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The detection of cryptic relatedness in large population-based cohorts is of great

importance in genome research. The usual approach for detecting closely related

individuals is to plot allele sharing statistics, based on identity-by-state or identity-by-

descent, in a two-dimensional scatterplot. This approach ignores that allele sharing

data across individuals has in reality a higher dimensionality, and neither regards the

compositional nature of the underlying counts of shared genotypes. In this paper

we develop biplot methodology based on log-ratio principal component analysis that

overcomes these restrictions. This leads to entirely new graphics that are essentially

useful for exploring relatedness in genetic databases from homogeneous populations.

The proposed method can be applied in an iterative manner, acting as a looking glass for

more remote relationships that are harder to classify. Datasets from the 1,000 Genomes

Project and the Genomes For Life-GCAT Project are used to illustrate the proposed

method. The discriminatory power of the log-ratio biplot approach is compared with

the classical plots in a simulation study. In a non-inbred homogeneous population

the classification rate of the log-ratio principal component approach outperforms the

classical graphics across the whole allele frequency spectrum, using only identity by

state. In these circumstances, simulations show that with 35,000 independent bi-allelic

variants, log-ratio principal component analysis, combined with discriminant analysis,

can correctly classify relationships up to and including the fourth degree.

Keywords: allele sharing, composition, identity by state, identity by descent, log-ratio transformation

1. INTRODUCTION

The detection of pairs of related individuals in genomic databases is important in many areas
of genetic research. In population-based gene-disease association studies, the assumption of
independent observations which is usually made in the statistical modeling of the data, may be
violated due to related individuals. Cryptic relatedness can lead to an increased false positive rate
in association studies, in particular if related individuals are oversampled (Voight and Pritchard,
2005). In conservation genetics, unrelated individuals are carefully selected in breeding programs
in order to maximize genetic diversity (Oliehoek et al., 2006). In quality control of genetic variants
produced by high-throughput techniques, accidental duplication of samples in genetic studies
can be detected by a relatedness analysis (Abecasis et al., 2001). In ecology, samples of species
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often contain an excess of close relatives. This can lead to biased
estimates of population-genetic parameters, lower the precision
of their estimates, and inflated type 1 error rates of tests for
genetic equilibria (Wang, 2018). In practice, most relatedness
investigations are based on allele-sharing statistics such as the
average number of identical-by-state (IBS) alleles shared by a pair
of individuals over a set of loci, or by estimating the probabilities
of sharing 0, 1, or 2 alleles identical-by-descent (IBD; Thompson,
1975, 1991), known as Cotterman’s coefficients (Cotterman,
1941). Plots of these sharing statistics typically show clusters that
correspond to unrelated pairs (UN), parent-offspring pairs (PO),
full sibs (FS), half sibs (HS), monozygotic twins (MZ), avuncular
pairs (AV), first cousins (FC), grandparent-grandchild (GG), or
more remote relationships (see Figures 1A–C).

All these methods collapse the data to two statistics, that can
summarize relatedness in two dimensions. Classical plots are
the mean vs. the standard deviation of the shared number of
alleles over loci [the (m, s) plot, see Figure 1A], the fractions
of loci for which a pair of individuals shares 0 or 2 IBS
alleles [the (p0, p2) plot, see Figure 1B], or the estimated

probabilities of sharing 0 or 1 allele IBD [the (k̂0, k̂1) plot, see
Figure 1C]. However, all allele sharing statistics are estimated
from the genotype data. For a pair of individuals with bi-allelic
variants, there exist six possible pairs of genotypes, and their
counts over the k variants determine the IBS allele sharing
statistics. From this perspective, the observed genotype sharing
data consists of vectors of six elements, that, when expressed
in percentage form, occupy a five dimensional space. This
suggests that the classical approaches of collapsing the data
into two dimensions by plotting the summary statistics may
not extract all information about relatedness that is present
in the data. In this paper we propose to explore the data in
five dimensions by using log-ratio principal component analysis
(PCA), which is specially designed for analyzing compositional
data (Aitchison, 1983). A log-ratio PCA allows us to construct
comprehensive biplots that uncover themain relatedness features
of the data.

Biplots are widely used in genetic research, in particular for
the graphical representation of quantitative traits of genotypes
in plant genetics (Anandan et al., 2016; Pandit et al., 2017;
Sharma et al., 2018). In relatedness research, a PCA of bi-allelic
genetic variants, coded in 0, 1, 2 format (for AA, AB, and
BB respectively) is often used to investigate the existence of
population substructure, that is, remote genetic relatedness.
The plots obtained by this kind of PCA are, in principle,
biplots, though often the genetic variants are omitted in such
plots because there are too many of them. Substructure is also
often investigated by multidimensional scaling (MDS) of allele
sharing distances between individuals. The resulting MDS maps
only represent individuals, and some authors prefer the term
monoplots for such graphics (Gower et al., 2011). If MDS is
based on the Euclidean distances, then a covariance-based
PCA and MDS are in fact equivalent (Mardia et al., 1979). The
MDS plots, PCA biplots without variable vectors for the genetic
variants, are particularly popular in substructure investigations
in human genetics (Jakobsson et al., 2008; Sabatti et al., 2009;
Pemberton et al., 2010, 2013; Wang et al., 2010).

The biplot approach proposed in this paper differs from
the classical applications described above in several ways. We
propose a biplot of the genetic data of pairs of individuals, that
represents artificially related pairs of a reference set of given
familial relationships, generated by a respampling of the genetic
data. The empirically observed pairs are used in a supplementary
way, and are projected onto the reference biplot. The data matrix
used in this biplot is not a (0, 1, 2) genetic data matrix, neither
a distance matrix of allele sharing distances, but consists of
vectors of counts of genotype patterns [(AA,AA), (AA,AB), etc.]
which we treat as compositions, and we therefore use a log-ratio
approach. More details are given in the section 2 below.

An important additional advantage of using log-ratio PCA in
this context is that it allows us to explore the data iteratively with
a peel and zoom procedure. A first log-ratio PCA may clearly
reveal a cluster of FS pairs. Once identified, the corresponding
pairs can be removed from the database, and log-ratio PCA can
be repeated on the remaining pairs. The second analysis will focus
more closely onmore remote relationships that may be present in
the database, and thereby act as a magnifying glass for the latter.
The aforementioned classical graphics do not have this property,
as they are invariant under removal of a relationship category.

The remainder of this paper is organized as follows. In the
section 2 we provide background on relatedness research and log-
ratio PCA, and show how to construct biplots that are useful for
relatedness research. In the section 3 we study the discriminative
power of log-ratio PCA and compare this with the classical
plots in a simulation study. We also describe two empirical
examples of ourmethod with data from two different population-
based datasets; a next generation sequencing dataset from the
1,000 Genomes Project (The 1000 Genomes Project Consortium,
2015) and a genome-wide SNP array technology dataset from
the GCAT Genomes For Life Cohort Study of the Genomes of
Catalonia (Galván-Femenía et al., 2018; Obón-Santacana et al.,
2018). A discussion finishes the paper.

2. METHODS

We first summarize some basic methods for relatedness research
(section 2.1), then give a brief account of log-ratio PCA
(section 2.2), and finally show how log-ratio PCA can be used
in relatedness research (section 2.2).

2.1. Relatedness Research
We briefly review some fairly standard procedures that are
currently used in relatedness research. Relatedness investigations
are focused on the extent to which alleles are shared between
individuals. Two individuals can share 0, 1, or 2 alleles for
any autosomal variant. Alleles can be identical by state (IBS)
or identical by descent (IBD). A pair of individuals share IBS
alleles if they match irrespective of their provenance; whereas
they share IBD alleles only if they come from a common ancestor.
Table 1 shows all the possible combinations of the IBS alleles
shared for a pair of individuals at a biallelic variant. Considering
k biallelic variants, each pair of individuals has a vector of 0,
1, and 2 IBS counts of length k. In IBS studies, the means (m)
and standard deviations (s) of the vector of the IBS allele counts
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FIGURE 1 | Classical graphics for relatedness research and log-ratio PCA biplot. Plots show the CEU sample of the 1000G project. IBS/IBD statistics were calculated

over a set of 26,081 complete, LD-pruned autosomal SNPs with MAF above 0.4, and HWE exact test p-value above 0.05. (A) Scatterplot of the mean and standard

deviation of the number of IBS alleles. (B) Scatterplot of the fraction of variants sharing two (p2) against the fraction sharing zero (p0) IBS alleles. (C) Scatterplot of the

estimated probability of sharing one (k̂1) against the estimated probability of sharing zero (k̂0) IBD alleles. (D) log-ratio PCA biplot.

