-in based; and (iii)
dropout-based (Andrews and Hemberg, 2018a). HVG methods
rely on the assumption that the genes with highly variable
expression across cells are resulted from biological effects rather
than technical noise. The HVG approaches include algorithms
proposed by Brennecke et al. (2013), and FindVariableGenes
(FVG) implemented in Seurat (Satija et al., 2015). Spike-in
based approaches identify the genes showing significant higher
variance than those of spike-ins with similar expression levels
[e.g., scLVM (Buettner et al., 2015) and BASiCS (Vallejos et al.,
2015)], which shares similar idea of HVG. Dropout based
methods take advantage of the dropout distribution of scRNA-
seq data to perform feature selection, like M3Drop (Andrews
and Hemberg, 2018b). Andrews and Hemberg showed that
their M3Drop tool outperforms existing variance-based feature
selection approaches.

CELL SUBPOPULATION
IDENTIFICATION

A key goal of scRNA-seq data analysis is to identify cell
subpopulations (different populations are often distinct cell
types) within a certain condition or tissue to unravel the
heterogeneity of cells. Notably, cell subpopulation identification
should be carried out after QC and normalization of scRNA-
seq data, otherwise artifacts could be introduced. Approaches for
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clustering cells can be mainly grouped into two categories based
on whether prior information is used. If a set of known markers
was used in clustering, the methods are prior information based.
Alternatively, unsupervised clustering methods can be used for
de novo identification of cell populations with scRNA-seq data.
The algorithms for unsupervised clustering can be primarily
divided into the following types: (i) k-means; (ii) hierarchical
clustering; (iii) density-based clustering; and (iv) graph-based
clustering (Andrews and Hemberg, 2018a). K-means is a fast
approach that assigns cells to the nearest cluster center, and
it requires the predetermined number of clusters. Hierarchical
clustering can determine the relationships between clusters, but
it generally works slower than k-means. Density-based clustering
methods need a large number of samples to accurately calculate
densities and usually assume that all clusters have equal density.
Graph-based clustering can be considered as an extension of
density-based clustering, and it can be applied to millions of
cells. Some clustering methods have been specially designed for
scRNA-seq data, such as single-cell consensus clustering (SC3)
(Kiselev et al., 2017) and the clustering approach implemented in
Seurat (Satija et al., 2015), which can facilitate the identification of
cell subpopulations (Table 3). SC3 is an unsupervised approach
that combines multiple clustering approaches, which has a high
accuracy and robustness in single-cell clustering. Seurat identifies
the cell clusters mainly based on a shared nearest neighbor (SNN)
clustering algorithm. Once the subpopulations are determined,
the markers that can best discriminate distinct subpopulations
are usually identified through differential expression calling or
analysis of variance (ANOVA).

DIFFERENTIAL EXPRESSION ANALYSIS
OF SCRNA-SEQ DATA

Differential expression analysis is very useful to find the
significantly differentially expressed genes (DEGs) between
distinct subpopulations or groups of cells. The DEGs are crucial
for interpreting the biological difference between two compared

TABLE 3 | Subpopulation identification methods for scRNA-seq data.

