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Cereals are a staple food for many people around the world; however, they are also a
major dietary source of toxic metal(loid)s. Many agricultural regions throughout the world
are contaminated with toxic metal(loid)s, which can accumulate to high levels in the
grains of cereals cultivated in these regions, posing serious health risks to consumers.
Arsenic (As) and cadmium (Cd) are efficiently accumulated in cereals through metal
transport pathways. Therefore, there is an urgent need to develop crops that contain
greatly reduced levels of toxic metal(loid)s. Vacuolar sequestration of toxic metal(loid)s
is a primary strategy for reducing toxic metal(loid)s in grains. However, until recently,
detailed strategies and mechanisms for reducing toxic metal(loid)s in grain were limited
by the lack of experimental data. New strategies to reduce As and Cd in grain by
enhancing vacuolar sequestration in specific tissues are critical to develop crops that
lower the daily intake of As and Cd, potentially improving human health. This review
provides insights and strategies for developing crops with strongly reduced amounts of
toxic metal(loid)s without jeopardizing agronomic traits.
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INTRODUCTION

Toxic metals and metalloids are widespread in the Earth’s crust. Among them, inorganic arsenic
(As) and cadmium (Cd) are regarded as the group-1 carcinogens due to their toxicity, prevalence,
and potential for human exposure (Smith et al., 2002; Sarwar et al., 2010; WHO , 2011). Cereal
staples such as wheat (Triticum aestivum), rice (Oryza sativa), barley (Hordeum vulgare), and maize
(Zea mays) are the primary sources of toxic metal(loid)s ingestion.

Rice, which is consumed by people of many nations around the world, is a major source of As
and Cd exposure. A large portion of the arable land in the major rice producing and consuming
areas of South and Southeast Asia and China is highly contaminated with As and/or Cd (Mandal
and Suzuki, 2002; Zhu et al., 2008; Zhao et al., 2010, 2015). Based on the amount of rice consumed
and the content of inorganic As in the polished grains, it has been estimated that the populations of
Bangladesh and China have a much higher cancer risk from As poisoning than do Japanese, Italian,
and American populations (Meharg et al., 2009). Furthermore, wheat- and rice-based infant food
represents an important source of As exposure for infants and toddlers (European Food Safety
Authority [EFSA] , 2014). In addition, rice accounts for approximately 40% of the food-derived Cd
exposure in the Japanese population (Watanabe et al., 2000). Cereals and grains are estimated to
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contribute about 32% of the total Cd intake by the Chinese
population based on the national average estimate of exposure
(WHO , 2011). In addition, the primary sources of dietary Cd
exposure for adults in Europe are cereals and grains (Olsson et al.,
2002; WHO , 2011). Thus, cereals represent the most significant
dietary source of As and Cd.

Toxic metal(loid)s accumulation in cereals is regulated by both
environmental factors and genetic mechanisms in plants. Recent
advances in understanding these molecular mechanisms have led
to promising avenues for developing ideal cereals with reduced
grain As and Cd.

MOVEMENT OF As AND Cd FROM THE
SOIL TO THE GRAIN

The absorption, root-to-shoot translocation, and (re)distribution
of As and Cd are three crucial steps controlling their movement
from the soil to the edible organs. During the last decade,
considerable advances in As and Cd accumulation mechanisms
in plants have been achieved (see the reviews by Mendoza-Cozatl
et al,, 2011; Clemens et al., 2013; Uraguchi and Fujiwara, 2013;
Clemens and Ma, 2016; Li et al,, 2016; Awasthi et al., 2017;
Chen et al, 2017; Lindsay and Maathuis, 2017). Herein, the
mechanisms of As and Cd transport from soil to the grains of
cereals, especially in rice were briefly described.

