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Background: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related
mortality worldwide. Molecular characterization-based methods hold great promise for
improving the diagnostic accuracy and for predicting treatment response. The DNA
methylation patterns of LUAD display a great potential as a specific biomarker that will
complement invasive biopsy, thus improving early detection.

Method: In this study, based on the whole-genome methylation datasets from The
Cancer Genome Atlas (TCGA) and several machine learning methods, we evaluated the
possibility of DNA methylation signatures for identifying lymph node metastasis of LUAD,
differentiating between tumor tissue and normal tissue, and predicting the overall survival
(OS) of LUAD patients. Using the regularized logistic regression, we built a classifier based
on the 3616 CpG sites to identify the lymph node metastasis of LUAD. Furthermore, a
classifier based on 14 CpG sites was established to differentiate between tumor and
normal tissues. Using the Least Absolute Shrinkage and Selection Operator (LASSO)
Cox regression, we built a 16-CpG-based model to predict the OS of LUAD patients.

Results: With the aid of 3616-CpG-based classifier, we were able to identify the lymph
node metastatic status of patients directly by the methylation signature from the primary
tumor tissues. The 14-CpG-based classifier could differentiate between tumor and
normal tissues. The area under the receiver operating characteristic (ROC) curve (AUC)
for both classifiers achieved values close to 1, demonstrating the robust classifier effect.
The 16-CpG-based model showed independent prognostic value in LUAD patients.

Interpretation: These findings will not only facilitate future treatment decisions based
on the DNA methylation signatures but also enable additional investigations into the
utilization of LUAD DNA methylation pattern by different machine learning methods.

Keywords: LUAD, DNA methylation, regularized logistic regression, recursive feature elimination, LASSO Cox
regression, metastasis
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INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
globally, causing over a million deaths a year (Genome Atlas
Research Network., 2014; Jemal et al., 2018). There are two
clinical types, one is the aggressive subtype small cell lung cancer
and the other is non-small cell lung cancer (Hankey et al., 1999).
Non-small cell lung cancer is histologically classified into four
major subtypes by pathological and molecular characteristics:
adenocarcinoma, large cell lung cancer, squamous cell lung
cancer, and other types (Ettinger et al., 2010). Adenocarcinoma
is the most common histological subtype of non-small cell
lung cancer. Tobacco smoking is the major cause of lung
adenocarcinoma (Toh et al., 2006). However, with the decrease
in the number of smokers in many countries, the occurrence of
LUAD in non-smokers has increased (Genome Atlas Research
Network., 2014).

An accurate diagnosis of LUAD is one precondition to achieve
a better treatment effect. Although the Mayo Clinic stage, size,
grade, and necrosis (SSIGN) score, as well as the University
of California Integrated Staging System can help improve the
accuracy of the prognosis (Travis et al.,, 2011), the outcomes
of patients with similar clinical characteristics or integrated
systems scores still differ. Molecular characteristics may provide
an indication for predicting the LUAD prognosis and response
to therapy, thus offering great potential for improving individual
treatment. Moreover, molecular characterization-based methods
do not generally require bulk tissue samples, which can improve
the patients” tolerance and reduce unnecessary operation steps.
Among all the molecular characteristics, DNA methylation of
CpG sites plays a crucial role in epigenetic regulation by reducing
the activity of a DNA segment and repressing gene transcription
(Jones, 2012; Du et al., 2015; Schiibeler, 2015). DNA methylation
is associated with carcinogenesis by repressing the expression
of the tumor suppressor gene and promoting the expression of
oncogenes (Herman et al., 1995; Schiibeler, 2015; Vizoso et al.,
2015; Klutstein et al., 2016). Hence, the cancer tissues have a
distinct DNA methylation pattern compared to normal tissues.
More importantly, unlike somatic genetic mutations in tumor
tissues, DNA methylation patterns are inherently reversible
changes and can therefore be promising targets for drug
treatments (Ramchandani et al., 1999). Using DNA methylation
signatures can help us make a better prognosis and predict the
treatment response, thus prolonging the patients’ survival.