(Abecasis et al., 2001), or the proportions of variants sharing
0, 1, and 2 IBS alleles (denoted p0, p1, and p2 respectively,
Rosenberg, 2006) can be plotted (see Figures 1A,B). These plots
reveal characteristic clusters corresponding to MZ, PO, FS, UN,
and other pairs. Alternatively, in an IBD based approach, the
probability of sharing 0, 1, or 2 IBD alleles for a pair of individuals
(usually denoted by k0, k1, and k2 and referred to as Cotterman’s
coefficients) can be represented in a scatterplot (see Figure 1C,
Nembot-Simo et al., 2013). The Cotterman coefficients can be
estimated by the method of moments (Purcell et al., 2007),
maximum likelihood (Thompson, 1991; Milligan, 2003; Weir
et al., 2006), or robust estimation methods (the KING program,
Manichaikul et al., 2010). In IBD studies, reference values for
the standard relationships are available (see Table 2). Related
pairs can also be distinguished, albeit at lower resolution, by
using the co-ancestry coefficient defined as θ = k1/2 + k2 or
the kinship coefficient defined as φ = θ/2. Galván-Femenía
et al. (2017) give an overview of graphics used in relatedness
research. Figure 1 shows a panel plot of some standard graphics
used in IBS and IBD studies for all the pairs of individuals from
the CEU population of the 1.000 Genomes project. These plots
distinguish UN, PO, FS, and second degree pairs. Alternatively, a
Markov-chain approach with the calculation of likelihood ratios

TABLE 1 | Number of IBS alleles for possible combinations of genotypes.

AA AB BB

AA 2 1 0

AB 1 2 1

BB 0 1 2

for putative and alternative relationship has been developed by
Epstein et al. (2000; the Relpair program) and by McPeek and
Sun (2000; the Prest-plus program). Throughout this paper we
employ the classical notion of degree of relationship, shown in
the second column of Table 2, with PO and FS being considered
first degree, HS, GG and AV, second degree, FC third degree, first
cousins once removed fourth degree, second cousins fifth degree
and second cousins once removed sixth degree, and so on.

2.2. Log-Ratio Principal Component
Analysis
Aitchison (1983) proposed log-ratio principal component
analysis (PCA) for the exploration of compositional data. Many
successful applications of log-ratio PCA have been described in
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TABLE 2 | IBD probabilities for standard relationships.

IBD probabilities

Type of relative R φ k0 k1 k2

Monozygotic twins (MZ) 0 1/2 0 0 1

Full-siblings (FS) 1 1/4 1/4 1/2 1/4

Parent-offspring (PO) 1 1/4 0 1 0

Half-siblings |

grandchild-grandparent |

2 1/8 1/2 1/2 0

niece/nephew-uncle/aunt

(HS,GG,AV)

First cousins (FC) 3 1/16 3/4 1/4 0

Unrelated (UN) ∞ 0 1 0 0

Degree of relationship (R), kinship coefficient (φ), and probability of sharing zero, one, or

two alleles identical by descent (k0, k1, k2).

the literature, notably in geology. We briefly summarize log-
ratio PCA and biplot construction (see Pawlowsky-Glahn et al.,
2015 for a comprehensive account). Log-ratio PCA is usually
performed by applying the centered log-ratio transformation to
the compositional data, and we will follow that approach here.
Let X be a matrix with n compositions in its rows, and having
D parts (columns). Compositional data can be defined as strictly
positive vectors for which the information of interest is in the
ratios between the components (Aitchison, 1986). We consider
the centered log-ratio transformation (clr) of a composition x (a
row of X) given by

clr(x) =

[

ln

(

x1

gm(x)

)

, ln

(

x2

gm(x)

)

, · · · , ln

(

xD

gm(x)

)]

, (1)

where gm(x) is the geometric mean of the components of the
composition x. Let Xℓ be the log transformed compositions, that
is Xℓ = ln (X) with the natural logarithmic transformation
applied element-wise. The clr transformed data can be obtained
by just centering the rows of this matrix, using the centering
matrixHr = I− 1

D11
′. Then

Xclr = XℓHr , (2)

The rows of Xclr are subject to a zero sum constraint because
Hr1 = 0. If there are no additional linear constraints, then Xclr

will have rankD− 1. We now column-center the clr transformed
data, producing a double-centered data matrix that has zero
column and row means:

Xcclr = HcXclr = HcXℓHr , (3)

whereHc is the centering matrixHc = I− (1/n)11′. Matrix Xcclr

is used as the input for a classical principal component analysis.
We perform PCA by the singular value decomposition:

Xcclr = UDV′ = FpGs
′, (4)

with Fp = UD and Gs = V. Matrix Fp contains the
principal components, and its first two columns contain the
biplot coordinates of the compositions. The columns of Gs

are the eigenvectors of the covariance matrix of Xcclr, its first
two columns contain the biplot coordinates of the parts of
the compositions. We use sub-indexes p and s to distinguish
principal and standard biplot coordinates. We will need to
project supplementary compositions onto a given biplot (see
section 3). This can be accomplished by regression (Graffelman
and Aluja-Banet, 2003). The biplot coordinates, F̃p, of a matrix of
supplementary compositions, Y, can be found as

F̃p =
(

Gs
′Gs

)−1
Gs

′Ycclr, (5)

where Ycclr contains the clr-transformed supplementary
compositions, but centered with respect to the compositions in
X, that is

Ycclr = Yclr −
1

n
11′Xclr. (6)

Wewill construct a biplot of genotypic reference compositions by
using Equation (4), and project empirical genotype compositions
onto the biplot by using Equations (5) and (6).

2.3. Log-Ratio PCA of Genotype Sharing
Data
For bi-allelic variants with alleles A and B, there exist six possible
pairs of genotypes whose counts over k variants can be laid out
in a triangular array shown in Table 3, where kij refers to the
number of variants that have i B alleles for one individual, and
j B alleles for the other individual. Consequently, each pair can be
represented by a vector of six counts which can be expressed as a
composition by division by its total (closure):

x = (k00, k10, k20, k11, k21, k22)/k. (7)

The total number of variants is given by k =
∑

i≥j kij. For PO

pairs this vector has, in theory, a structural zero, k20 = 0, because
PO pairs share at least one IBS allele. However, for empirical
data k20 = 0 is, with large k, almost never observed due to
the existence of some mutations and genotyping error. Given n
individuals, we construct matrix X with q = 1

2n(n − 1) pairs in
its rows, and propose to study relatedness by a log-ratio PCA of
this q×6matrix of compositions. This will allow the construction
of a biplot, where each pair of individuals is represented by a
point, and each part of the clr transformed composition by a
vector. A drawback of the representation of pairs of individuals in
a log-ratio PCA biplot is that the type of relationship cannot be
inferred if it is undocumented. Without additional analysis one
does not know for sure whether observed clusters correspond
to FS, HS, or other pairs. We resolve this by first identifying a
subset of approximately unrelated individuals in the database,
having a co-ancestry coefficient with other individuals that is
below 0.05. We next simulate pairs of related individuals of
known relationships by constructing pedigrees from this subset,
applying the Mendelian inheritance rules. For example, PO pairs
are simulated by first drawing two parents at random from the
unrelated subset. A child is then simulated by drawing one allele
at random from both these parents. The process is repeated in
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TABLE 3 | Lower triangular matrix layout with counts for all possible genotype

pairs.

AA k00

1st indiv. AB k10 k11

BB k20 k21 k22

AA AB BB

2nd indiv.

All possible genotype pairs for a bi-allelic genetic variant. kij represents the number of

genetic variants with i and j B alleles for a pair of individuals.

order to generate many random PO pairs. FS, HS, and pairs of
other relationships are simulated in an analogous manner. This
process is based on a re-sampling the alleles of the observed
individuals. The artificially generated data set forms a reference
set or training set against which the empirically observed data can
be compared. This reference set is generated conditionally on the
allele frequencies of the observed sample. We now first apply log-
ratio PCA to the pairs of the reference set (X), and construct a
biplot of the reference set. The empirically observed pairs (Y) are
projected onto this PCA biplot and their relationship is inferred,
according to which simulated type of relationship is most close
to the empirical pair. This can be done in a quantitative way by
classifying all empirical pairs with linear discriminant analysis
(LDA) (Johnson and Wichern, 2002), using the simulated pairs
as a training set.

3. RESULTS

In this section we first validate the proposed methodology with
some simulations, comparing the log-ratio PCA approach with

the well-known aforementioned (m, s), (p0, p2), and (k̂0, k̂1) plots,
and then show two examples with empirical genetic data.

