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Crohn’s Disease (CD) is one of the predominant forms of inflammatory bowel disease
(IBD). A combination of genetic and non-genetic risk factors have been reported to
contribute to the development of CD. Many high-throughput omics studies have been
conducted to identify disease associated risk variants that might contribute to CD, such
as genome-wide association studies (GWAS) and next generation sequencing studies.
A pressing need remains to prioritize and characterize candidate genes that underlie the
etiology of CD. In this study, we collected a comprehensive multi-dimensional data from
GWAS, gene expression, and methylation studies and generated transcriptome-wide
association study (TWAS) data to further interpret the GWAS association results. We
applied our previously developed method called mega-analysis of Odds Ratio (MegaOR)
to prioritize CD candidate genes (CDgenes). As a result, we identified consensus
sets of CDgenes (62–235 genes) based on the evidence matrix. We demonstrated
that these CDgenes were significantly more frequently interact with each other than
randomly expected. Functional annotation of these genes highlighted critical immune-
related processes such as immune response, MHC class II receptor activity, and
immunological disorders. In particular, the constitutive photomorphogenesis 9 (COP9)
signalosome related genes were found to be significantly enriched in CDgenes, implying
a potential role of COP9 signalosome involved in the pathogenesis of CD. Finally, we
found some of the CDgenes shared biological functions with known drug targets of
CD, such as the regulation of inflammatory response and the leukocyte adhesion to
vascular endothelial cell. In summary, we identified highly confident CDgenes from
multi-dimensional evidence, providing insights for the understanding of CD etiology.
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INTRODUCTION

Crohn’s Disease (CD) is one of the major forms of inflammatory
bowel disease (IBD). CD has a prevalence of 26 to 200 per
100,000 person in populations with European ancestry (Loftus,
2004). Family studies have shown that CD has 0.25 to 0.42
heritability (Gordon et al., 2015). Dysregulated immune response
to environmental factors such as gut microbiome (Khor et al.,
2011; Jostins et al., 2012; Ananthakrishnan, 2013) has been
reported in CD. Complex diseases like CD are usually affected by
a large number of genetic factors and environment factors (Rivas
et al., 2011). Recent genome-wide association studies (GWAS) of
CD have successfully identified more than two hundreds disease-
associated loci at the genome-wide significance level (Franke
et al., 2010; Liu et al., 2015). However, these findings could only
explain a moderate proportion of the heritability (Verstockt et al.,
2018). Recently, integrating GWAS signals with transcriptome-
wide association study (TWAS) and expression quantitative
trait loci (eQTL) annotation has become an effective approach
to identify new susceptibility loci and has been successfully
applied in several complex diseases including CD (He et al.,
2013; Marigorta et al., 2017; Gusev et al., 2018). Other forms of
genetic variants are also implied, such as copy number variation
(CNV) and rare variants, and they are expected to have large
effects (Visscher et al., 2017). For example, a genome-wide
association study of CNVs identified IRGM (immunity-related
GTPase family, M) and the HLA gene family for CD (Wellcome
Trust Case Control Consortium et al., 2010). Several genes were
reported to harbor rare variants associated with CD, such as
NOD2 (Nucleotide Binding Oligomerization Domain Containing
2, Alias CARD15) and ADCY7 (Adenylate Cyclase 7) (Hunt
et al., 2013; Luo et al., 2017). Apart from those genetic variants,
epigenetic alternations were also observed in CD patients. For
example, altered methylation levels in peripheral blood were
reported for the genes MIR21 (MicroRNA 21), TXK (TXK
Tyrosine Kinase), ITGB2 (Integrin Subunit Beta 2) and HLA loci
in case-control studies (Adams et al., 2014; Ventham et al., 2016).
Lastly, a number of transcriptome profiling studies have been
conducted, revealing genes that were differentially expressed in
CD compared to controls, such as IFITM1 (Interferon Induced
Transmembrane Protein 1), STAT1 (Signal Transducer And
Activator Of Transcription 1), TAP1 (Transporter 1, ATP Binding
Cassette Subfamily B Member), and PSMB8 (Proteasome Subunit
Beta 8) identified using endoscopic pinch biopsies (Wu et al.,
2007) and SERPINB2 (Serine (or cysteine) proteinase inhibitor,
clade B (ovalbumin), member 2, PAI 2), NCK2 (NCK Adaptor
Protein 2), and ITGB3 (Integrin Subunit Beta 3) identified
using peripheral blood mononuclear cell (PBMC) (Burczynski
et al., 2006). Each of these unbiased, GWAS have provided
unique insights and candidate pathogenic variants and genes to
understand the etiology of CD. However, challenges remain in
how to effectively integrate these heterogeneous association data
that range in a wide variety of biological processes.