Machine learning is a novel method to learn concept
from data, which will help researchers discover the hidden
insights. Based on DNA methylation patterns, machine learning
techniques are developed and used to design models for precise
classification and accurate prediction in medicine. In this study,
we evaluated the possibility of DNA methylation signatures
in identifying LUAD lymph node metastasis, differentiating
between tumor tissue and normal tissue and predicting the OS
of LUAD patients by applying TCGA whole-genome methylation
datasets to several machine learning methods. Our results
showed robust classifier effects with the AUC of both classifiers
achieving values close to one for identifying lymph node
metastasis and differentiating between tumor tissue and normal

tissue. Cross-validation was applied to prevent overfitting. The
LASSO Cox regression model was used to evaluate the patients’
OS. Risk scores from the LASSO Cox model were combined with
other clinicopathological risk factors to generate a nomogram
to predict the prognosis and help the doctors to manage
LUAD patients.

METHODS
Data Source

The DNA methylation files and patients’ information were
obtained from Xena (https://xenabrowser.net/). Complete
clinical, molecular, and histopathological data-sets are available
at the TCGA website (https://portal.gdc.cancer.gov/).

Feature Selection for DNA CpG Sites

We formulate critical methylation identification as a feature
selection problem. Each CpG site is treated as a feature here
and our goal is to find out which features are important for
different tasks.

Variance Based Filtering

Variance is the squared deviation of the data from its mean,
showing the spread of numbers. It is an important characteristic
that reflects the distribution and discriminability of a feature.
The variance o of an observed sample sequence of a given

feature {x1,x2,...,%,...,xN} is computed by averaging across
the squared difference of each value to the mean .
2 Z (xi — M)z
ot ==
N
n= 72 5
N

In general, a larger variance 0 means a wider distributed and
more separable feature space, which facilitates training a classifier
to find class boundaries. On the other hand, variance o is
positively correlated with information entropy E, meaning that
more information could be obtained with a larger variance
o. When o is small, all the data is compressed and provides
insufficient information for a classifier, so that we would avoid
features with a small variance by setting a minimum threshold to
filter out the indiscriminate features.

E= —/P(x) log P (x)dx

Regularized Logistic Regression Model
Logistic regression is a widely applied and useful statistical, non-
linear model for predicting a binarized outcome based on a
sequence of independent features. Assuming we have a general
linear regression model y, which satisfies

N
y=Y B
i=0

where x; stands for the i-th feature and g; is the correspondent
coeflicient. Since there is no constraint on the range of §; and x;,
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there is no maximum or minimum limit for y, i.e., y € [—00, 00].
Consider a standard logistic function

This could map an input space from an infinite [—o0, o0] to a
finite [0, 1]. By combining the linear regression model with the
logistic function, we obtain the logistic regression model

1
’= 1 4 e~ L Bixi
threshold t,

By thresholding y with we obtain the

binarized output.
Ly>t
o=1{"7=
{O, y<t
Note that, regularization term can be compounded with a
logistic regression model, to force the learned coefficients to
be sparser and more resistant to overfitting, which is highly
beneficial for feature selection as well. We term the logistic

regression model with regularization term as “Regularized
logistic regression model.”

Recursive Feature Elimination

Recursive feature elimination (RFE) adopts a brute-force and
recursive way of undermining important features. Given a pre-
defined model, which weighs all the features internally, RFE
recursively uses the set of features to train the model and discard
features that are the least important for the model (e.g., small
weights) and repeats the training with the remaining features.
This operation keeps recycling until certain expectations are
reached, such as the maximum number of expected features Nexp.
The process is described in Algorithm 1.