The uptake and root-to-shoot translocation of arsenite
[As(IIT)], the predominant form in anaerobic soil where rice
grow, is largely depends on two silicon (Si) transporters, OsLsil
and OsLsi2 (Ma et al.,, 2008). The distally localized OsLsil in
root exodermal and endodermal cells is responsible for the
influx of As(IIl) into these two cell layers, while proximally
localized OsLsi2 at the same cells is required for As(III) efflux
toward the stele (Figure 1A; Ma et al., 2008). OsLsi2 is also
highly expressed in the node, a most important organ for As
storage and distribution into the rice grain (Chen et al., 2015).
Particularly, OsLsi2 is located in parenchyma cells bridging the
border between the enlarged vascular bundles (EVBs) and diffuse
vascular bundles (DVBs), and involved in the intervascular
transfer of As(III) (Figure 1A; Chen et al., 2015; Yamaji
et al., 2015). Knockout of OsLsil significantly reduces As(III)
uptake, and disruption of OsLsi2 reduces As translocation to the
shoot, as well as the redistribution to the grains (Figure 1A;
Ma et al,, 2008; Chen et al,, 2015). Recently, a transcriptional
factor, OsARM1 (Arsenite Responsive MYB 1), was identified as
a negative regulator for As(III) transport in rice through directly
suppressing the expression of OsLsil, OsLsi2, and OsLsi6, an
aquaporin with As(IIT) permeability (Ma et al., 2008; Wang et al.,
2017). On the other hand, Arsenate [As(V)] is the other form of
inorganic As which can be facilitated into root cells by phosphate
transporters and subsequently deoxygenated to As(III) by As(V)
reductases (Chao et al., 2014; Shi et al., 2016; Cao et al., 2017;
Chen et al., 2017; Xu et al., 2017).

In rice, Cd is mainly taken up by OsNramp5, a polar-localized
plasma membrane protein belonging to the Natural Resistance-
Associated Macrophage Protein family required for manganese
(Mn) uptake (Figure 1B; Ishikawa et al., 2012; Sasaki et al., 2012).
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FIGURE 1 | Tissue-specific expression of OsABCC1 and OsHMA3 reduces
As and Cd concentrations in the rice grain. Transporters localized at the
plasma membrane and tonoplast are critical for root-to-shoot translocation
and grain accumulation of As and Cd. (A) Arsenic taken up by transporters,
such as OsPTs and unknown influx transporters (possibly aquaporins) located
at the plasma membrane of the root epidermis, is translocated to shoots and
grains, or extruded into the rhizosphere. OsABCC1, a major vacuolar PCs-As
transporter, delivers As into vacuoles in phloem companion cells of node |,
and inhibits As translocation into rice grains (Song et al., 2014a). Rice plants
containing low concentrations of As in their grain were generated by
expressing OsABCC1 and ScYCF1 specifically in the cortex, internode, and
nodes using the OsRCc3 promoter (Deng et al., 2018). (B) Cd is mainly taken
up by OsNramp5, which is localized at the distal side of both root exodermis
and endodermis cells. In addition, OsIRT1, 2 and OsNramp1 also contribute
to Cd uptake. OsHMAGS located at the tonoplast of roots are responsible for
the accumulation of Cd within vacuoles and inhibit radial translocation of Cd
into the stele. Low Cd-accumulating rice was generated by expressing a
functional OsHMAS transporter under the control of pOsHMAZ2, a rice root
pericycle and nodal phloem-specific promoter (Shao et al., 2018). Epi,
epidermis; Endo, endodermis; EVB, enlarged vascular bundles; DVB, diffuse
vascular bundles; XTC, xylem transfer cells; PCB, parenchyma cell bridge;
NVA, nodal vascular anastomoses; PPC/CC, phloem parenchyma cells and
companion cells; P, phloem; V, vacuole.

The T-DNA insertion mutants of OsNramp5 showed largely
reduced yield (Sasaki et al.,, 2012), while OsNramp5 knockout
lines developed by Ion-beam irradiation or CRISPR/Cas9 system
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did not show any reduced grain yield (Ishikawa et al., 2012;
Tang et al, 2017). Additional investigations are required to
clarify this discrepancy. OsNrampl, OsIRT1, and OsIRT2 are
also implicated in Cd uptake under specific conditions, but
their contribution seems weak compared to that of OsNramp5
(Figure 1B; Nakanishi et al., 2006; Takahashi et al., 2011). After
its uptake, Cd is partially translocated from roots to shoots
through phloem loading mediated by OsHMA2, a root pericycle-
localized heavy metal-transporting P-type ATPase required for
translocating Zn to the shoot (Figure 1B; Satoh-Nagasawa
et al.,, 2012; Takahashi et al., 2012; Yamaji et al.,, 2013). At the
reproductive growth stage, OSHMA?2 is highly expressed in the
phloem at nodal EVBs and DVBs, demonstrating its critical
role in loading Cd into seeds through the nodal vasculature
(Yamaji et al., 2013). Furthermore, the plasma membrane-
localized low-affinity cation transporter 1 (OsLCT1) exports
Cd from the nodal phloem parenchyma cells into the sieve
tube, ultimately contributing to Cd deposition into grains
(Figure 1B; Uraguchi et al., 2011).