Considerable work have been developed by integrating high-
throughput multi-omics data ranging from unsupervised data
integration to supervised data integration (Jiang et al., 2014;
Wang et al., 2015; Huang et al., 2017; Jia et al., 2017). However,

most of these tools require domain expertise, especially for the
investigated diseases. Under the assumption that the number of
susceptibility genes to complex disease is limited (Yang et al.,
2005), we developed an unsupervised machine learning approach
named mega-analysis of Odds Ratio (MegaOR) to prioritize
candidate genes from multiple omics data (Jia et al., 2018).
MegaOR relies on that each single omics data was conducted with
control of false discoveries using the domain specific criteria (e.g.,
fold change for gene expression studies and stringent genome-
wide significance threshold for GWAS data). We successfully
demonstrated the method in schizophrenia (Jia et al., 2018). In
this study, we collected five types of omics data, each representing
a genome-wide association study of a molecular type with CD.
We investigated the disease relevant tissues using unbiased
GWAS data and conducted TWAS for CD in these tissues. By
applying MegaOR, we prioritized consensus sets of candidate
genes and investigated their characteristics using functional
enrichment analysis and drug target crosstalk.

MATERIALS AND METHODS

GWAS Summary Statistics
We collected the summary statistics from a GWA study for
CD conducted by the International Inflammatory Bowel Disease
Genetics Consortium (IIBDGC) (Liu et al., 2015). The study
included 27,726 individuals (5,956 cases and 21,770 controls)
of European ancestry genotyped using a combination of array
platforms, including Affymetrix GeneChip Human Mapping
500K, Affymetrix Genome-Wide Human SNP Array 6.0, and
Illumina HumanHap300 BeadChip. The genotype data were also
imputed based on the 1000 Genomes Project reference panel
(1000 Genomes Project Consortium et al., 2015). In total, the
GWAS summary statistics included association results for a total
of 11,002,658 SNPs either genotyped or imputed (score> 0.3).

Gene Expression Data
We approached the gene expression data from a recent study
that profiled the whole blood expression of 24 CD patients and
23 healthy controls (Ventham et al., 2016) (GEO accession ID:
GSE86434). The expression data was generated using Illumina
HumanHT-12 V4.0 expression BeadChip platform (GPL10558),
which contained about 31,000 annotated genes with more
than 47,000 probes. We used the online tool GEO2R1 to
conduct differential gene expression analysis. We compared
the expression of whole blood mRNA between CD cases and
controls. Following the method used in the original paper,
log2 transformation was conducted for the expression data,
and then Limma (R package) was used to adjust covariates
(age and gender) to obtain the differentially expressed genes
(DEGs) between CD cases and controls. Genes with fold change
(FC) ≥ 1.5 or ≤ 0.67 and adjusted p-value< 0.05 (the Benjamini
and Hochberg method) were defined as DEGs (Mitra et al., 2015;
Ritchie et al., 2015; Hu et al., 2018).

1https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Methylation Data
We obtained the methylation data from a recent study that
conducted differential methylation analysis using 121 CD
cases and 191 healthy controls (Ventham et al., 2016) (GEO
accession ID: GSE87648). The study provided whole genome
methylation using Illumina HumanMethylation450 BeadChip
platform (GPL13534), which contained ∼485,000 probes. We
requested the methylation results from the author of the study.
This differential methylation genes was generated using whole
blood leukocyte samples. In the original work (Ventham et al.,
2016), the authors normalized the methylation matrix using the
R package lumi and estimated the cell proportion by the R
package minfi. Lastly, Limma was used to identify differentially
methylated CpG probes. Probes were mapped to genes according
to the annotation file of the chip (Jiang et al., 2016). For
genes with multiple probes, we selected the most significant
probe for the gene.

Gene-Based Association Test
Using Pascal
As our analysis builds on genes and the GWAS summary
statistics provided association results for SNPs, we compiled
a p-value for each gene using the association results of SNPs
mapped to the gene. Specifically, we considered all SNPs mapped
to the gene body or 50 kb upstream or downstream of the
gene. We used the method Pascal to calculate the gene-based
p-values (Lamparter et al., 2016). Pascal utilizes the sums of
chi-squares and controls potential biases from gene length, SNP
density, and the local LD structure. We used the European
panel as the reference, as similarly, did in a recent study
(Sun et al., 2018).

Tissue-Specific Enrichment
Analysis (TSEA)
To identify the tissues in which the GWAS genes were specifically
expressed, we conducted a tissue specific enrichment analysis
using our in-house R package, deTS (Pei et al., 2019a). deTS
provides a preprocessed reference panel with 47 tissues (each
with ≥ 30 samples) from the GTEx (v7) expression data (GTEx
Consortium et al., 2017) and implements Fisher’s Exact Test for
the enrichment analysis. We applied deTS to genes defined by
the Pascal results.