Algorithm 1: Recursive Feature Elimination.
INPUT: a set of features S = {f1, /2, ..., fi,. . .>[u}, expected
feature number Neyp
OUTPUT: a set of kept features
Svest = {fsisfsar -5 fsin e o fsn}
WHILE size (S) > Nexp DO

1 Train a model with the set of features in S

2 Get the coefficients for the features learned from the
classification model

3 Prune features with small coefficients Son—important

4 Update feature set S = S — Spon—important
END WHILE

Keep the final set of features as the set of most important
features Sy = S

Cox Regression

Cox regression, also called Proportional Hazards Regression, is a
survival analysis model. It can be used to analyze relationships
between different features and the survival time. The Cox
model is based on the proportional hazards condition, which
assumes that features have a proportional relationship to the
exponential change of hazard. Thus, the model is formulated as
a multiplication of a baseline hazard function with a sole time
variable ¢, and an exponential function of the linear combination
of all of the features as an input. Given a set of n samples
{(Xi,Yi,s)) 10 < i < n, i € R}, where X; = (xio, Xi1, - - - » Xik)
and stands for the i-th sample of all the k features, Y; is
the observation time and s; is the survival status, the hazard
function is

H; () = Hy () &

B= (Bo,f1>-..,Px) is the coeflicient vector weighing the
contribution of the features. The partial likelihood of all the
samples is

LB =]]L®
i=1

_ H; (Yi | Xi)
i=1 Zj:YjZYi Hi (YllX])
n eX:Tﬂ

- 1_[ xI'g

i=1 j:YjZYie]

By penalizing -log (L (B)), the optimal 8 could be uncovered.

LASSO Regularization

LASSO (Least Absolute Shrinkage and Selection Operator) is an
important regularization in many regression analysis methods.
The concept behind LASSO is that an L1-norm is used to penalize
the weight of the model parameters. Assuming a model has a set
of parameters {wy, w1, ..., Wy}, the LASSO regularization can be
written as

n
ey lwilly
i=0

It can be also expressed as a constraint to the targeted
objective function

Sy =y, st Qwilly < t

An important property of the LASSO regularization term is
that it can force the parameter values to be 0, thus generating
a sparse parameter space, which is a desirable character for
feature selection.

Workflow of the Coding Process
When it came to selecting the methylation features for the
metastasis and tumor identification problems, we first used
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variance-based filtering to eliminate some of the least important
CpG sites, and to decrease the computation for the following
Regularized Logistic Regression Model and RFE. To avoid model
overfitting and bias in the feature selection, cross validation was
used in the following stages. The dataset was evenly divided
into 5-folds, and further feature selections were conducted by
applying Logistic Regression Model and RFE, following the
standard pipeline of cross validation.

When predicting the OS of LUAD patients, we built
the Cox proportional hazard regression model with LASSO
regularization. 5-fold cross-validation was applied to avoid the
overfitting. We plotted the plots in R software (R Foundation
for Statistical Computing, Vienna, Austria. Version 3.4.3)
and Python (Python Software Foundation. Python Language
Reference, version 3.7).

RESULTS

Preparation of LUAD DNA

Methylation Datasets

LUAD DNA methylation data and corresponding clinical data
were downloaded from Xena (https://xenabrowser.net/) (Cline
et al,, 2013). After removing samples without a survival status
and normalization, a total of 478 samples were analyzed in the
present study (Supplementary File 1). The datasets included 409
samples for the recognition of metastasis, 428 samples for the
recognition of tumor from normal tissue, and 446 samples for
the prediction of OS [(Supplementary Files 2—(4].

Identification of 3616-CpG-Based
Signature for the Recognition
of Metastasis

Variance-based selection was applied to filter features
(methylation CpG sites). Features with small variances tend
to be less discriminative, so we filtered out features with a
standard variance smaller than 0.01 and 135,094 methylation
signatures were selected. Regularized logistic regression and
cross-validation were then applied to weigh the importance of
each feature. The 428 LUAD samples were randomly assigned
to a test set or a validation set by the cross-validation method.
In short, five rounds of cross-validation were performed using
different partitions and the validation results were combined
over five rounds to overcome overfitting. By varying the value
of the coefficient threshold, we obtained a different number of
features that could be kept. When we used those kept features to
regress the linear Logistic model by 5-fold cross-validation, the
mean accuracy trend was as follows (Figure 1A). The number
of kept features with regard to the different values of coefficient
thresholds was shown in Figure 1B. The best performance was
achieved at the threshold value 0.05 with 6,198 features kept with
a 5-fold cross-validation. Recursive feature elimination with the
same cross-validation configuration was tested and the result
indicated that the kept features were the optimum minimal set
of all the features (Figure 1C). The value of kept methylation
CpG sites was shown in Figure 1D. We assessed the accuracy
of the 3616-CpG-based classifier for detecting metastasis with
a ROC analysis (Figure 1E) with the same cross-validation