3.1. Simulations
We simulated 35,000 independent genetic bi-allelic variants by
sampling from a multinomial distribution under the Hardy-
Weinberg assumption, using a minor allele frequency (MAF)
of 0.5 for all variants. Using Mendelian inheritance rules, 100
independent pairs of each type of relationship were simulated.
We assume a homogeneous population without mutation and
genotyping error, generating simulated data sets that are free of
Mendelian inconsistencies. The classical plots and the log-ratio
PCA biplot of a simulation are shown in Figure 2. This figure
shows that first and second degree pairs are easily identified
by all methods. We will therefore focus on third and higher
degree relationships which are harder to distinguish as they tend
to blur in the plots. We investigated the effect of MAF and
number of SNPs on the classification rate of our procedure, using
different numbers of principal components for classification of
third through sixth degree pairs (100 of each). Figure 3 shows
the classification rates obtained as a function of the minor allele
frequency (MAF), the number of SNPs and the number of
principal components used. These figures show, as expected, that
the classification rate increases with the MAF and the number of

SNPs. The simulations show that all five components are needed
at low MAF, where more components increase the classification
rate. At high MAF (0.40–0.50) there is little or no benefit in using
more than two components. With 35,000 SNPs at 0.50 MAF the
classification rate is around 95% irrespective of the number of
components. With 35,000 SNPs at 0.10 MAF the classification
rate varies from below 50% with one component through 93%
using all five components. We report the false positive rates in
Table S1; No UN or 6th degree individuals were misclassified as
4th degree or lower, and only 1.8% of the 5th degree pairs are
misclassified as 4th degree. The simulations show that IBS based
log-ratio PCA can discriminate higher degree relationships if a
sufficient number of independent highly polymorphic variants is
available. In the light of the simulations, we decided to use three
principal components for classification with high MAF variants
for the empirical data sets described in section 3.3.

3.2. Method Comparison
We compare our method with aforementioned classical
procedures for identification of related pairs. Figure 4 shows
the classification rate as a function of the number variants with
MAF 0.50 for four methods: the two IBS-based methods, the
(m, s) plot and the (p0, p2) plot; one IBD-based method, the (k̂0,

k̂1) plot, using the KING estimator (Manichaikul et al., 2010);
and the log-ratio PCA approach proposed in this paper. These
classification rates were obtained by averaging over 25 replicates
of the simulations, for each value of the MAF and the number
of variants. It is clear that the log-ratio PCA approach (using
three principal components) gives the best classification rates for
all relationships. There is little difference in classification rate
for third degree relationships, which are relatively more easy to
classify. Interestingly, in terms of classification rate the (m, s)
and (p0, p2) plots are seen to be fully equivalent, as they have
exactly the same classification rate profile. Posteriorly, we found
these statistics to be related by the equations m = 1 − p0 + p2
and s =

√

p0(1− p0)+ p2(1− p2)+ 2p0p2. As expected,
classification rate increases with the number of variants. The
results suggest that for all four methods 25,000 variants with
MAF 0.50 are sufficient to almost perfectly classify PO, FS,
second, third, and fourth degree relationships. The difference
in classification rate between the log-ratio PCA approach
and the conventional methods is larger for the more remote
relationships. This simulation concerns a relatively ideal dataset
with independent variants and maximally polymorphic variants.
For empirical data sets, the independence of the variants can
be approximately achieved by LD pruning variants. In practice,
many variants have a low MAF. We therefore also investigated
the effect of theMAF on the discriminatory power of the different
methods, by simulating variants with different MAFs. Figure 5
shows how the classification rate varies as a function of the MAF,
using a fixed number of 5.000 bi-allelic polymorphisms. The
log-ratio PCA approach, using five principal components, is seen
to outperform the classical plots over the full MAF range.

3.3. Empirical Data Sets
In this section we use log-ratio PCA for a relatedness study
of two genomic data sets. We use the CEU population of
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FIGURE 2 | Classical graphics and log-ratio PCA biplot for simulated samples. 100 pairs of each type of relationship [UN, sixth, fifth, fourth, third (FC), second (HS),

FS, and PO] were generated using 35,000 independent bi-allelic variants with minor allele frequencies of 0.5, assuming Hardy-Weinberg equilibrium. (A) Scatterplot of

the mean and standard deviation of the number of IBS alleles. (B) Scatterplot of the fraction of variants sharing two (p2) against the fraction sharing zero (p0) IBS

alleles. (C) Scatterplot of the estimated probability of sharing one (k̂1) against the estimated probability of sharing zero (k̂0) IBD alleles. (D) log-ratio PCA biplot.

the 1,000 genomes project (www.internationalgenome.org, The
1000 Genomes Project Consortium, 2015), whose family
relationships have been analyzed in detail by Pemberton
et al. (2010), Kyriazopoulou-Panagiotopoulou et al. (2011), Huff
et al. (2011), and Stevens et al. (2011; 2012). We also present
a relatedness study of the population-based GCAT Genomes
for Life project (a cohort study of the genomes of Catalonia,
www.genomesforlife.com, Obón-Santacana et al., 2018). For both
projects, we used Plink 1.90 (Purcell et al., 2007) for data
manipulation, filtering and IBD estimation, and R (R Core Team,
2014) for log-ratio PCA and discriminant analysis.

3.3.1. The CEU Sample

First and second degree relationships for the CEU population
were documented by Pemberton et al. (2010) using IBS methods,
and confirmed by Kyriazopoulou-Panagiotopoulou et al. (2011),
who used hidden Markov models and suggested additional third
and fourth degree relationships. Stevens et al. (2012) used IBD
methods confirming the results of Pemberton et al. (2010).
We detail the analysis of the CEU panel using log-ratio PCA.
Variants were filtered according to missingness (only variants
genotyped for all individuals were used), MAF (> 0.40) and

Hardy-Weinberg equilibrium test result (exact test mid p-value>

0.05, Graffelman and Moreno, 2013). Variants were LD-pruned

with Plink using a sliding window of 50 SNPs with an overlap
of 5 SNPs between successive windows, and SNPs are removed

from the window until no variants remain that have a squared
correlation above 0.20 (Plink option indep-pairwise 50 5

0.2). The final data set contained 31,370 autosomal variants. The
CEU panel consists of 165 individuals, mainly PO trios, giving
13,530 possible pairs of individuals. The classical plots of the allele
sharing statistics were shown previously in Figure 1, including a
log-ratio PCA biplot of all pairs (Figure 1D). We now illustrate
the log-ratio PCA approach, using an iterative peel and zoom
procedure. Figure 1D showed PO pairs to be outlying in the first
dimension, for having a low k02/k00 ratio. Theoretically, this ratio
is zero for PO pairs, though with large numbers of variants it is
non-zero due to mutations and genotyping errors. In fact, the 96
reported PO pairs are easily identified and excluded from the data
by filtering with k02 < 0.005. Log-ratio PCA biplots, obtained
by simulation with unrelated individuals of the CEU sample, are
shown in Figure 6. The simulated pairs of given relationships
are represented by convex hulls, and the projected empirical
pairs by open dots that are colored according to their predicted
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FIGURE 3 | Classification rate of log-ratio PCA combined with LDA for simulated samples. Classification rate for a varying number of principal components (PCs).

Classification rates were obtained using 100 pairs of each type of relationships (UN, sixth, fifth, fourth, and third) using independent variants simulated assuming

Hardy-Weinberg equilibrium. (A,B) Classification rates are shown as a function of the MAF for 5,000 and 35,000 SNPs. (C,D) Classification rates are shown as a

function of the number of SNPs of a given MAF (0.10 and 0.50).

relationship, where the latter are inferred from the posterior
probabilities obtained in LDA. The convex hulls delimit the cloud
of the positions of the simulated UN, sixth, fifth, fourth, and third
degree pairs (using 100 pairs of each). The overall classification
rate of the simulated data was 91.4%, using three principal
components. Classification rates for third, fourth, fifth, sixth,
and UN were, respectively 100, 100, 90, 77, and 90%. Results in
Figures 1, 6 suggest the CEU sample has 96 PO pairs, one FS pair,
two second degree pairs, one third degree pair, five fourth degree
pairs, and many fifth and sixth degree pairs that merge with
UN pairs. The analysis without PO pairs in Figure 6A shows the
documented FS andAVpairs as outliers in the first dimension, for
having high k00/k02 and k22/k02 ratios. Re-analysis after removal
of the FS pair gives Figure 6B, showing the two AV pairs now as
strong outliers in the first dimension. Peeling these two pairs, we
obtain Figure 6C, with the single documented third degree pair
being now the most prominent outlier. Five additional pairs are
seen to separate from the UN cloud, and are classified as fourth
degree pairs. Re-analysis after peeling off the third degree pair
gives a plot with amore clear separation of the fourth degree pairs
(Figure 6D). Another set of pairs, presumably of fifth degree,

is seen to bud off from the UN cloud more clearly, once the
fourth degree pairs are removed from the analysis (Figure 6E),
and additional pairs, classified as sixth degree, separate out partly
in the third dimension of this analysis. An exploration of the
data up to the fifth dimension of the analysis, after peeling the
most obvious PO, FS, AV, third, and fourth degree outliers, is
shown in Figure S1. These graphs suggest there is information
on relatedness up to and including at least the third dimension of
the analysis.