Methods URL References

SC3 http://bioconductor.org/packages/SC3 Kiselev et al., 2017

ZIFA https://github.com/epierson9/ZIFA Pierson and Yau, 2015

Destiny https://github.com/theislab/destiny Angerer et al., 2016

SNN-Cliq http://bioinfo.uncc.edu/SNNCliq/ Xu and Su, 2015

RaceID https://github.com/dgrun/RaceID Grun et al., 2015

SCUBA https://github.com/gcyuan/SCUBA Marco et al., 2014

BackSPIN https:
//github.com/linnarsson-lab/BackSPIN

Zeisel et al., 2015

PAGODA http://hms-dbmi.github.io/scde/ Fan et al., 2016

CIDR https://github.com/VCCRI/CIDR Lin et al., 2017

pcaReduce https:
//github.com/JustinaZ/pcaReduce

Zurauskiene and Yau,
2016

Seurat https://github.com/satijalab/seurat Satija et al., 2015

TSCAN https://github.com/zji90/TSCAN Ji and Ji, 2016

conditions. The technical variability, high noise (e.g., dropouts)
and massive sample size of scRNA-seq data raise challenges in
differential expression calling (McDavid et al., 2013). Moreover,
multiple possible cell states can exist within a population of cells,
leading to the multimodality of gene expression in cells (Vallejos
et al., 2016). The tools originally developed for bulk RNA-seq
data have been used in many single-cell studies to identify the
DEGs, but the applicability of these methods for scRNA-seq data
is still unclear. In recent years, some specific methods have been
proposed for conducting differential expression calling based
on scRNA-seq data, such as MAST (Finak et al., 2015), SCDE
(Kharchenko et al., 2014), DEsingle (Miao et al., 2018), Census
(Qiu et al., 2017), and BCseq (Chen and Zheng, 2018) (Table 4).
MAST is based on linear model fitting and likelihood ratio
testing. SCDE is a Bayesian approach using a low-magnitude
Poisson process to account for dropouts. DEsingle employs Zero-
Inflated Negative Binomial model to estimate the dropouts and
real zeros. BCseq mitigates the technical noise in a data-adaptive
manner. Soneson and Robinson recently assessed 36 differential
expression methods (including the tools designed for scRNA-
seq and bulk RNA-seq data) and revealed significant differences
among these approaches in the characteristics and number of
DEGs (Soneson and Robinson, 2018). An increasing number of
tools for differential expression analysis of scRNA-seq data will be
developed, and users are encouraged to choose the tools specially

TABLE 4 | Differential expression analysis tools for RNA-seq data.

Methods Category URL Referenes

ROTS Single cell https:
//bioconductor.org/packages/
release/bioc/html/ROTS.html

Seyednasrollah
et al., 2016

MAST Single cell https:
//github.com/RGLab/MAST

Finak et al., 2015

BCseq Single cell https:
//bioconductor.org/packages/
devel/bioc/html/bcSeq.html

Chen and Zheng,
2018

SCDE Single cell http:
//hms-dbmi.github.io/scde/

Kharchenko et al.,
2014

DEsingle Single cell https://bioconductor.org/
packages/DEsingle

Miao et al., 2018

Cencus Single cell http://cole-trapnell-lab.github.
io/monocle-release/

Qiu et al., 2017

D3E Single cell https:
//github.com/hemberg-lab/D3E

Delmans and
Hemberg, 2016

BPSC Single cell https:
//github.com/nghiavtr/BPSC

Vu et al., 2016

DESeq2 Bulk https:
//bioconductor.org/packages/
release/bioc/html/DESeq2.html

Love et al., 2014

edgeR Bulk https:
//bioconductor.org/packages/
release/bioc/html/edgeR.html

Robinson et al.,
2010

Limma Bulk http:
//bioconductor.org/packages/
release/bioc/html/limma.html

Ritchie et al., 2015

Ballgown Bulk http://www.bioconductor.org/
packages/release/bioc/html/
ballgown.html

Frazee et al., 2015
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designed for scRNA-seq to identify DEGs in consideration of the
complex features of scRNA-seq data.

CELL LINEAGE AND PSEUDOTIME
RECONSTRUCTION

The cells in many biological systems exhibit a continuous
spectrum of states and involve transitions between different
cellular states. Such dynamic processes within a portion of
cells can be computationally modeled by reconstructing the
cell trajectory and pseudotime based on scRNA-seq data.
Pseudotime is an ordering of cells along the trajectory of a
continuously developmental process in a system, which allows
the identification of the cell types at the beginning, intermediate,
and end states of the trajectory (Griffiths et al., 2018). Besides
revealing the gene expression dynamics across cells, single-cell
trajectory inference can also benefit the identification of the
factors triggering state transitions. A number of tools have been
proposed for trajectory inference, e.g., Monocle (Trapnell et al.,
2014), Waterfall (Shin et al., 2015), Wishbone (Setty et al., 2016),
TSCAN (Ji and Ji, 2016), Monocle2 (Qiu et al., 2017), Slingshot
(Street et al., 2018), and CellRouter (Lummertz da Rocha et al.,
2018) (Table 5). The resulting trajectory topology can be linear,
bifurcating, or a tree/graph structure. Monocle builds a minimum
spanning tree (MST) for cells to search for the longest backbone
based on independent component analysis (ICA). Monocle2 uses
a distinct approach that incorporates unsupervised data-driven
methods with reversed graph embedding (RGE), which is more
robust and much faster than Monocle. Slingshot is a cluster-
based approach for identifying multiple trajectories with varying
levels of supervision. CellRouter utilizes flow networks to identify
cell-state transition trajectories. Recently, Saelens et al. (2018)
evaluated a number of single-cell trajectory inference approaches
(did not include CellRouter), and found that Slingshot, TSCAN
and Monocle2 outperform other methods.

ALTERNATIVE SPLICING AND
RNA EDITING ANALYSIS OF
SCRNA-SEQ DATA

Most of published single-cell studies mainly explored the
transcriptome variation between individual cells at gene level.
In eukaryotic genome, AS allows multi-exon genes to generate
different isoforms, which can largely increase the diversity
of both protein-coding and noncoding RNAs. Five basic
modes are generally recognized for AS, including exon-skipping
(cassette exon), mutually exclusive exons, alternative donor site,
alternative acceptor site, and intron retention. Lots of studies
have shown that AS is very common in mammalians and over
90% of human genes could undergo AS based on bulk RNA-
seq data (Wang et al., 2008; Chen et al., 2017a). Moreover,
AS play crucial roles in a variety of biological processes and
abnormal AS may be correlated with cancers (Sveen et al., 2016).
The findings revealed by bulk RNA-seq data can only reflect
the averaged AS patterns of numerous cells at population level.