Transcriptome Wide Association
Studies (MetaXcan)
Transcriptome-wide association study estimates genetically
regulated expression (GReX) for each gene and conducts
association studies between genes and traits by assessing the
difference of GReX in trait samples and control samples. We
utilized the method MetaXcan for a TWAS analysis of the
CD GWAS summary statistics (Barbeira et al., 2018). The
pre-calculated weight matrix was downloaded from http://
predictdb.org/. We utilized three disease-relevant tissues for the
analyses, where were determined based on previous knowledge
and deTS results.

Integrative Analysis of eQTL and GWAS
Data (Sherlock)
Considering that many disease-associated genetic variants have
regulatory roles, we applied the method Sherlock to integrate
eQTLs and GWAS with the aim to identify concordant evidence
between the two platforms (He et al., 2013). Sherlock uses a
Bayesian statistical method to match the signature of genes from
eQTLs to GWAS. As eQTL data have population and tissue
specificity, we applied Sherlock for the CD GWAS data using
the same tissues as for MetaXcan. A gene-based p-value was
calculated from Sherlock for each gene in each tissue.

Mega-Analysis of Odds Ratio (MegaOR)
We adopted our previous work MegaOR to identify a consensus
set of candidate genes that collectively had the most intensive
load of evidence for their association with CD (hereafter
referred as CDgenes). MegaOR took a multidimensional data
matrix as the input. In each dimension, genes that were
determined as significantly associated with the trait based
on the domain-specific threshold were labeled as 1 while
other genes that failed the significance threshold were labeled
as 0. For example, in the category of gene expression,
significantly differentially expressed genes [FDR < 0.05 and
(FC) ≥ 1.5 or ≤ 0.67] were labeled 1 and other genes 0. The
same preprocessing was performed for each dimensional data
following the particular domain-specific thresholds. As a result,
the multidimensional data matrix included only binary values.
MegaOR took this binary data matrix and defined a combined OR
(cOR):cOR = µ−

∑
(OR−µ)2

d , where OR represented the Odds
Ratio for each dimension, d was the dimension of evidence, and
µwas the average OR across dimensions. The part

∑
(OR−µ)2

d was
introduced as the penalty to control deviation of any dimensional
OR and served to balance the multidimensional lines of evidence.
MegaOR implemented an iterative optimization procedure to
find the best set of genes (denoted by S) with the pre-defined
size n such that at the stable status, genes in S had the best cOR.
A workflow was illustrated in Figure 1. Further details can be
found in our previous work (Jia et al., 2018).

Functional Enrichment Analysis
We used the R package RDAVIDWebService (version 1.16.0) for
functional enrichment analysis. We focused on Gene Ontology
(GO) and genetics association database (GAD) (Fresno and
Fernandez, 2013). GO functional annotation tool (FAT) was used
to filter out very broad terms based on a measured specificity
of each term (not level-specificity). We further use the plug-in
ClueGO of Cytoscape to display the relationship between genes
and GO terms (Shannon et al., 2003; Bindea et al., 2009). Only
GO terms with more than five CDgenes were demonstrated.

Drug Target Gene Enrichment Analysis
We queried the Therapeutic Target Database2 to identify Food
and Drug Administration (FDA) approved drugs that were used

2http://bidd.nus.edu.sg/group/cjttd/ (accessed 2 February 2019).
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FIGURE 1 | Workflow of the study. DEG, differentially expressed genes; DMG, differentially methylated genes; pBH, the Benjamini and Hochberg method; FC, fold
change; OR, Odds Ratio; CDgenes, Crohn’s Disease genes.

for CD (Li et al., 2018). Meditation target genes for CD were
extracted from the database.

Protein-Protein Interaction (PPI) Analysis
We searched the STRING database3 to identify protein-protein
interactions (PPIs) between CD drug target genes and our
CDgenes (Szklarczyk et al., 2017). We selected Homo sapiens
as the organism and considered only the PPIs that were
experimentally validated with medium confidence> 0.35.

RESULTS

Multi-Dimensional Evidence for
Crohn’s Disease
Using the approaches described in methods, we organized
our data into five major categories: Pascal (combined GWAS
information), Sherlock (integrative information of GWAS and
eQTL), MetaXcan (TWAS), gene expression (with DEGs labeled
as 1), and methylation (with differentially methylated genes
(DMGs) labeled as 1). Particularly for Sherlock and MetaXcan,
the analyses were performed for different tissues and thus,
each had multiple sets of omics data. Each dimension presents
a unique biological aspect to assess the potential association
between a gene and CD.