The classification of the empirical pairs by k02 filtering
followed by linear discriminant analysis confirmed the 96 PO
and the single FS pair relationships described by Pemberton
et al. (2010) (results not shown), as well as the additional FC
pair reported by Kyriazopoulou-Panagiotopoulou et al. (2011).
First and second degree relationships in the CEU sample are
easily and almost certainly identified. Much more uncertainty
resides in relationships of the third and higher degrees, and
for these relationships conflicting inferences are reported in
the literature. We therefore carried out a linear discriminant
analysis with a simulated training sample containing pairs with
a third through sixth degree relationship, as well as UN pairs,
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FIGURE 4 | Classification rates for different methods vs. number of SNPs. Classification rates for the different degrees of relationship (third, fourth, fifth, sixth, UN, and

All) are shown for four methods, using five principal components. Classification rate profiles for the (m, s) plot and the (p0,p2) plot virtually coincide. The last panel All

refers to the classification rate for third through UN relationships jointly. Rates are shown as a function of the number of SNPs with MAF 0.50, and were obtained by

linear discriminant analysis. 100 pairs of each type of relationship (UN, fifth, fourth, third, second, FS, and PO) were generated assuming Hardy-Weinberg equilibrium.

and classified all empirical pairs which clearly had no first or
second degree relationship. Third and fourth degree relationships
uncovered by Kyriazopoulou-Panagiotopoulou et al. (2011) are
reported in Table 4, together with the posterior probabilities
obtained in our log-ratio PCA approach. We extended Table 4

with additional fifth degree pairs uncovered by log-ratio PCA,
for which LDA gave the highest posterior probability. In total,
18 pairs were classified as fifth degree relationship pairs, of
which 10 had a posterior probability above 0.95 (marked
in bold in Table 4). We tentatively suggest the CEU panel
to contain at least ten fifth degree pairs. We found 1,285
sixth degree pairs, but do not report all these pairs in the
light of the overlap with the UN cluster and the somewhat

poorer classification rate of the sixth degree observed in
the simulations.

Our results confirm a third degree pair (pair 1 in Table 4)
reported by Kyriazopoulou-Panagiotopoulou et al. (2011). We
also confirm four of the fourth degree pairs reported by
the latter authors (pairs 2–5 in Table 4). However, we also
observed considerably incongruence of our results with those
of the latter authors. We found an FC pair to be classified
as fourth degree (pair 6) by our method and 11 reported
fourth degree pairs were classified as fifth or sixth degree.
We also compared results with those published by Huff
et al. (2011), who estimate recent shared ancestry (ERSA)
by using IBD segments. Our work confirms three fourth
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FIGURE 5 | Classification rates for different methods vs. MAF. Classification rates for the different degrees of relationship (third, fourth, fifth, sixth, UN, and All) are

shown for four methods, using three principal components. Classification rate profiles for the (m, s) plot and the (p0,p2) plot virtually coincide. The last panel All refers

to the classification rate for third through UN relationships jointly. Rates are shown, using 5,000 SNPs, as a function of the MAF, and were obtained by linear

discriminant analysis. 100 pairs of each type of relationship (UN, sixth, fifth, fourth, and third) were generated assuming Hardy-Weinberg equilibrium.

degree pairs and one fifth degree pair reported by the latter
authors, though we found two additional fourth degree pairs,
and several fifth degree pairs, which are not confirmed by
Huff et al. (2011).

3.3.2. The GCAT Sample

We use samples from the GCAT Genomes for life project, a
cohort study of the genomes of Catalonia (www.genomesforlife.
com). GCAT is a prospective cohort study that includes 17,924
participants (40–65 years, release August 2017) recruited from
the general population of Catalonia, a Mediterranean region
in the northeast of Spain. Participants are mainly part of the

Blood and Tissue Bank (BST), a public agency of the Catalan
Department of Health. Detailed information regarding the
GCAT project is described in Obón-Santacana et al. (2018).
We study relatedness of 5,075 GCAT Spanish participants
from Caucasian origin using 736,223 SNPs that passed quality

control (Galván-Femenía et al., 2018). Inferred relatives of first

and second degree were confirmed by the BST public agency,
for pairs sharing one surname (PO, second degree pairs) or two

surnames (FS pairs), respecting the privacy of the participants.

According to the same filtering procedures used in the CEU
samples, 26,006 SNPs (MAF > 0.40, LD-pruned, HWE exact

mid p-value > 0.05, and missing call rate 0) were considered
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FIGURE 6 | Log-ratio PCA biplots for the CEU sample obtained by peeling and zooming. (A) log-ratio PCA biplot, PO pairs excluded. (B) PO and FS pairs excluded;

(C) PO, FS, and AV pairs excluded; (D) PO, FS, AV, and third degree pairs excluded; (E) PO, FS, AV, third and fourth degree pairs excluded (PC1 vs. PC2); (F) PO, FS,

AV, third and fourth degree pairs excluded (PC1 vs. PC3). Convex hulls delimit the region of the pairs obtained by simulation.

for relatedness analysis. PO and MZ pairs potentially having
structural zeros were filtered with k02 < 0.005. Log-ratio PCA
biplots representing over twelve million pairs, combined with the
classification of the individuals by LDA, and using the peel and
zoom procedure, are shown in Figure 7. This analysis shows the
different relationships have in general, a larger variability than
expected according to the simulated pairs. The FS cluster has a
particular high variability, with pairs apparently less related than
FS, and pairs stronger related than FS, in comparison with the FS

hull. One apparent FS pairs is actually classified as second degree
(Figure 7A). This fusion of FS and second degree pairs suggested
us that three-quarter siblings might exist in the database and we
therefore re-analyzed the data using a training set that included
three-quarter siblings. Three-quarter siblings (3/4S) share more
IBD alleles than second degree pairs but fewer than FS. 3/4S
have one common parent, while their unshared parents can
be FS or PO (see Figure S2). Three-quarter siblings have IBD
probabilities k0 = 3/8, k1 = 1/2, and k2 = 1/8, such that their
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TABLE 4 | Predicted relationships of third (3rd), fourth (4th), and fifth (5th) degree pairs of the CEU sample.

Posterior probabilities

Pair ID1 Sex ID2 Sex Pem. Kyr. Ste. Huf. Predicted 3rd 4th 5th 6th UN k̂0 k̂1 k̂2 φ̂