VACUOLAR SEQUESTRATION LIMITS As
AND Cd ALLOCATION INTO GRAIN

Vacuolar sequestration mediated by various transporters is
important for reducing toxic metal(loid)s in the edible parts of
plants. In rice, high levels of As were detected in vacuoles of
root pericycle cells and companion cells of the nodal phloem,
showing a strong co-localization with sulfur (Moore et al.,
2011, 2014). A tonoplast-localized ATP-binding cassette (ABC)
transporter, OsABCC1, was responsible for trapping As in
the vacuoles by sequestering As-phytochelatin (PC) complex
(Figures 1A, 2; Song et al., 2014b). Knockout of OsABCCI
highly accumulated As in their grains due to a defect in the
vacuolar compartmentalization of As in the phloem of the
nodal vasculature, a critical tissue for distributing As to the
grain (Song et al., 2014b).

PC is one kind of thiol-containing chelators synthesized
from glutathione (GSH) by PC synthase (PCS) (Cobbett
and Goldsbrough, 2002). Loss-of-function of the CRT-like
transporter 1 (CLT1), a transporter that exports GSH from
plastids to the cytosol, led to As hypersensitivity and increased
root-to-shoot As translocation (Figure 2; Yang et al, 2016).
A functionally defective mutant of OsPCSI exhibited increased
As translocation to the grains from the node, indicating that
this glutathione synthesis enzyme has a key role in As-PC
sequestration in rice (Figure 2; Hayashi et al,, 2017). Other
transporters belonging to the C-type ABC superfamily, including
budding yeast (Saccharomyces cerevisiae) cadmium factor 1
(ScYCF1), fission yeast (Schizosaccharomyces pombe) heavy metal
tolerance 1 (SpHMT1), AtABCCI, AtABCC2, and AtABCC3 are
crucial for vacuolar sequestration of As and/or Cd conjugated
with GSH and/or PC (Ortiz et al., 1992; Ghosh et al., 1999; Song
et al., 2010; Park et al., 2012; Brunetti et al., 2015).

Rice accessions harboring OsHMA3a, an OsHMA3 allele from
indica cultivars that results in loss of vacuolar Cd transport
ability, showed much higher Cd translocation from roots to

shoots and grains than did those with a functional OsHMA3n
allele from the japonica cultivar Nipponbare (Ueno et al., 2010,
2011a; Miyadate et al., 2011). Overexpression of OsHMA3n
dramatically decreased Cd concentration in rice shoots and
grains (Ueno et al., 2010). This function was shown to be
conserved in the closest homologs of OsHMA3 in Arabidopsis,
soybean (Glycine max), and some Cd-hyperaccumulating species
such as Noccaea caerulescens and Sedum plumbizincicola (Morel
etal,, 2009; Ueno et al., 2011b; Chao et al., 2012; Wang et al., 2012;
Zhang et al., 2016; Liu et al.,, 2017). Other proteins belonging
to the Cation Exchanger (CAX) and Metal Transporter Protein
(MTP) families have also been implicated in Cd sequestration in
plants (Martinoia et al., 2012; Shitan and Yazaki, 2013; Sharma
et al,, 2016), but it remains unclear whether they are involved in
reducing Cd accumulation in the grain.