As previously reported, interpretation of disease-associated
genetic variants are more appropriate in tissues that are related to
the diseases, as genetic regulation has a strong tissue specificity.
To determine the disease-relevant tissues to CD, we conducted
TSEA using the CD GWAS data (see the section “TSEA to
determine CD related tissues”) and determined three tissues for

3https://string-db.org/ (accessed 13 February 2019).

the analysis of Sherlock and MetaXcan: whole blood (the most
significant p-value was 9.75 × 10−7), spleen (p = 4 × 10−3), and
small intestine (terminal ileum) (p = 5.48 × 10−3) (Figure 2A).
As a result, we had a total of nine groups of genes: Pascal, three
groups of Sherlock results, three groups of MetaXcan, DEGs, and
DMGs. For each group, we applied group-specific thresholds to
select positive genes (i.e., genes to be labeled as 1 in the matrix)
(Table 1). Specifically, there were 773 Pascal genes (pBH < 0.05),
289 Sherlock genes in whole blood (pBH < 0.2), 170 Sherlock
genes in spleen (pBH < 0.2), 108 Sherlock genes in small intestine
(terminal ileum) (pBH < 0.2), 200 MetaXcan genes in whole blood
(pBH < 0.2), 112 MetaXcan genes in spleen (pBH < 0.2), 69
MetaXcan genes in small intestine (terminal ileum) (pBH < 0.2),
282 DEGs (pBH < 0.05 and | log2(FC)| > 0.58), and 337
DMGs (pBH < 0.2). These data collectively nominated a total of
1,668 genes, each with at least one type of association evidence.
By applied TSEA to each gene sets (Figure 2B), we found
that whole blood, spleen, lung, and small intestine (terminal
ileum) were the most enriched tissues. Specifically, Pascal genes
(p = 1.44 × 10−6), DEGs (p = 8.05 × 10−52), and DMGs
(p = 5.82 × 10−5) were all most significantly enriched in whole
blood. Six gene sets were most significantly enriched in spleen: the
three Sherlock gene sets, MetaXcan genes calculated using small
intestine (terminal ileum) and MetaXcan genes calculated using
whole blood, and the merged gene set of Sherlock genes.

Among the 1,668 genes, 1,287 (79.3%) genes had only one
line of evidence and no gene was found with more than eight
lines of evidence. We further merged the Sherlock genes from the
three tissues and obtained a union of 398 Sherlock genes (5.6%,
Figure 2C) for the following analysis of MegaOR. Similarly, a
union of 305 MetaXcan genes (4.1%, Figure 2D) were obtained
from three result sets in three tissues for MetaXcan. Collectively,
these multidimensional data were organized as the input matrix
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FIGURE 2 | Summary of multidimensional data. (A) Tissue-Specific Enrichment Analysis (TSEA) of PASCAL genes. X-axis: groups of genes defined according to
different threshold based on Pascal p-value. Y-axis: 47 GTEx tissues used as the reference panel. Top three significant tissues (adjusted p < 0.05 from Fisher’s
Exact Test) were marked in numbers. (B) TSEA of genes from each gene sets. (C) Distribution of MetaXcan adjusted p-value. X-axis: –log10 MetaXcan adjusted
p-values from each of the three disease-relevant tissues [whole blood, spleen and small intestine (terminal ileum)]. Red-line indicates the –log10 (0.2) threshold.
(D) Distribution of Sherlock adjusted p-values. X-axis: –log10 Sherlock adjusted p-values from each of the three disease-relevant tissues [whole blood, spleen and
small intestine (terminal ileum)]. Red-line indicates the –log10 (0.2) threshold. (E) Pair-wise comparison among the five lines of evidence. Fisher’s Exact Test was used
for the significance test. The values in each cell represent the –log10 p-value. The figure was based on 1,668 genes that had at least one line of evidence.

with 1,668 genes in five dimensions, each representing one kind
of disease association evidence. We referred this matrix as the
evidence set (ES) genes.

As a control, we generated a second set of genes containing
all the protein-coding genes that were expressed in the three
CD related tissues, without requiring them to have at least
one line of evidence in association with CD. Specifically, we

obtained 13,763 protein-coding genes (GENCODE v19) that had
an average RPKM (Reads Per Kilobase of transcript, per Million
mapped reads) value>1 in whole blood, spleen, or small intestine
(terminal ileum) (GTEx v7 data). These genes, referred as tissue
set (TS) genes, were considered with very weak support for their
potential association with CD. A total of 1,286 genes were shared
between the TS genes and the 1,668 genes with evidence. After
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TABLE 1 | Summary of genes from nine lines of evidence for Crohn’s Disease.