1 NA06997 F NA12801 M – FC FC – 3rd 1.000 0.000 0.000 0.000 0.000 0.724 0.276 0.000 0.069

2 NA06993 M NA07022 M – 4th – 4th 4th 0.000 1.000 0.000 0.000 0.000 0.870 0.127 0.003 0.033

3 NA06993 M NA07056 F – 4th – 4th 4th 0.000 1.000 0.000 0.000 0.000 0.870 0.130 0.000 0.033

4 NA07031 F NA12043 M – 4th – – 4th 0.000 1.000 0.000 0.000 0.000 0.845 0.155 0.000 0.039

5 NA12155 M NA12264 M – 4th – 4th 4th 0.000 1.000 0.000 0.000 0.000 0.867 0.133 0.000 0.033

6 NA12760 M NA12830 F – FC – – 4th 0.000 1.000 0.000 0.000 0.000 0.855 0.133 0.012 0.039

7 NA06989 F NA10831 F – – – – 5th 0.000 0.000 0.965 0.035 0.000 0.966 0.026 0.008 0.011

8 NA06989 F NA12155 M – 4th – – 5th 0.000 0.028 0.972 0.000 0.000 0.912 0.088 0.000 0.022

9 NA06991 F NA07022 M – 4th – – 5th 0.000 0.016 0.983 0.000 0.000 0.898 0.102 0.000 0.025

10 NA06994 M NA12878 F – – – – 5th 0.000 0.000 0.814 0.185 0.000 0.951 0.041 0.008 0.014

11 NA06994 M NA12892 F – 4th – 5th 5th 0.000 0.000 0.997 0.002 0.000 0.925 0.075 0.000 0.019

12 NA07014 F NA12043 M – 4th – – 5th 0.000 0.000 0.966 0.034 0.000 0.950 0.043 0.008 0.015

13 NA07029 M NA12892 F – – – – 5th 0.000 0.000 0.563 0.437 0.000 0.942 0.056 0.002 0.015

14 NA07031 F NA12752 M – – – – 5th 0.000 0.000 0.980 0.020 0.000 0.942 0.053 0.005 0.016

15 NA07031 F NA12761 F – 4th – – 5th 0.000 0.000 0.991 0.009 0.000 0.890 0.110 0.000 0.028

16 NA07055 F NA10852 F – – – – 5th 0.000 0.000 0.853 0.147 0.000 0.959 0.040 0.001 0.011

17 NA10830 M NA12842 M – – – – 5th 0.000 0.000 0.826 0.174 0.000 0.940 0.060 0.000 0.015

18 NA10852 F NA10853 M – – – – 5th 0.000 0.000 0.731 0.269 0.000 0.964 0.033 0.003 0.010

19 NA10852 F NA11843 M – – – – 5th 0.000 0.000 0.575 0.425 0.000 0.978 0.019 0.003 0.006

20 NA10863 F NA12155 M – 4th – – 5th 0.000 0.000 0.959 0.041 0.000 0.941 0.054 0.005 0.016

21 NA11843 M NA11994 M – – – – 5th 0.000 0.000 0.781 0.219 0.000 0.945 0.055 0.000 0.014

22 NA11992 M NA12778 F – – – – 5th 0.000 0.000 0.682 0.318 0.000 0.951 0.050 0.000 0.012

23 NA12752 M NA12830 F – 4th – – 5th 0.000 0.000 0.997 0.003 0.000 0.894 0.106 0.000 0.026

24 NA12760 M NA12818 F – 4th – – 5th 0.000 0.000 0.998 0.002 0.000 0.926 0.074 0.000 0.019

25 NA10831 F NA12264 M – 4th – – 6th 0.000 0.000 0.094 0.896 0.010 0.963 0.036 0.001 0.010

26 NA11931 F NA12748 M – 4th – – 6th 0.000 0.000 0.467 0.532 0.001 0.927 0.067 0.006 0.020

27 NA12752 M NA12818 F – 4th – – 6th 0.000 0.000 0.026 0.946 0.029 0.977 0.022 0.001 0.006

Third (3rd) and fourth (4th) degree pairs of the CEU sample of the 1000G project as reported by Kyriazopoulou-Panagiotopoulou et al. (2011) and additional detected fifth (5th) degree

pairs. Posterior probabilities according to log-ratio PCA combined with LDA. Coding and abbreviations used: sex M = male, F = female; a hyphen (–) indicates the corresponding pair

is not annotated or regarded unknown by the corresponding authors; FC, first cousin; Pem., Pemberton et al. (2010); Kyr., Kyriazopoulou-Panagiotopoulou et al. (2011); Ste., Stevens

et al. (2012); Huf., Huff et al. (2011).

kinship coefficient is φ = 3/16, below the value φ = 1/4 of full
siblings. In the re-analysis in Figure 7B, we found 63 FS pairs, 12
2nd pairs, and eight pairs were indeed classified as three-quarter
siblings with large posterior probability (see Table 5). Two of
these pairs (67, 71) had their kinship coefficient very close to
the expected value of φ = 3/16. Because Spanish people have
both paternal and maternal surnames, three-quarter siblings
share both surnames just as siblings do. The pairs classified
as 3/4 siblings shared indeed both surnames, confirming these
pairs are actually not second degree. Peeling siblings and
three-quarter siblings reveals apparent second degree pairs more
clearly (Figure 7C). Tentatively peeling second degree pairs
brings the third degree pairs in focus (Figure 7D), and in this
analysis we find 174 third, 66 fourth, 31 fifth, and 3,517 sixth
degree pairs. Further peeling is difficult as the different clusters
increasingly merge. In log-ratio PCA the clusters representing
the different relationships have more elliptical shapes that
separate better. Note that the number of pairs classified as sixth
degree decreases as the lower degree relationships are peeled in
the analysis.

For all simulated and empirical data sets studied above,
the first principal component in the log-ratio PCA’s is seen to
strongly correlate with the kinship coefficient. The corresponding
scatterplots and correlation coefficients are shown in Figure S3.
The first principal component is clearly interpretable as a
relatedness index. In Figures 6A, 7A (without PO), the biplot
vectors show that the first component separates homogeneous
homozygote pairs (AA & AA; BB & BB) from heterogeneous
homozygote pairs (AA & BB). The second principal component
separates double heterzygote pairs from single heterozygote pairs.
When FS pairs are removed, the second principal component
changes, and reflects a contrast between pairs with heterozygotes
and without heterozygotes.

4. DISCUSSION

We have developed a log-ratio PCA based procedure that can
be used for uncovering cryptic relatedness in homogeneous
populations. Simulations show the procedure has a better
classification rate than the classical IBS and IBD based
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FIGURE 7 | Log-ratio PCA biplot of GCAT sample obtained by peeling and zooming. (A) log-ratio PCA biplot, PO and 3/4S pairs excluded. (B) 3/4S pairs included;

(C) FS and 3/4S pairs excluded; (D) FS, 3/4S, and second degree pairs excluded. Convex hulls delimit the region of the pairs obtained by simulation.

approaches. The log-ratio PCA approach exploits the
compositional nature of genotype sharing counts over variants,
and can potentially use five dimensions for analysis, whereas
the classical approaches collapse the data in two dimensions.
The analysis of the CEU sample has led to the identification
of a set of hitherto unreported pairs for which a fifth degree
relationship is highly plausible (Table 4). Our conclusion is that
log-ratio PCA, combined with LDA, increases the resolution of
relationship discrimination. The classification rate for 6th degree
pairs can still be improved if more than 35,000 independent MAF
0.50 variants would be used (see Figure 4). The (p0, p2), (m, s),

and (k̂0, k̂1) scatterplots display estimates in a constrained
space (Galván-Femenía et al., 2017), where Euclidean distances
between points cannot be safely interpreted. This is particularly
true for the higher degree relationships that merge toward the
vertex of the triangular region inside the scatterplot. Log-ratio
PCA, besides using more dimensions, frees the data of the
unit sum constraint, and clearly enhances the discrimination
of the higher degree relationships. We have compared our
log-ratio based procedure with some basic procedures used in
relatedness research. Its performance could be further explored

in a more extensive comparison that includes IBD-segment
based methods, such as the comprehensive study reported by
Ramstetter et al. (2017).

The analysis of the GCAT samples shows, for almost all

relationship categories, larger variability in the relationship
clusters than would be expected under strict Mendelian

sampling of alleles from unrelated individuals. This excess
variability can, at least in part, be explained by the presence

of additional relatedness between (unobserved) close relatives
of the individuals in the database. This leads to increased
autozygosity, which is a characteristic of more endogamous
populations. The occurrence of three-quarter siblings is just
a particular instance of this phenomenon. Consequently, the
degree of relatedness of two individuals tends to become a
continuous variable, which is increasingly hard to discretize into
the standard relationship categories.

The simulated reference data sets were obtained by resampling
genetic variants independently, and this does not take linkage
disequilibrium (LD) and recombination into account (Hill and
Weir, 2011). If the genotype data is phased, a biologically
more realistic simulated data set can be obtained by sampling
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TABLE 5 | Predicted FS and 3/4S relationships of the GCAT sample.