TABLE 5 | Methods for single-cell trajectory inference.

Tools Dimensionality
reduction

URL References

Monocle ICA http://cole-trapnell-lab.
github.io/monocle-release/

Trapnell et al.,
2014

Waterfall PCA https:
//www.cell.com/cms/10.
1016/j.stem.2015.07.013/
attachment/3e966901-
034f-418a-a439-
996c50292a11/mmc9.zip

Shin et al., 2015

Wishbone Diffusion maps https://github.com/
ManuSetty/wishbone

Setty et al., 2016

GrandPrix Gaussian
Process Latent
Variable Model

https://github.com/
ManchesterBioinference/
GrandPrix

Ahmed et al., 2019

SCUBA t-SNE https://github.com/gcyuan/
SCUBA

Marco et al., 2014

DPT Diffusion maps https://media.nature.com/
original/nature-assets/
nmeth/journal/v13/n10/
extref/nmeth.3971-S3.zip

Haghverdi et al.,
2016

TSCAN PCA https:
//github.com/zji90/TSCAN

Ji and Ji, 2016

Monocle2 RGE http://cole-trapnell-lab.
github.io/monocle-release/

Qiu et al., 2017

Slingshot Any https://github.com/
kstreet13/slingshot

Street et al., 2018

CellRouter Any https://github.com/
edroaldo/cellrouter

Lummertz da
Rocha et al., 2018

Due to the high noise (e.g., dropouts and uneven transcript
coverage) and low sequencing coverage of scRNA-seq data, the
splicing quantification methods initially developed for bulk RNA-
seq data are not suitable for scRNA-seq data. Since expression
dynamics is a key aspect of cell populations, it is promising
to study AS at single-cell resolution to gain insights into cell-
level isoform usage. To date, only a few number of AS detection
approaches were devised for scRNA-seq data, such as SingleSplice
(Welch et al., 2016), Census (Qiu et al., 2017), BRIE (Huang
and Sanguinetti, 2017), and Expedition (Song et al., 2017)
(Table 6). SingleSplice uses a statistical model to detect the
genes with a significant isoform usage without estimating the
expression levels of full-length transcripts. Census models the
isoform counts of each gene with a linear model as a Dirichlet-
multinomial distribution. BRIE is a Bayesian hierarchical model
for differential isoform quantification. Expedition contains a suite
of algorithms for identifying AS, assigning splicing modalities
and visualize modality changes. The AS detection approaches
specially designed for scRNA-seq data are just emerging, thus
the innovation and improvement of such methods will largely
facilitate AS exploration at the single-cell level.

On the other hand, RNA-editing is an important post-
transcriptional processing event that leads to sequence changes
on RNA molecules (Gott and Emeson, 2000). Similarly, RNA-
editing is mainly studied using bulk RNA-seq technologies but
rarely explored at the single-cell level. Currently, the limitations
of scRNA-seq largely prevented the application of RNA-editing
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TABLE 6 | Alternative splicing detection tools for scRNA-seq data.

Tools URL References

SingleSplice https:
//github.com/jw156605/SingleSplice

Welch et al., 2016

Expedition https://github.com/YeoLab/Expedition Song et al., 2017

BRIE https://github.com/huangyh09/brie Huang and Sanguinetti,
2017

Census http://cole-trapnell-lab.github.io/
monocle-release/

Qiu et al., 2017

detection to individual cells. Accordingly, with the development
of both scRNA-seq technologies and single-cell editing detection
algorithms, exploration of RNA-editing dynamics among single
cells will be feasible. Notably, both AS and RNA-editing are
mainly suitable for the data generated by scRNA-seq protocols
that can sequence full-length transcripts such as Smart-seq2 and
MATQ-seq rather than 3′-end scRNA-seq approaches.