Evidence Threshold∗ Number of genes
passed threshold

Pascal FDR < 0.05 773

Sherlock, whole blood FDR < 0.2 289

Sherlock, small intestine
(terminal ileum)

FDR < 0.2 108

Sherlock, spleen FDR < 0.2 170

MetaXcan, whole blood FDR < 0.2 200

MetaXcan, small intestine
(terminal ileum)

FDR < 0.2 69

MetaXcan, spleen FDR < 0.2 112

DEG FDR < 0.05 282

| log2FC| > 0.58

DMG FDR < 0.2 337

∗FDR, false discovery rate; FC, fold change; DEG, differentially expressed genes;
DMG, differentially methylated genes.

removing redundancy, we built a second matrix with a union of
14,065 genes (13,763 TS genes expressed in CD-relevant tissues
and 1,668 genes with at least one line of evidence in association
with CD). We applied MegaOR to both matrices and we expected
that MegaOR could prioritize disease genes with or without the
TS genes that had weak association evidence.

TSEA to Determine CD Related Tissues
Crohn’s Disease causes inflammation of the gastrointestinal tract
(Fakhoury et al., 2014). Digestive tissues such as colon and small
intestine (terminal ileum) have long been considered to be related
to CD (Wu et al., 2007). Among the multidimensional data
and methods, Sherlock and MetaXcan both require pre-defined
disease relevant tissues. DEGs and DMGs were obtained using
blood samples. Hence, only Pascal genes from GWAS data were
suitable for the determination of tissues (Pei et al., 2019b). We
performed TSEA using Pascal genes defined at different threshold
(p < 0.05, p < 0.01, p < 5 × 10−3, p < 1 × 10−3, p < 5 × 10−4,
p < 1 × 10−4, p < 5 × 10−5, p < 1 × 10−5, and p < 5 × 10−6,
Figure 2). As shown in Figure 2, Pascal genes were found to be
most significantly enriched in whole blood at different thresholds
(e.g., the most significant p-value being 9.75 × 10−7 when using
genes with pPascal < 0.05), followed by small intestine (terminal
ileum) (the most significant p-value being 3.22 × 10−3 when
using genes with pPascal < 0.005). Both spleen and lung were
found to be enriched with Pascal genes. However, considering
that spleen acted as a filter for blood as part of the immune system
while lung had no obvious link to CD, we selected whole blood,
small intestine (terminal ileum), and spleen as the three most
relevant tissues to CD and used these tissues for the application
of Sherlock and MetaXcan.

Pair-Wise Comparison of the
Multidimensional Association Data
To explore the correlation among different dimensional data, we
conducted a pair-wise comparison using genes from each group.
We used Fisher’s exact test to test if any two types of evidence
were associated. As shown in Figure 2E, among all possible pairs

(n = 15), we only observed a significant correlation between
Sherlock and MetaXcan genes (p = 2.63 × 10−43). This is within
expectation because both data types measure the integrative
signals of genetic variants and their regulatory roles in diseases.
Surprisingly, Pascal genes had no correlation with either Sherlock
genes (p = 0.95) or MetaXcan (p = 0.98), even though both
Sherlock and MetaXcan used the same GWAS data as the input
to calculate gene-based p-values. This lack of association implied
that there was independent information that could be obtained
by integrating eQTL and GReX in interpreting GWAS data,
providing a fundamental support to our work of integrating these
diverse evidence data. In addition, DEGs and DMGs showed no
association with any of the other dimensional data.

CDgenes Identified by MegaOR
To identify a set of candidate genes that have the most intensive
load of evidence, we applied MegaOR to the multidimensional
evidence data, respectively, the ES matrix with 1,668 genes (each
with at least one type of evidence) and the TS matrix with
14,065 genes (the union of the genes expressed in disease-relevant
tissues and genes from the ES matrix). We tested eight set sizes
separately, i.e., S = 150, 190, 230, 270, 310, 350, 390, 430 for the
ES matrix and T = 230, 270, 310, 350, 390, 430, 470, 510 for the
TS matrix. For each set size, there were likely different sets of
genes reaching the best cOR, even though they have the same
number of genes. Thus, we applied MegaOR for each set size
100 times. The average ORs at each set sizes were displayed in
Figures 3A,B. Taking the ES matrix as an example, we obtained
eight sets of CDgenes. At each size, we selected genes that were
retained in more than 50% times (Figure 3E). We referred the
genes at each set size to S1 (set size: S = 150, CDgenes: 62), S2
(S = 190, CDgenes: 121), S3 (S = 230, CDgenes: 148), S4 (S = 270,
CDgenes: 162), S5 (S = 310, CDgenes: 210), S6 (S = 350, CDgenes:
234), S7 (S = 390, CDgenes: 235), and S8 (S = 430, CDgenes:
235). CDgenes obtained using large set sizes covered nearly all
the CDgenes obtained using lower set sizes. For example, the 121
genes in S2 included all the 62 genes in S1. For TS-set, T1 for
set size T = 230 (CDgenes: 124), T2 for T = 270 (148), T3 for
n = 310 (155), T4 for n = 350 (165), T5 for n = 390 (196), T6
for n = 430 (222), T7 for n = 470 (230), and T8 for n = 510
(235). In both sets, a converged stable status could be observed
from S6 to S8 and T7 to T8, respectively (Figures 3C,D). Thus,
we suggested that the 235 CDgenes in S7 and the 235 genes in
T8 were close to consensus sets of CDgenes that could reach the
global maximum load of evidence. Interestingly, the two sets of
CDgenes (S7 and T8) shared 234 genes. Thus, we found MegaOR
performed relatively stable to generate such consensus sets of
candidate genes.