Posterior probabilities

Pair ID1 Sex ID2 Sex Predicted FS 3/4S 2nd 3rd 4th 5th 6th UN k̂0 k̂1 k̂2 φ̂

1 REL_00339 F REL_02473 F FS 1 0 0 0 0 0 0 0 0.254 0.479 0.266 0.253

2 REL_04741 F REL_02513 F FS 1 0 0 0 0 0 0 0 0.187 0.518 0.295 0.277

3 REL_00601 M REL_02989 F FS 1 0 0 0 0 0 0 0 0.190 0.508 0.303 0.278

4 REL_02339 M REL_02391 M FS 1 0 0 0 0 0 0 0 0.267 0.442 0.290 0.256

5 REL_03977 M REL_01080 M FS 1 0 0 0 0 0 0 0 0.222 0.538 0.240 0.255

6 REL_03220 F REL_04615 F FS 1 0 0 0 0 0 0 0 0.311 0.460 0.229 0.230

7 REL_04475 F REL_04218 M FS 1 0 0 0 0 0 0 0 0.248 0.514 0.237 0.247

8 REL_01150 F REL_04384 F FS 1 0 0 0 0 0 0 0 0.258 0.490 0.253 0.249

9 REL_01285 M REL_03761 F FS 1 0 0 0 0 0 0 0 0.237 0.496 0.267 0.257

10 REL_04693 F REL_00797 F FS 1 0 0 0 0 0 0 0 0.310 0.471 0.220 0.228

11 REL_00383 F REL_03293 M FS 1 0 0 0 0 0 0 0 0.254 0.530 0.216 0.241

12 REL_03212 M REL_02516 F FS 1 0 0 0 0 0 0 0 0.275 0.526 0.199 0.231

13 REL_00282 F REL_04918 F FS 1 0 0 0 0 0 0 0 0.247 0.440 0.313 0.267

14 REL_04616 F REL_02777 F FS 1 0 0 0 0 0 0 0 0.279 0.471 0.250 0.243

15 REL_00792 F REL_00954 M FS 1 0 0 0 0 0 0 0 0.262 0.509 0.229 0.242

16 REL_03627 F REL_03315 F FS 1 0 0 0 0 0 0 0 0.148 0.549 0.302 0.288

17 REL_00872 F REL_01784 F FS 1 0 0 0 0 0 0 0 0.252 0.528 0.221 0.242

18 REL_03442 F REL_04510 F FS 1 0 0 0 0 0 0 0 0.216 0.512 0.272 0.264

19 REL_01924 F REL_00727 M FS 1 0 0 0 0 0 0 0 0.236 0.449 0.315 0.270

20 REL_04704 F REL_00804 M FS 1 0 0 0 0 0 0 0 0.168 0.523 0.308 0.285

21 REL_04494 M REL_00931 M FS 1 0 0 0 0 0 0 0 0.280 0.492 0.228 0.237

22 REL_04439 F REL_01640 F FS 1 0 0 0 0 0 0 0 0.264 0.430 0.306 0.260

23 REL_00504 M REL_04718 F FS 1 0 0 0 0 0 0 0 0.243 0.505 0.252 0.252

24 REL_01624 F REL_00750 F FS 1 0 0 0 0 0 0 0 0.191 0.508 0.301 0.278

25 REL_01524 F REL_03272 F FS 1 0 0 0 0 0 0 0 0.232 0.511 0.257 0.256

26 REL_00769 M REL_04746 F FS 1 0 0 0 0 0 0 0 0.225 0.566 0.208 0.246

27 REL_01654 M REL_03485 M FS 1 0 0 0 0 0 0 0 0.282 0.432 0.285 0.251

28 REL_01564 F REL_03827 F FS 1 0 0 0 0 0 0 0 0.316 0.427 0.258 0.236

29 REL_03944 M REL_03475 F FS 1 0 0 0 0 0 0 0 0.231 0.542 0.227 0.249

30 REL_01888 M REL_04360 M FS 1 0 0 0 0 0 0 0 0.247 0.543 0.210 0.241

31 REL_00824 F REL_00213 F FS 1 0 0 0 0 0 0 0 0.221 0.446 0.332 0.278

32 REL_03838 F REL_02496 F FS 1 0 0 0 0 0 0 0 0.310 0.446 0.245 0.234

33 REL_00122 M REL_01902 F FS 1 0 0 0 0 0 0 0 0.286 0.494 0.220 0.233

34 REL_04592 F REL_04600 F FS 1 0 0 0 0 0 0 0 0.305 0.485 0.211 0.227

35 REL_00284 M REL_02444 F FS 1 0 0 0 0 0 0 0 0.278 0.511 0.211 0.233

36 REL_03395 F REL_02694 F FS 1 0 0 0 0 0 0 0 0.224 0.522 0.254 0.257

37 REL_02718 M REL_02913 M FS 1 0 0 0 0 0 0 0 0.218 0.479 0.303 0.271

38 REL_00968 M REL_01577 F FS 1 0 0 0 0 0 0 0 0.257 0.451 0.292 0.259

39 REL_01502 M REL_03665 M FS 1 0 0 0 0 0 0 0 0.312 0.477 0.211 0.225

40 REL_03904 F REL_04994 F FS 1 0 0 0 0 0 0 0 0.250 0.502 0.248 0.249

41 REL_02208 F REL_03486 F FS 1 0 0 0 0 0 0 0 0.231 0.460 0.310 0.270

42 REL_02208 F REL_01630 F FS 1 0 0 0 0 0 0 0 0.177 0.516 0.307 0.283

43 REL_03486 F REL_01630 F FS 1 0 0 0 0 0 0 0 0.170 0.502 0.327 0.289

44 REL_00340 F REL_04294 F FS 1 0 0 0 0 0 0 0 0.210 0.525 0.265 0.264

45 REL_02899 M REL_01707 F FS 1 0 0 0 0 0 0 0 0.285 0.454 0.261 0.244

46 REL_03001 F REL_04111 F FS 1 0 0 0 0 0 0 0 0.230 0.481 0.289 0.265

47 REL_00634 M REL_03507 M FS 1 0 0 0 0 0 0 0 0.203 0.508 0.289 0.272

48 REL_02905 F REL_02575 F FS 1 0 0 0 0 0 0 0 0.252 0.517 0.231 0.245

49 REL_01016 M REL_00887 M FS 1 0 0 0 0 0 0 0 0.243 0.496 0.260 0.254

50 REL_03151 M REL_02204 F FS 1 0 0 0 0 0 0 0 0.235 0.503 0.263 0.257

(Continued)
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TABLE 5 | Continued

Posterior probabilities

Pair ID1 Sex ID2 Sex Predicted FS 3/4S 2nd 3rd 4th 5th 6th UN k̂0 k̂1 k̂2 φ̂

51 REL_04466 F REL_02680 F FS 1 0 0 0 0 0 0 0 0.313 0.427 0.260 0.237

52 REL_03607 M REL_00319 F FS 1 0 0 0 0 0 0 0 0.299 0.491 0.210 0.228

53 REL_01083 F REL_01704 F FS 1 0 0 0 0 0 0 0 0.182 0.567 0.251 0.267

54 REL_04427 F REL_02635 F FS 1 0 0 0 0 0 0 0 0.264 0.545 0.191 0.232

55 REL_01546 M REL_03566 F FS 1 0 0 0 0 0 0 0 0.212 0.525 0.263 0.263

56 REL_01450 M REL_01960 M FS 1 0 0 0 0 0 0 0 0.259 0.514 0.227 0.242

57 REL_03310 M REL_03659 F FS 1 0 0 0 0 0 0 0 0.259 0.559 0.182 0.231

58 REL_03880 M REL_04789 F FS 1 0 0 0 0 0 0 0 0.271 0.503 0.226 0.239

59 REL_01264 M REL_04751 F FS 1 0 0 0 0 0 0 0 0.183 0.518 0.299 0.279

60 REL_04529 F REL_04492 F FS 1 0 0 0 0 0 0 0 0.279 0.498 0.223 0.236

61 REL_03388 F REL_02608 F FS 1 0 0 0 0 0 0 0 0.216 0.497 0.287 0.268

62 REL_00009 F REL_02335 F FS 1 0 0 0 0 0 0 0 0.233 0.548 0.218 0.246

63 REL_04405 M REL_03949 M FS 1 0 0 0 0 0 0 0 0.262 0.523 0.215 0.238

64 REL_02752 F REL_04859 F 3/4S 0 1 0 0 0 0 0 0 0.342 0.457 0.201 0.215

65 REL_01344 M REL_02408 F 3/4S 0 1 0 0 0 0 0 0 0.361 0.439 0.200 0.210

66 REL_00083 M REL_02333 M 3/4S 0 1 0 0 0 0 0 0 0.326 0.520 0.154 0.207

67 REL_03803 F REL_02343 M 3/4S 0 1 0 0 0 0 0 0 0.349 0.510 0.140 0.198

68 REL_03924 M REL_03023 F 3/4S 0 1 0 0 0 0 0 0 0.366 0.464 0.170 0.201

69 REL_04189 M REL_00775 M 3/4S 0 1 0 0 0 0 0 0 0.367 0.427 0.206 0.210

70 REL_03150 F REL_01804 F 3/4S 0 1 0 0 0 0 0 0 0.323 0.505 0.172 0.212

71 REL_03969 M REL_00271 M 3/4S 0 1 0 0 0 0 0 0 0.342 0.560 0.098 0.189

FS and 3/4S pairs of the GCAT sample. Predicted relationships and posterior probabilities according to a log-ratio PCA combined with LDA. Coding and abbreviations used: sex M,

male; F, female; φ̂, estimated kinship coefficient.

haplotypes. We have avoided this issue by LD pruning the
data base prior to resampling, so removing tightly correlated
markers. The reference data set is therefore constructed on
the basis of a subset of variants that can expected to be
approximately independent. This subset is then used as the basis
for relationship estimation. This procedure has the advantage
that it avoids potential additional uncertainty generated by
using a phasing algorithm. However, the proposed procedure
may be improved in the future by accounting for haplotype
structure and recombination. The pruning threshold used in our
method (0.20) is a compromise between precision and satisfying
the independence assumption. A larger value will admit more
variants and can increase the resolution, but due to correlation
between variants it will invalidate the independence assumption
used to generate the reference set of related pairs.

The proposed method for classifying pairs combining log-
ratio PCA and discriminant analysis is seen to perform well with
both simulated and empirical data. The sampling of artificially
related pairs from the observed data requires a considerable
number of approximately unrelated individuals to be present
in the database. We therefore suggest the method to be used
for large samples with thousands of individuals, where such
a substantial subset of unrelated individuals can be identified.
This is probably not an obstacle for the use of our method,
as increasingly large samples are being used in epidemiological
genomics. The sampling of artificial pairs from the observed data
respects the allele frequency distribution of the original data, and
provide reference areas for the different relationships given the

allele frequencies of the observed data. Note that with only one
hundred simulated pairs of each relationship, we build a classifier
that can be used to classify millions of pairs. Our method is
computationally feasible for over 5,000 individuals and 26,000
variants like in the GCAT sample. Most of the computation time
is spent on the projection of the empirical pairs onto the reference
structure, and these computations could easily be parallelized.
Many public repositories of genomic data are currently available,
but without recruitment and relatedness information, and for
which the relatedness techniques discussed in this paper could
be usefully applied.