configuration, and averaged the weights of selected features
across different set as the final coefficients. Furthermore, the
metastatic probability of each sample were calculated by the
coefficients of kept methylation CpG sites (Figure 1F and
Supplementary File 5). The AUC for the classifier achieved
values close to lin all of the 5-fold cross-validation, indicating
the robust classifier effect. The tumor tissues in total dataset
were divided into high metastatic risk score and low metastatic
risk score groups, respectively, using 0.5 as the cutoff. The
patients in the low metastatic risk score group have a longer OS
than those in the high metastatic risk score group in the total
datasets (p < 0.0001, Figure 1G) as well as in the separated 5-fold
training and validation sets (p < 0.05, Supplementary Figure 1).
We assessed the prognostic accuracy of the 3616-CpG-based
classifier metastatic classifier with a time-dependent ROC
analysis at varying follow-up times (500, 1,000, 1,500, 2,000,
2,500, 3,000 days) (Supplementary Figure 2). The accuracy was
all around 66%, indicating that the 3616-CpG-based classifier for
identifying metastasis could also work well for predicting the OS
of LUAD patients.

Identification of 14-CpG-Based Signature

to Recognize Tumor and Normal Tissues
134,015 features were kept by variance thresholding (0.01).
Regularized Logistic regression and cross-validation were applied
to weigh the importance of each feature as mentioned above.
An accuracy of 100% can easily be achieved for the number of
features range from 14 to 43,246 (Figure 2A). The number of
kept features with regard to the different thresholding values was
shown in Figure 2B. Recursive feature elimination with cross-
validation was tested and the result indicated that an accuracy
of 100% can be achieved when the kept feature numbers reached
14 (Figure 2C). 14 CpG sites were kept: cg25774643, cg03502002,
cg14789818, cg23479922, cg04864807, cg07915921, cg20146541,
cg08862830, cg01016533, cg19191888, cg08094098, cg01912692,
cgl10707110, cg24103195. The value of kept methylation CpG
sites was shown in Figure 2D. We then calculated the probability
of being tumor for each sample by the coefficients of kept
methylation CpG sites (Supplementary File 6 and Figure 2E)
in the same tradition as of the recognition of metastasis. The
accuracy of the 14-CpG-based classifier was assessed by means of
ROC analysis (Figure 2F). The results showed that the accuracy
reached 100% in all 5-fold cross-validation, indicating the high
sensitivity and specificity of the 14-CpG-based classifier in
differentiating between LUAD tumor tissues and corresponding
normal tissues. Furthermore, we applied the 14-CpG-based
classifier on an external dataset to confirm the accuracy of the
14-CgG-based classifier (Figure 2G). The AUC value was 98.4%
for differentiating the tumor and normal tissues (Figure 2H). The
analysis before showed the regularized logistic model we applied
worked well in different datasets.