ENGINEERING SAFER CEREALS BY
ELEVATING VACUOLAR
SEQUESTRATION CAPACITY IN
SPECIFIC TISSUES

Approaches to reduce As and Cd in cereals have been described
in Arabidopsis, rice, and other plants. It was implicated that (i)
reducing the uptake of toxic elements into the root, (ii) inhibiting
the translocation of toxic elements from the root to the shoot,
and (iii) preventing the distribution of toxic elements from to the
grains are three critical steps that could decrease the levels of toxic
metal(loid)s in grains (Zhao et al., 2010; Uraguchi and Fujiwara,
2013; Clemens and Ma, 2016; Awasthi et al., 2017; Chen et al,,
2017; Lindsay and Maathuis, 2017).

Recently, two studies suggested that the tissue-specific
expression of vacuolar transporters that sequester toxic
metal(loid)s could strongly reduce Cd and As levels in the
grain without reducing growth or yield (Deng et al., 2018;
Shao et al., 2018). Transgenic rice plants were developed that
expressed two different vacuolar As sequestration genes, ScYCFI
and OsABCCI, under the control of the RCc3 promoter in the
root cortical and internode phloem cells, along with a gene for
bacterial y-glutamylcysteine synthetase gene, a key enzyme for
glutathione synthesis, driven by the constitutive promoter. This
tissue-specific expression of the two transporters was critical
for reducing As concentrations in rice grains, as the level of As
in the grains of plants ubiquitously expressing these genes was
comparable to that of the WT (Figure 1A; Deng et al,, 2018).
The cortical cell-specific expression of OsABCCI and ScYCFI
greatly reduced the translocation of As to shoots, due to
increased vacuolar sequestration of As in root cortical cells,
which constitute most of the rice root volume (Deng et al,
2018). This vacuolar sequestration of As within root cortical
cells inhibits the radial translocation of As from the cortex to
the endodermis, where OsLsi2, a major As efflux transporter
localized to the proximal side of the endodermal layer, loads
As into the xylem (Ma et al., 2008). More than 97% of the total
As(III) taken up by the overexpression plant was trapped in the
roots, compared to 87.5% in the wild type. At the reproductive
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Plastid

FIGURE 2 | C-type ATP-binding cassette transporters mediate non-protein thiol-dependent As and Cd vacuolar sequestration. Glutathione synthesized by GSH1 is
translocated from plastids to the cytosol through CLT1, a putative GSH transporter located at the plastid envelope, while phytochelatins (PCs) are synthesized by
phytochelatin synthetases (PCS) in the cytosol. Inorganic arsenic and cadmium form complexes with GSH and PCs. The GSz-As and GS,-Cd complexes might be
sequestrated into the vacuole by unknown ABC transporters; PC-As can be delivered to the vacuole by AtABCC1, AtABCC2, and OsABCC1; and PC-Cd can be
translocated into the vacuole by SpHMT1, AtABCC1, AtABCC2, and AtABCC3. Loss-of-function mutants for Arabidopsis PCS7 and rice CLT1 exhibited
hypersensitivity to As and increased As translocation from roots to shoots due to the limited availability of a cytosolic As chelator in roots (Yang et al., 2016; Hayashi
etal.,, 2017). Rice abcc1 and pcs1 mutants accumulated high levels of As in the grain due to the defect in vacuolar As sequestration in node | (Song et al., 2014a;

Hayashi et al., 2017).
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growth stage, the triple overexpression plant showed an increased
accumulation of As in internodes, and reduced As allocation to
the upper leaves and grains (Deng et al., 2018). Furthermore,
the As content was decreased by up to 70% in the grain of the
overexpressors compared to the control (Deng et al, 2018).
Despite this remarkable reduction, neither the growth nor
the grain yield of the transgenic lines was impaired in a field
test (Deng et al., 2018).