The log-ratio transformation in Equation (1) does not admit
zeros for the genotype sharing counts. In theory MZ pairs have
k10 = k20 = k21 = 0, and PO pairs have k20 = 0. In practice, due
to the summing over large numbers of variants, zeros are almost
never observed as a consequence of some genotyping error
and incidental mutations. If a few zero counts are observed, a
replacement by 1 or 0.5 can eventually be used in order to proceed
with the analysis. If there is a substantial amount of zeros,
a ratio-preserving multiplicative replacement (Fry et al., 2000;
Martín-Fernández et al., 2003) or a Bayesian procedure (Martin-
Fernandez et al., 2015) are recommended. The zero problem is
well-known in compositional data analysis, and a distinction is
usually drawn between structural and rounding zeros (Martín-
Fernández et al., 2003, 2011). In principle, MZ and PO pairs have
structural zeros. However, MZ and PO pairs are the most easily
detected relationships, and are easily dealt with separately, prior
to applying the log-ratio transformation to the data. Exclusion
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of the relationships up to the second or third degree is in fact
desirable if possible, as it will allow the study of the more remote
relationships at higher resolution.

We recommend the use of discriminant analysis in allele-
sharing studies as employed in this paper. The posterior
probabilities of the different relationships give a quantitative
criterion for deciding upon which relationship is most likely
for a given pair of individuals. In allele sharing studies this
decision is mostly made graphically by inspecting a (p0, p2) plot

in IBS studies, or a (k̂0, k̂1) plot in IBD studies. We note that
these posterior probabilities differ from those used in a standard
discriminant analysis, in the sense that they are affected by
additional uncertainty generated by using a training set obtained
by a resampling of the observed data.

Applications of IBD based methods typically employ three
Cotterman coefficients that are constrained to sum one,
and therefore represent relatedness in only two dimensions.
However, IBD based methods can estimate additional Jacquard
coefficients (Milligan, 2003) and thus potentially exploit more
dimensions than is usually done in practice.

The current paper is focused on homogeneous populations.
If population substructure exists, then log-ratio PCA
can be expected to separate the different populations
in its biplot. Methods that address substructure (distant
relatedness) and family relationships (recent relatedness)
jointly have been developed (Manichaikul et al., 2010;
Conomos et al., 2015). Population substructure can be
accounted for by using only variants with low weights
on the first components for a relatedness analysis, as is
done in the UK Biobank project (Bycroft et al., 2018),
as the first components mostly capture substructure. In
future work, the usefulness of the log-ratio PCA approach
for the joint study of remote and recent relatedness could
be further explored.

SOFTWARE AVAILABILITY

R code (R Core Team, 2014) implementing the logratio kinship
biplot proposed in this paper is available online at github.com/
ivangalvan/LR-kinbiplot.

ETHICS STATEMENT

Our study does use data from human subjects, but concerns data
that is available in public repositories.

AUTHOR CONTRIBUTIONS

JG and IG contributed equally to this paper, where JG conceived
the methodology and wrote the paper. IG developed computer
programs, ran simulations, and performed data analysis. RdC
supervised GCAT data analysis. RdC and CBV proof-read the
manuscript. All authors contributed to the improvement of
the paper.

FUNDING

This work was partially supported by grants MTM2015-65016-
C2-2-R (JG), MTM2015-65016-C2-1-R (IG and CBV) and ADE
10/00026 (RdC) (MINECO/FEDER) of the Spanish Ministry
of Economy and Competitiveness and European Regional
Development Fund, by grants SGR1269 and 2017 SGR529 (RdC)
of the Generalitat de Catalunya, by grant R01 GM075091 (JG)
from the United States National Institutes of Health, and by the
Ramon y Cajal action RYC-2011-07822 (RdC).

ACKNOWLEDGMENTS

We are grateful for the publicly available data sets of the 1,000
Genomes project, available at www.internationalgenome.org.
This study makes use of data generated by the GCAT Genomes
for Life Cohort study of the Genomes of Catalonia, IGTP. A full
list of the investigators who contributed to the generation of the
data is available from www.genomesforlife.com. IGTP is part of
the CERCA Program of the Generalitat de Catalunya.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00341/full#supplementary-material

REFERENCES

Abecasis, G., Cherny, S., Cookson, W., and Cardon, L. (2001). GRR:

graphical representation of relationship errors. Bioinformatics 17, 742–743.

doi: 10.1093/bioinformatics/17.8.742

Aitchison, J. (1983). Principal component analysis of compositional data.

Biometrika 70, 57–65. doi: 10.1093/biomet/70.1.57

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Caldwell, NJ:

The Blackburn Press.

Anandan, A., Anumalla, M., Pradhan, S., and Ali, J. (2016). Population structure,

diversity and trait association analysis in rice (Oryza sativa L.) germplasm for

early seedling vigor (esv) using trait linked ssr markers. PLoS ONE 11:e0152406.

doi: 10.1371/journal.pone.0152406

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L., Sharp, K., et al. (2018).

The UK Biobank resource with deep phenotyping and genomic data. Nature

562, 203–209. doi: 10.1038/s41586-018-0579-z

Conomos, M., Miller, M., and Thornton, T. (2015). Robust inference of population

structure for ancestry prediction and correction of stratification in the presence

of relatedness. Genet. Epidemiol. 39, 276–293. doi: 10.1002/gepi.21896

Cotterman, C. (1941). Relative and human genetic analysis. Sci. Monthly 53,

227–234.

Epstein, M., Duren, W., and Boehnke, M. (2000). Improved inference of

relationship for pairs of individuals. Am. J. Hum. Genet. 67, 1219–1231.

doi: 10.1016/S0002-9297(07)62952-8

Fry, J., Fry, T., and Mclaren, K. (2000). Compositional data analysis and zeros in

micro data. Appl. Econ. 32, 953–959. doi: 10.1080/000368400322002

Galván-Femenía, I., Graffelman, J., and Barceló Vidal, C. (2017).

Graphics for relatedness research. Mol. Ecol. Resour. 17, 1271–1282.

doi: 10.1111/1755-0998.12674

Galván-Femenía, I., Obón-Santacana, M., Piñeyro, D., Guindo-Martinez,

M., Duran, X., Carreras, A., et al. (2018). Multitrait genome

association analysis identifies new susceptibility genes for human

Frontiers in Genetics | www.frontiersin.org 15 April 2019 | Volume 10 | Article 341

https://github.com/ivangalvan/LR-kinbiplot
https://github.com/ivangalvan/LR-kinbiplot
www.internationalgenome.org
www.genomesforlife.com
https://www.frontiersin.org/articles/10.3389/fgene.2019.00341/full#supplementary-material
https://doi.org/10.1093/bioinformatics/17.8.742
https://doi.org/10.1093/biomet/70.1.57
https://doi.org/10.1371/journal.pone.0152406
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1002/gepi.21896
https://doi.org/10.1016/S0002-9297(07)62952-8
https://doi.org/10.1080/000368400322002
https://doi.org/10.1111/1755-0998.12674
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Graffelman et al. Biplots for Relatedness Research

anthropometric variation in the GCAT cohort. J. Med. Genet. 55, 765–778.

doi: 10.1136/jmedgenet-2018-105437

Gower, J., Gardner Lubbe, E., and Le Roux, N. (2011). Understanding Biplots.

Chichester: John Wiley.

Graffelman, J., and Aluja-Banet, T. (2003). Optimal representation of

supplementary variables in biplots from principal component analysis and

correspondence analysis. Biometr. J. 45, 491–509. doi: 10.1002/bimj.200390027

Graffelman, J., and Moreno, V. (2013). The mid p-value in exact tests for

Hardy-Weinberg equilibrium. Stat. Appl. Genet. Mol. Biol. 12, 433–448.

doi: 10.1515/sagmb-2012-0039

Hill, W., and Weir, B. (2011). Variation in actual relationship as a

consequence of mendelian sampling and linkage. Genet. Res. 93, 47–64.

doi: 10.1017/S0016672310000480

Huff, C., Witherspoon, D., Simonson, T., Xing, J., Watkins, W., Zhang, Y., et al.

(2011). Maximum-likelihood estimation of recent shared ancestry (ERSA).

Genome Res. 21, 768–774. doi: 10.1101/gr.115972.110

Jakobsson, M., Scholz, S., Scheet, P., Gibbs, J., VanLiere, J., Fung, H., et al.

(2008). Genotype, haplotype and copy-number variation in worldwide human

populations. Nature 451, 998–1003. doi: 10.1038/nature06742

Johnson, R. A., and Wichern, D. W. (2002). Applied Multivariate Statistical

Analysis, 5th Edn. Upper Saddle River, NJ: Prentice Hall.

Kyriazopoulou-Panagiotopoulou, S., Kashef-Haghighi, D., Aerni, S., Sundquist,

A., Bercovici, S., and Batzoglou, S. (2011). Reconstruction of genealogical

relationships with applications to Phase III of HapMap. Bioinformatics 27,

i333–i341. doi: 10.1093/bioinformatics/btr243

Manichaikul, A., Mychaleckyj, J., Rich, S., Daly, K., Sale, M., and Chen, W.