Identification of 16-CpG-Based Signature

to Predict the OS of LUAD Patients

We used a LASSO Cox regression to build a prognostic model,
which selected 16 methylation CpG sites from the CpG sites
identified by the DNA methylation 450k chip: cg00161124,
cg01105229, cg03923535, cg10976778, cg12141052, cg12240358,
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cg13297560, cgl4139311, cg14184729, cg18140857, cg19410791,
cg20268054, cg23146197, cg25229048, cg26709300, cg27018309
(Figures 3A,B). The values of the 16 methylation CpG sites for
each patient were shown in Figure 3B. A formula was derived to
calculate the risk score for every patient based on their individual
16 methylation B values (Supplementary File 7). The risk scores
of tumor samples were calculated by the coefficients of the kept
methylation CpG sites (Figure 3C). The patients were divided
into high risk score and low risk score groups, respectively, with
a cutoff of —0-54. Kaplan-Meier survival analysis (Figure 3D)
showed that the survival probability of patients in lower risk
score was significantly better than in high risk score group (log-
rank test, all p < 0.0001). We assessed the prediction accuracy
of the 16-CpG-based model by means of time-dependent ROC
analysis at varying follow-up times. The AUC values for 500,
1,000, 1,500, 2,000, 2,500, and 3,000 days were 0.688, 0.681,
0.697, 0.685, 0.738, and 0.758, respectively, which confirmed the
effectiveness of the 16-CpG-based model to predict the OS of
LUAD patients (Figure 3E).

According to their clinicopathological conditions, like
epidermal growth factor receptor (EGFR) mutation, K-ras
or Ki-ras (KRAS) mutation, lymph node metastatic (LNM)
condition, and AJCC stage, LUAD patients were divided up
into several subgroups to validate the independent diagnostic
value of the methylation signature. EGFR mutation showed a
striking correlation with LUAD patient characteristics, which
were correlated with the clinical treatment response and then
affected the OS of LUAD patients. The Kaplan-Meier curves
regarding EGFR mutation and wildtype groups were shown
in Figures 4A,B. Patients with low risk scores generally had
significantly better survival than those with high risk scores in
both groups (p < 0.0001). Similarly, patients with low risk scores
had a significantly longer OS than those with high risk scores
in both KRAS mutation and wildtype subgroup and both LNM
positive and negative groups (Figures 4C-F, p < 0.0001). For
the patients in AJCC stage I and AJCC stage II-1V, the survival
probability of patients with low risk scores was higher than
those with low risk scores (Figures 4G,H). The stratification
analysis above revealed that the 16-CpG-based model could
effectively predict the OS of patients regardless of the patients’
clinicopathological properties, and provide prognostic power to
complement the clinical stage and SSIGN scores.

Lastly, the risk scores were applied to the Cox regression
model with the clinicopathological risk factors to perform
multivariable survival analysis, thereby generating a nomogram
to predict patients’ survival probability for 3 and 5 years
(Figure 5A). In the multivariable survival analysis, we included
age, gender, EGFR status, AJCC stage, and risk scores from 16-
CpG-based model. The nomogram was further verified with
calibration plots (Figure 5B). The results showed that the
nomogram fared well with the ideal mode for 3 and 5 years,
indicating the nomogram worked well in predicting the OS of
LUAD patients. According to the risk scores from the nomogram,
patients were divided into high risk and low risk group. Kaplan-
Meier survival analysis showed that the survival probability of
patients with low risk score was significantly higher than those
with high risk score (Figure 5C, log-rank test, p < 0.0001). The

prognostic accuracy of the nomogram was further accessed by
time-dependent ROC curves (Figure 5D). The results showed
that the AUC values were all around 0.7 at varying follow-up
times (500, 1,000, 1,500, 2,000, 2,500, 3,000 days), indicating the
high effectiveness of the nomogram in predicting the prognostic
OS of LUAD patients.