CDgenes Interact With Each
Other Significantly
Many disease genes were reported to interact with each other
more often than with randomly selected genes, especially genes
associated with the same diseases (Barabasi et al., 2011). This
was likely because genes underlying the same disease are often
involved in related biological pathways. To investigate whether
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FIGURE 3 | Summary of Crohn’s Disease candidate genes from MegaOR. (A) Odds Ratio (OR) distribution for each type of evidence in each set size for the
evidence matrix with 1,668 genes. Each dot indicates the average ORs in the corresponding evidence type from 100 stable sets resulted from MegaOR (see section
“Mega-Analysis of Odds Ratio”). (B) OR distribution for the TS-matrix. (C) Distribution of CDgenes at each set size. (D) Distribution of TS-CDgenes at each set size.
(E) The frequency of genes covered by 100 stable sets at an example size S = 390 in at least on type of evidence set (ES). Genes on the left part of the plot in green
were less frequently recovered (<50% occurrence). Genes on the right part of the plot were selected as the CDgenes for the corresponding set size.

our CDgenes tended to interact more often with each other,
we curated protein-protein interaction (PPI) data from three
sources. The first network was from HumanNet and has been
previously used to study GWAS data (Lee et al., 2011). The
second network was from a precomputed influence graph that
was recently used in cancer (Ding et al., 2015). The third
network was a combined dataset of HPRD and STRING (MAGI)
(Hormozdiari et al., 2015). For each set of CDgenes, we recorded
the number of interactions among CDgene and resampled 10,000

random gene sets, each with the same number of CDgenes. The
number of random gene sets that had interactions exceeding the
actual number of interactions was used to calculate an empirical
p-value. We performed this analysis in each human PPI network,
respectively. Interestingly, CDgenes showed significantly more
PPIs than those from random gene sets in both HumanNet
joint, influence_graph, and MAGI (Figure 4), implying that our
CDgenes tended to interact with each other significantly more
frequently than expected in random gene sets.
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FIGURE 4 | Distribution of protein-protein interactions (PPIs) among CDgenes. The analysis was conducted using the HumanNet joint reference panel (A), the
influence graph reference panel (B), and MAGI (C). In each panel, the distribution of the intersections was displayed for 10,000 randomly selected gene sets, each
set with the same set sizes as the query set. X-axis is the number of interactions. Y-axis is the frequency of the interactions. In the title of each panel, V denoted the
number of CDgenes that were annotated in the corresponding PPI network, E denoted the number of interactions among these CDgenes, and the p-value was the
empirical rank p-value. The vertical red line indicates the number of interactions observed for the actual CDgenes.
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FIGURE 5 | Functional enrichment for the consensus set. (A) Bubble plot of the functional enrichment results using the consensus CDgenes obtained at S = 390
(#CDgenes = 235 genes). Y-axis indicated the enriched gene sets with adjusted p-value < 0.05. X-axis is the –log10 (adjusted p-value). Circle sizes were
proportional to the shared CDgenes with genes from the corresponding gene set. Circle color was proportional to the adjusted p-value. (B) Enrichment analysis
results using the ClueGO method in Cytoscape (Bindea et al., 2009). Each dot represented a gene or a GO term. Dots in the same color were considered from the
same functional group by ClueGO annotation. Gene names were highlighted in red. Each edge indicated the gene was a component gene of the linked GO term.

Functional Enrichment Analysis
of CDgenes
To identify the biological roles of the genes in the significant
modules, we performed functional enrichment analysis using
DAVID (See section “Materials and Methods”). We focused
on GO terms and gene sets from the GAD. Our finding

showed that the 235 CDgenes in S7 were enriched with
MHC class II receptor activity (GO: 0032395, Molecular
Function, p = 9.08 × 10−6), immune response (GO:
0006955, Biological Process, p = 1.02 × 10−14), and MHC
protein complex (GO: 0042611, Cellular Component,
p = 2.85 × 10−5) (Figure 5A). In GAD, immunological
disorders such as Systemic Lupus Erythematosus (adjusted
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p = 2.52 × 10−24) and Psoriasis (adjusted p = 7.56 × 10−20)
were found to be most significantly enriched (Figure 5A).
Importantly, the category “Crohn’s Disease” from GAD
was also significantly enriched in our CDgenes (adjusted
p = 2.44 × 10−13). Evidence of 235 CDgenes was provided in
Supplementary Tables S1, S2.