ALLELIC EXPRESSION EXPLORATION
WITH SCRNA-SEQ DATA

Diploid species contain two sets of chromosomes that are
separately obtained from their parents. Allelic expression analysis
can reveal whether genes are equally expressed between parental
and maternal genomes. For autosomes, the parental and
maternal expression are generally expressed equally, and aberrant
expression of parental or maternal genome may cause certain
diseases (McKean et al., 2016). Up to now, few methods were
developed to detect the genome-wide allelic expression profile
of genes based on scRNA-seq data. One main caution of allelic
expression calling is that the high dropouts of scRNA-seq data
may introduce many false positives. Deng et al. (2014) used a
series of stringent criteria to filter the potentially false allelic calls
resulted from the technical variability of scRNA-seq in studying
allelic expression profile of mouse preimplantation embryos.
The robustness of this strategy was further demonstrated in
analyzing the dynamics of X chromosome inactivation along
developmental progression using mouse embryonic stem cells
(Chen et al., 2016a). SCALE was recently proposed to classify
the gene expression into silent, monoallelic and biallelic, states
by adopting an empirical Bayes approach (Jiang et al., 2017).
We believe that allelic expression analysis at single-cell level can
largely facilitate the understanding of the underlying mechanisms
of dosage compensation and related diseases. It is worth noting
that allelic expression investigation at single-cell level also needs
the whole-transcript scRNA-seq and is mainly applicable to
the organism that has available paternal and maternal single
nucleotide polymorphism (SNP) information.

GENE REGULATORY NETWORK
RECONSTRUCTION

Gene regulatory network inference has been widely conducted
in numerous bulk RNA-seq studies, while scRNA-seq also

provides great potential for such analysis. For bulk RNA-seq
data, networks are usually constructed from a number of samples
using the tools like weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008; Chen et al., 2017a).
A basic assumption is that the genes highly correlated in
expression could be co-regulated. Because such an analysis is
unable to determine the regulatory relationship, the resulting
networks are typically undirected. Theoretically, the cells of
scRNA-seq can be treated as the samples of bulk RNA-seq,
then similar approaches are applicable to scRNA-seq data for
constructing gene regulatory network.

Network inference of scRNA-seq data may reveal meaningful
gene correlations and provide biologically important insights
that could not be uncovered by population-level data of bulk
RNA-seq. However, due to the technical noise of scRNA-seq and
different subpopulations or sates of cells, attention should be paid
to network reconstruction. To reduce spurious results, network
inference should be carried out on each subpopulation or the
cells with the same stage. Recently, Aibar et al. (2017) developed
SCENIC method to reconstruct the gene regulatory network from
scRNA-seq data and they showed that SCENIC can robustly
predict the interactions between transcription factors and target
genes. PIDC is another software designed to infer gene regulatory
network from single-cell data using multivariate information
theory (Chan et al., 2017). Such network inference tools facilitate
the identification of expression regulatory network from single-
cell transcriptomic data and provide critically biological insights
into the regulatory relationships between genes.

CONCLUSION

In the past 10 years, a great advancement has been achieved
in scRNA-seq and a variety of scRNA-seq protocols have been
developed. The development and innovation of scRNA-seq
largely facilitated single-cell transcriptomic studies, leading to
insightful findings in cell expression variability and dynamics.
Moreover, the throughput of scRNA-seq has significantly
increased with the exciting progress in cellular barcoding
and microfluidics. Meanwhile, scRNA-seq methods that can
be used for fixation and frozen samples have also been
proposed recently, which will greatly benefit the study of highly
heterogeneous clinical samples. However, currently available
scRNA-seq approaches still have a high dropout problem,
in which weakly expressed genes would be missed. The
improvement of RNA capture efficiency and transcript coverage
will definitely reduce the technical noise of scRNA-seq. Moreover,
since most of current scRNA-seq methods mainly capture
polyA+ RNAs, the development of protocols that can capture
both polyA+ and polyA− RNAs (such as MATQ-seq) will enable
comprehensive investigation of both protein-coding and non-
coding gene expression dynamics at single-cell resolution.

Since the noise of scRNA-seq data is high, it is crucial
to use appropriate methods to overcome the problem in
analyzing scRNA-seq data. QC is necessary to exclude those low-
quality cells to avoid involving artifacts in data interpretation.
Furthermore, batch effect correction (if need), between sample
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normalization and imputation are also important and should be
conducted before cell subpopulation identification, differential
expression calling, and other downstream analyses. Additionally,
factors such as cell size and cell cycle state could play
important roles in cell variability for certain types of cells,
such biases are also need to be considered. Although an
increasing number of methods have been specially designed to
interpret scRNA-seq data, advances of novel methods that can
effectively handle the technical noise and expression variability
of cells are still required. Specifically, the approaches that
can accurately analyze AS and RNA-editing with scRNA-
seq data are highly useful to unravel post-transcriptional
mechanisms in individual cells. Overall, bioinformatics analysis
of scRNA-seq data is still challenging, special attention should
be paid in data interpretation, and more efficient tools
are in urgent need.

Collectively, scRNA-seq and its related computational
methods largely promote the development of single-cell

transcriptomics. The continuous innovation of scRNA-seq
technologies and concomitant advances in bioinformatics
approaches will greatly facilitate biological and clinical
researches, and provide deep insights into the gene expression
heterogeneity and dynamics of cells.
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