DISCUSSION

The present study demonstrates the potential of using DNA
methylation signatures to identify the lymph node metastasis of
primary LUAD tissues, to differentiate between the LUAD tumor
and normal tissues, and to predict the OS of LUAD patients.
Invasive biopsy is the gold standard for the validation of tumor
tissues and identification of histological subtypes. However,
the collection of bulk tissue samples for immunohistochemical
(IHC) staining may cause secondary damage to patients. An
inadequate tissue yield or quality also creates barriers for the
histological diagnosis. Besides, it may be difficult to identify
lymph node metastasis during operation. Nowadays, molecular
characterization methods provide new insights in pathological
diagnosis (Tsou et al.,, 2007; Selamat et al., 2012; Zhang et al.,
2013; Ogino et al, 2016). Since the global change of DNA
methylation takes place at the beginning of carcinogenesis, DNA
methylation has been considered a promising biomarker for the
early detection and diagnosis of cancers (Franco et al., 2008;
Hatano et al.,, 2015; Wu and Ni, 2015), which can complement
the pathological IHC staining. Moreover, DNA methylation
analysis does not require bulk tissue samples. Small amounts of
tissue are enough for DNA extraction and methylation-chip or
methylation-seq analysis, which will reduce the patients suffering.
Hundreds of thousands of the DNA methylation CpG sites can
be identified through genome-wide DNA methylation detection
by DNA methylation chips or methylation-seq. Discovering a
potential panel of DNA methylation-based biomarkers from
the large DNA methylation files can be beneficial for the early
diagnosis of cancer initiation and metastasis. Several research
studies have shown the potential of utilizing DNA methylation
profiles to help the diagnosis of different cancers (Diaz-Lagares
etal., 2016; Zhang et al., 2017; Sandanger et al., 2018). One study
applied an unsupervised clustering method on DNA methylation
profiles to find potential subtypes of childhood B-cell acute
lymphoblastic leukemia. The patients were allocated into two
subgroups by the unsupervised hierarchical clustering of DNA
methylation profiles, which showed a significant association
between DNA methylation and disease-free survival (Sandoval
et al, 2013a). Another study also utilized a similar strategy
to find the association between DNA methylation signatures
and the recurrence-free survival in non-small-cell lung cancer
samples (Sandoval et al,, 2013b). In our study, we applied
supervised learning strategy (regularized logistic regression) to
find the prognostic CpG cites in LUAD primary tissues. The
RFE helped to eliminate the unnecessary features in regression,
which constrained the numbers of key CpG sites for prognosis.
Besides, LASSO Cox regression was useful to reduce the feature
numbers in the COX survival analysis. One study built a
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prognostic signature by LASSO Cox regression to predict the
progression-free survival of LUAD patients and demonstrated
the potential biological significance of DNA methylation in
the etiology of LUAD (Bjaanzs et al., 2016). Another study
built a mortality risk score by LASSO Cox regression (Zhang
et al, 2017). The signature based on ten selected CpG sites

exhibited strong association with all-cause mortality. Moreover,
one recent study used blood-derived DNA methylation and
gene expression profiles to identify CpG lung cancer markers
prior to diagnosis. They emphasized the difference of prognostic
CpG sites in smoking and non-smoking lung cancer patients
(Sandanger et al., 2018). In this study, based on the methylation

Frontiers in Genetics | www.frontiersin.org

April 2019 | Volume 10 | Article 349


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Wang et al.

DNA Methylation Signatures in LUAD

A EGFR mutation

Strata -+ High lasso score
100

o
N
@

o
N
&

p < 0.0001

Survival Probability
o
3

o
Q
S

0 500 1000 1500 2000 2500

) Time at days
number at risk

-3 0 0 0 0 0

Strata

-7 9 8 4 2 1

0 500 1000 1500 2000 2500
Time at days

C KRAS mutation

Strata -+ High lasso score

100 oo
= 075
E-3
©
-3
£ os0 -
2
2 025
H p =0.0014
w
0.00
o 500 1000 1500 2000 2500
Time at da
number at risk m Vs
8 - 25 14 4 2 - 1
g
» -3 28 12 6 6 5

0 500 1000 1500 2000 2500
Time at days

E LNM positive

Strata -+ High lasso score

1.00 T
1
E 0.75 %
2
©
3 H"w
E 0.50 l“
2 L
2 025
5 p=2e-04
L] H -~
0.00
] 500 1000 1500 2000 2500

Time at days
number at risk

- 16 6 2 0 0 0
- 42 25 9 5 3 1

0 500 1000 1500 2000 2500
Time at days

G AJCCstagel

Strata -+ High lasso score
1.00

o
=
3

0 500 1000 1500 2000 2500

Time at days
number at risk

= 10 4 2 1 1 1

Strata

- 76 59 36 24 13 10
0 500 1000 1500 2000 2500
Time at days

E 075 Y
a-. 0.50

g

0% < 0.0001
wv

B EGFR wildtype

Strata -+ High lasso score + Low lasso score

100 s
N
;‘.? 075 | N
] e
3 1
E 0.50 & T i, - o=
3 ‘\
2 § T
0.25 .
g p < 0.0001
wv
0.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time at days
number at risk