DISCUSSION

In this work, we collected five multi-dimensional data to
prioritize CD-associated genes. Using tissue specific enrichment
analysis and GWAS data, we determined three tissues that
were most related to CD [whole blood, spleen, and small
intestine (terminal ileum)]. With these tissues, we calculated
integrative association signals between tissue eQTL and
GWAS data and conducted tissue-specific TWAS. We
constructed two evidence matrices and applied MegaOR
to identify a consensus set of CD-associated genes. The
candidate CDgenes in this consensus set tended to interact
with each other more often than size-matched random
genes, indicating these CDgenes could functionally cooperate
with each other. Functional enrichment analysis showed
that these CDgenes were enriched in immune related
diseases and biological processes. Moreover, methods of
integrative studies such as MegaOR are powerful tools
to unravel the etiology of complex diseases (Wang et al.,
2016; O’Brien et al., 2018). With the increasing volume of
omics data, these methods could be easily extended to other
complex diseases, such as cancer, psychiatric diseases, and
immune diseases.

Consensus CDgenes Overlaps With
Known Disease Risk Genes
Although we did not collect the rare mutations as our
evidence, two genes from our CDgenes were previously
reported to harbor rare variants with CD, ADCY7 (adjusted
pPascal = 4.76 × 10−10, adjusted pSherlock = 2.20 × 10−3

in whole blood, adjusted pMetaXcan = 9.15 × 10−4 in whole
blood, and adjusted pDMG = 0.045) and NOD2 (adjusted
pPascal = 4.76 × 10−10, adjusted pSherlock = 2.20 × 10−3 in
whole blood, and adjusted pMetaXcan = 0.096 in whole blood)
(Hunt et al., 2013; Luo et al., 2017). Moreover, previously
known DEGs and DMGs (MIR21, TXK, IFITM1, and TAP1)
could also be observed in our CDgenes, suggesting these
genes have robust association with CD (Adams et al., 2014;
Ventham et al., 2016).

Function Enrichment Analysis of
CDgenes Highlighted COP9 Signalosome
Our consensus CDgenes provided a promising list of candidate
genes for CD. The significantly enriched pathways and functional
sets suggested that CDgenes were biologically related to CD.
In addition, we observed quite a number of promising genes
with various types of evidence, such as genes involved in
antigen binding (HLA-DOA, HLA-DOB, HLA-DQA2, HLA-
DQB1, TAP1, and TAP2) and genes involved in the immune

response (NOD2, IFITM1, PSMB8, TXK, and AIM2). Other
genes of interest included NCKIPSD (NCK interacting protein
with SH3 domain: adjusted pPascal = 1.00 × 10−3, adjusted
pSherlock = 0.037 in whole blood, adjusted pMetaXcan = 0.13
in whole blood), WDR6 (WD repeat domain 6, adjusted
pPascal = 0.029, adjusted pSherlock = 5.60 × 10−3 in small
intestine (terminal ileum), adjusted pMetaXcan = 0.025 in
whole blood), DOCK7 (dedicator of cytokinesis 7, adjusted
pPascal = 2.00 × 10−3, adjusted pSherlock = 2.40 × 10−3

in whole blood, adjusted pMetaXcan = 2.10 × 10−3 in
whole blood), SPNS1 [Sphingolipid Transporter 1 (Putative),
pPascal = 4.02 × 10−3, adjusted pSherlock = 2.19 × 10−3