Rice lines in which a functional OsHMA3 allele (OsHMA3n)
was overexpressed under the control of a constitutive promoter,
maize ubiquitin 1 (pZmUBI1), exhibited extremely low levels
of Cd in the grain. Cd translocation from roots to shoots
and grains was strongly inhibited in these transgenic plants
(Ueno et al., 2010). Furthermore, their growth was similar to
that of the control when grown under standard hydroponic
conditions (Sasaki et al., 2014). Recently, Shao et al. (2018)
developed another low Cd-accumulating transgenic rice line
by expressing OsHMA3n under the control of the OsHMA2
promoter (pOsHMA?2) (Figure 1B). This resulted in the strong
expression of OsHMA3n in root pericycle cells and resulted
in a 60% reduction in the Cd root-to-shoot translocation rate.
At the reproductive stage, Cd concentrations in the brown
rice of transgenic lines were decreased to less than 10% of
the control, indicating efficient compartmentalization of Cd
into nodal vacuoles before it could be translocated to the
grain (Shao et al., 2018). Neither the concentration of other
minerals in the grain nor the grain yield was impaired in these
lines (Shao et al., 2018).

Together, these results suggest that tissue-specific vacuolar
sequestration of As and Cd is a useful strategy for developing
crops that contain low levels of toxic metal(loid)s in the grain.

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

The recent progress highlighted here provides practical
strategies for generating high-yield cereal crops with reduced
concentrations of toxic metal(loid)s in their grains. Several
studies indicate that enhancing vacuolar sequestration capacity
is the most promising strategy to do so. This approach could
be further improved by combining it with strategies that either
improve release of As and Cd into the soil or inhibit their
translocation to the shoot, as demonstrated by (Sun et al,
2018). However, our knowledge of how toxic metal(loid)s are
translocated from the soil to grains is incomplete, even in
rice. Furthermore, the molecular mechanisms underlying the
accumulation and allocation of toxic minerals into grains in
other cereal crops, including wheat, maize and barley, have
yet to be identified. For instance, biochemical investigations
using barley vacuoles demonstrated that ABC-type transporters
function in Cd-PC and As-PC compartmentalization (Song
et al., 2014a), however, the specific proteins involved have yet
to be identified.

In addition to OsHMA3, OsABCC1, and their orthologs, at
least two other groups of proteins are involved in detoxifying Cd
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and As. The first group is composed of proteins that regulate
transport activity. For example, phosphorylation of Ser846 of
AtABCC1 is required for As sequestration activity (Zhang et al.,
2017) and mutation of the phosphorylatable Asp within the
conserved DKTGT motif of AtHMA3 and AtHMA4 led to
a severe inhibition of their Cd transport capabilities (Gravot
et al., 2004; Verret et al, 2005). This suggests that, along
with AtABCC1, OsHMA3 can be regulated by protein kinases,
because the conserved DKTGT motif is also present in OsHMA3
(Ueno et al., 2010). It would be interesting to identify the
interaction partners of OsABCCI and OsHMA3, as they could be
essential for reducing As and Cd accumulation in the grain. The
second group consists of tonoplast-localized transporters and
channels. For example, aquaporins are well-known channels that
are permeable to As. Members of the nodulin-26-like intrinsic
protein and plasma membrane-intrinsic protein subfamilies are
critical for As(III) uptake and tolerance in Arabidopsis and rice
(Lindsay and Maathuis, 2017). However, the physiological roles
of tonoplast-intrinsic aquaporins in As sequestration have not
been investigated in cereals. There have also not been functional
studies to evaluate the importance of CAXs or MTPs for Cd
sequestration in rice, wheat, or barley.

Although genetically modified (GM) rice plants with
enhanced vacuolar sequestration capacity prevent toxic
metal(loid) accumulation in grains, these lines may not be
accepted by consumers who prefer non-GM food and may
also be hindered by their legal classification (Dannenberg,
2009; Andersen et al, 2015; Osterberg et al., 2017). Natural
allelic variants with elevated vacuolar sequestration capacity
may facilitate the development of safer crops. For instance,
a rare mutation in OsHMA4 leading to enhanced copper
(Cu) transport activity associated with lower grain Cu in rice
natural populations has been reported (Huang et al, 2016).
Therefore, it would be worth identifying natural allelic variants
in genes such as OsHMA3, OsABCCI, OsPCSI, and their
novel regulation partners that result in enhanced vacuolar
sequestration activity and synthesis of metal(loid)s chelators,
using the rice and Oryza genome databases (Huang et al., 2012;
Zhao et al., 2014; Ohyanagi et al., 2016; Sun et al., 2017; Wang
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