(2010). Robust relationship inference in genome-wide association studies.

Bioinformatics 26, 2867–2873. doi: 10.1093/bioinformatics/btq559

Mardia, K., Kent, J., and Bibby, J. (1979).Multivariate Analysis. London: Academic

Press.

Martín-Fernández, J., Barceló-Vidal, C., and Pawlowsky-Glahn, V. (2003). Dealing

with zeros and missing values in compositional data sets using nonparametric

imputation.Math. Geol. 35, 253–278. doi: 10.1023/A:1023866030544

Martin-Fernandez, J., Hron, K., Templ, M., Filzmoser, P., and Palarea-Albaladejo,

J. (2015). Bayesian-multiplicative treatment of count zeros in compositional

data sets. Stat. Model. 15, 134–158. doi: 10.1177/1471082X14535524

Martín-Fernández, J., Palarea-Albaladejo, J., and Olea, R. (2011). “Dealing with

zeros,” in Compositional Data Analysis: Theory and Applications, eds V.

Pawlowsky-Glahn and A. Buccianti (Chichester: John Wiley & Sons), 43–58.

McPeek, M., and Sun, L. (2000). Statistical tests for detection of misspecified

relationships by use of genome-screen data. Am. J. Hum. Genet. 66, 1076–1094.

doi: 10.1086/302800

Milligan, B. (2003). Maximum-likelihood estimation of relatedness. Genetics 163,

1153–1167.

Nembot-Simo, A., Graham, J., and McNeney, B. (2013). CrypticIBD check: an R

package for checking cryptic relatedness in nominally unrelated individuals.

Source Code Biol. Med. 8:5. doi: 10.1186/1751-0473-8-5

Obón-Santacana, M., Vilardell, M., Carreras, A., Duran, X., Velasco, J.,

Galván-Femenía, I., et al. (2018). GCAT|Genomes for Life: a prospective

cohort study of the genomes of catalonia. BMJ Open 8:e018324.

doi: 10.1136/bmjopen-2017-018324

Oliehoek, P., Windig, J., van Arendonk, J., and Bijma, P. (2006). Estimating

relatedness between individuals in general populations with a focus

on their use in conservation programs. Genetics 173, 483–496.

doi: 10.1534/genetics.105.049940

Pandit, E., Tasleem, S., Barik, S., Mohanty, D., Nayak, D., Mohanty, S., et al. (2017).

Genome-wide association mapping reveals multiple qtls governing tolerance

response for seedling stage chilling stress in indica rice. Front. Plant Sci. 8:552.

doi: 10.3389/fpls.2017.00552

Pawlowsky-Glahn, V., Egozcue, J., and Tolosana-Delgado, R. (2015).Modeling and

Analysis of Compositional Data. Chichester: John Wiley & Sons.

Pemberton, T., DeGiorgio, M., and Rosenberg, N. (2013). Population structure in

a comprehensive genomic data set on human microsatellite variation. Genes

Genomes Genet. 3, 891–907. doi: 10.1534/g3.113.005728

Pemberton, T. J., Wang, C., Li, J. Z., and Rosenberg, N. A. (2010).

Inference of unexpected genetic relatedness among individuals in hapmap

phase iii. Am. J. Hum. Genet. 87, 457–464. doi: 10.1016/j.ajhg.2010.

08.014

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M., Bender, D., et al.

(2007). Plink: a toolset for whole-genome association and population-based

linkage analysis. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

R Core Team (2014). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing.

Ramstetter, M., Dyer, T., Lehman, D., Curran, J., Duggirala, R., Blangero,

J., et al. (2017). Benchmarking relatedness inference methods with

genome-wide data from thousands of relatives. Genetics 207, 75–82.

doi: 10.1534/genetics.117.1122

Rosenberg, N. A. (2006). Standardized subsets of the HGDP-CEPH Human

Genome Diversity cell line Panel, accounting for atypical and duplicated

samples and pairs of close relatives. Ann. Hum. Genet. 70, 841–847.

doi: 10.1111/j.1469-1809.2006.00285.x

Sabatti, C., Service, S., Hartikainen, A., Pouta, A., Ripatti, S., Brodsky, J., et al.

(2009). Genome-wide association analysis of metabolic traits in a birth

cohort from a founder population. Nat. Genet. 41, 35–46. doi: 10.1038/

ng.271

Sharma, S., MacKenzie, K., McLean, K., Dale, F., Daniels, S., and Bryan, G.

(2018). Linkage disequilibrium and evaluation of genome-wide association

mapping models in tetraploid potato. G3 (Bethesda) 8, 3185–3202.

doi: 10.1534/g3.118.200377

Stevens, E., Baugher, J., Shirley, M., Frelin, L., and Pevsner, J. (2012). Unexpected

relationships and inbreeding in HapMap Phase III populations. PLoS ONE

7:e49575. doi: 10.1371/journal.pone.0049575

Stevens, E., Heckenberg, G., Roberson, E., Baugher, J., Downey, T., and

Pevsner, J. (2011). Inference of relationships in population data using

indentity-by-descent and identity-by-state. PLoS Genet. 7:e1002287.

doi: 10.1371/journal.pgen.1002287

The 1000 Genomes Project Consortium (2015). A global reference for human

genetic variation. Nature 526, 68–74. doi: 10.1038/nature15393

Thompson, E. (1975). The estimation of pairwise relationships. Ann. Hum. Genet.

39, 173–188. doi: 10.1111/j.1469-1809.1975.tb00120.x

Thompson, E. (1991). “Estimation of relationships from genetic data,” inHandbook

of Statistics, Vol. 8, eds C. Rao and R. Chakraborty (Amsterdam: Elsevier

Science), 255–269.

Voight, B., and Pritchard, J. (2005). Confounding from cryptic

relatedness in case-control association studies. PLoS Genet. 1:e32.

doi: 10.1371/journal.pgen.0010032

Wang, C., Szpiech, Z., Degnan, J., Jakobsson, M., Pemberton, T., Hardy,

J., et al. (2010). Comparing spatial maps of human population-genetic

variation using procrustes analysis. Stat. Appl. Genet. Mol. Biol. 9:13.

doi: 10.2202/1544-6115.1493

Wang, J. (2018). Effects of sampling close relatives on some elementary population

genetics analyses. Mol. Ecol. Resour. 18, 41–54. doi: 10.1111/1755-0998.1

2708

Weir, B. S., Anderson, A. D., and Hepler, A. B. (2006). Genetic relatedness

analysis: modern data and new challenges. Nat. Rev. Genet. 7, 771–780.

doi: 10.1038/nrg1960

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Graffelman, Galván Femenía, de Cid and Barceló Vidal. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 16 April 2019 | Volume 10 | Article 341

https://doi.org/10.1136/jmedgenet-2018-105437
https://doi.org/10.1002/bimj.200390027
https://doi.org/10.1515/sagmb-2012-0039
https://doi.org/10.1017/S0016672310000480
https://doi.org/10.1101/gr.115972.110
https://doi.org/10.1038/nature06742
https://doi.org/10.1093/bioinformatics/btr243
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1023/A:1023866030544
https://doi.org/10.1177/1471082X14535524
https://doi.org/10.1086/302800
https://doi.org/10.1186/1751-0473-8-5
https://doi.org/10.1136/bmjopen-2017-018324
https://doi.org/10.1534/genetics.105.049940
https://doi.org/10.3389/fpls.2017.00552
https://doi.org/10.1534/g3.113.005728
https://doi.org/10.1016/j.ajhg.2010.08.014
https://doi.org/10.1086/519795
https://doi.org/10.1534/genetics.117.1122
https://doi.org/10.1111/j.1469-1809.2006.00285.x
https://doi.org/10.1038/ng.271
https://doi.org/10.1534/g3.118.200377
https://doi.org/10.1371/journal.pone.0049575
https://doi.org/10.1371/journal.pgen.1002287
https://doi.org/10.1038/nature15393
https://doi.org/10.1111/j.1469-1809.1975.tb00120.x
https://doi.org/10.1371/journal.pgen.0010032
https://doi.org/10.2202/1544-6115.1493
https://doi.org/10.1111/1755-0998.12708
https://doi.org/10.1038/nrg1960
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Log-Ratio Biplot Approach for Exploring Genetic Relatedness Based on Identity by State
	1. Introduction
	2. Methods
	2.1. Relatedness Research
	2.2. Log-Ratio Principal Component Analysis 
	2.3. Log-Ratio PCA of Genotype Sharing Data

	3. Results
	3.1. Simulations
	3.2. Method Comparison
	3.3. Empirical Data Sets
	3.3.1. The CEU Sample
	3.3.2. The GCAT Sample


	4. Discussion
	Software Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