in whole blood, pMetaXcan = 7.43 × 10−3), FLOT1 (flotillin
1, pPascal = 3.79 × 10−3, pSherlock = 0.13 in whole blood,
pDEG = 5.87 × 10−3),and HSPA7 (encoding heat shock
protein family A (Hsp70) member 7, pSherlock = 0.14 in
whole blood, pDEG = 1.34 × 10−3)]. With NOD2, these
seven genes were all from the COP9 signalosome (CSN) (53
genes in this term from ClueGO annotation, Figure 5B and
Supplementary Tables S3, S4). Interestingly, these seven genes
were not the subunits of CSN complex, but they interacted
with CSN complex as suggested by affinity purification and
mass spectrometry experiment (Fang et al., 2008). CSN is a
multi-subunit protease that regulates the activity of cullin-
RING ligase (CRL) families of ubiquitin E3 complexes with
isopeptidase activity. The major activities that CSN was involved
included de-ubiquitination activity and phosphorylation of
important signaling regulators in protein kinase activities (Wei
and Deng, 2003; Wei et al., 2008). Previous studies have revealed
COP9 signalosome subunit 5 (CSN5/Jab1) could regulate the
development of immune system in Drosophila (Harari-Steinberg
et al., 2007). In mice, deficiency of one subunit of COP9
resulted in dysfunction of paneth cell and colonic enterocyte,
which could lead to impaired antimicrobial peptide and might
change the composition of intestinal microbiota (Wang et al.,
2014). This evidence infers the dysregulation of CSN might
impact the intestinal microbiota and lead to pathogenesis
of inflammatory bowel disease. In addition, disrupting CSN
subunit showed impact in T-cell development and antigen
response, indicating CSN might involve in the homeostasis
of T cells (Menon et al., 2007; Panattoni et al., 2008).
Although the debates continue on that whether microbiota,
innate immunity or T cell activation leads to CD, our study
shed lights on the potential etiology of CD through the
dysregulation of COP9 signalosome. These seven genes were
only able to be discovered when integrating multi-dimensional
evidence, demonstrating the advance of MegaOR to unveil
such signals, which cannot be achieved by traditional single
domain approaches.

CDgenes as the Potential Drug Target
Disease associated genes are natural candidates for drug
development in both complex disease and cancer (Butcher et al.,
2004; Zhao et al., 2015; Lee et al., 2016). We further compared
our CDgenes with known target genes of CD meditation using
the Therapeutic Targets Database (TTD) (Li et al., 2018).
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Overall, six FDA approved drugs were found for CD:
Clofazimine, Metronidazole, Ustekinumab, MLN0002,
Infliximab, and Vedolizumab. These drugs had seven target
genes: ABCB11, CYP51A1, IL12B, IL23A, ITGA4, ITGB7,
and TNF (Supplementary Table S5). None of them were
included in our CDgenes. We queried the STRING database
(See text footnote 3.) for the interactions between the seven
drug target genes and the 235 CDgenes (Szklarczyk et al.,
2017). We observed two CDgenes had experimental medium-
confidence (>0.35) in interaction with two drug target genes:
IL12RB2 (CDgene) interacting with IL12B (drug target) and
LTBR (CDgene) interacting TNF (drug target) (Supplementary
Figure S1). IL12RB2 was the receptor of the drug target gene
IL12B and was discovered from Pascal (p = 4.76 × 10−10),
Sherlock (p = 2.19 × 10−3) and MetaXcan (p = 0.12). LTBR
(Tumor Necrosis Factor Receptor Superfamily Member 3)
was the receptor of tumor necrosis factor ligand Superfamily
member 14 and was discovered from Pascal (p = 0.013)
and Sherlock (p = 0.16). Moreover, two TNF Superfamily
ligand genes (TNFSF10 and TNFSF15) and three interleukin
family genes IL18RAP, IL27, and IL4 were found in our
CDgenes. These findings provided some insights of our
CDgenes into the identification of drug targets from multi-
omics datasets.

Limitation
There were some limitations of the current work. First, although
we collected five dimensional data, there were still other omics
data that were missed in our work. For example, previous studies
have reported that copy number variations could be associated
with CD (Wellcome Trust Case Control Consortium et al., 2010).
However, the number of genes implied by CNV studies were
very limited (∼10) and we could not include them into our
matrix. Second, due to the limited tissue data, our DEGs and
DMGs were both generated using PBMCs from CD patients and
samples, instead of disease tissues from the patients. PBMCs
are signs of infection and auto-immune diseases (Burczynski
et al., 2006). Future studies are warranted to use samples from
disease related tissues, such as intestinal biopsies (Wu et al.,
2007). Lastly, due to the data heterogeneity, we used different
threshold to control FDR for each individual omics data, e.g.,
adjusted p < 0.05 in selecting DEGs while adjusted p < 0.2
for MetaXcan, Sherlock and DMGs. This inconsistence among
different omics data may lead to inaccurate estimate of the actual
OR. In future studies, when more data are generated, either from
different omics or multiple data sets for the same omics, an
enhanced evidence matrix could be constructed to validate the
current CDgenes.

CONCLUSION

In summary, we conducted an integrative analysis of genetic,
epigenetic, and transcriptomic data in CD. Our approach
prioritized candidate genes associated with CD from multi-
dimensional data and such methods could be extended to
many other complex diseases with multi-dimensional omics data

being available. Functional analysis of these CDgenes revealed
strong immune response enrichment. We further highlighted the
potential involvement of COP9 signalosome in CD and suggested
interactions among our CDgenes with CD drug target genes.
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