- 30 12 5 2 2 1 1 0 0 0

Strata

- 111 8 40 26 15 12 7 4 2 2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time at days

D KRAS wildtype

Strata -+ High lasso score + Low lasso score

1.00
b
= 075 \
K Y
© s
3 1
o
& 050 L
2 025 .
3 p < 0.0001
w
0.00
o 500 1000 1500 2000 2500 3000 3500 4000 4500
Time at days
number at risk
g-9% 1 4 1 0 0o 0 0o o0 o0
e
A - 76 54 33 25 11 8 8 4 2 2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time at days

F LNM negative

Strata -+ High lasso score + Low lasso score

g 075 b

g L

[ 1

3 —

£ o0s0 I
©

2

2 0% 50,0001

wv

o
Q
5}

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time at days
number at risk

- 14 5 2 1 1 1 1 0 0 0

Strata

- 8 67 40 26 15 12 8 4 2 2
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time at days

H AJCCstage Il - IV

Strata + High lasso score + Low lasso score

100
b
E 0.75 TN
H "
© 1
4 4 |
£ 050 T
.g 1 \
2 025 |
H p < 0.0001 .
w
0.00
o 500 1000 1500 2000 2500 3000 3500 4000 4500
Time at days
number at risk
g-28 12 4 1 1 0 0 0 0 0
g
A -4 22 11 6 4 3 1 1 0 0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time at days
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FIGURE 5 | The nomogram to predict the risk of death in 3 and 5 years of LUAD patients. (A) The nomogram to predict the risk of death in 3 and 5 years of LUAD
patients. (B) Plots depict the calibration of each model in terms of agreement between predicted and observed 3- and 5-year outcomes. The dashed line represents
the ideal line of a perfect match between nomogram-predicted and observed OS. The blue and red line indicate the performance of the proposed nomogram for 3
and 5 years, respectively. (C) Kaplan-Meier survival analysis for the OS of LUAD patients according to the risk scores from the nomogram. (D) Time-dependent ROC

profiles of LUAD patients, we performed regularized logistic
regression and LASSO Cox regression to identify the lymph node
metastasis, to differentiate between tumor and normal tissues and
to predict the OS of LUAD patients. From the primary LUAD
tumor tissues, 3616 methylation CpG sites were kept to build a
classifier to identify LUAD lymph node metastasis. ROC curves
showed the high sensitivity and specificity of the 3616-CpG-
based classifier in identifying lymph node metastasis from CpG
sites of primary tumor tissues. All the samples came from the
primary tumor tissues, which means that the metastatic behavior
can be identified even without extracting tissues from lymph
nodes. Therefore, it would work as a biomarker to predict the
diagnosis of lymph node metastasis. Since the metastatic behavior

of LUAD affects the OS of LUAD patients dramatically, we
applied the metastatic classifier to check whether the model can
be used to predict the OS of LUAD patients. The time-dependent
ROC curves showed the effectiveness of the metastatic classifier
in predicting the OS of LUAD patients at varying follow-up times.
As expected, the patients in the high metastatic risk score group
have a significantly worse OS than those in the low metastatic risk
score group.

Tumor tissues are heterogeneous tissues that include cancer
cells (epithelial cells), cancer stem cells, vascular epithelial cells
and so on (Reya et al., 2001; Marusyk et al., 2012). More than 70%
of the tumor tissues are cancer cells. The heterogeneity of tumor
tissues may influence the accuracy of the diagnosis. We compared
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the heterogeneous tumor tissues with the normal tissues, which
also include the vascular epithelial cells and other cell types.
Considering the heterogeneous tumor tissues and heterogeneous
normal tissues as a whole for each, we tried to eliminate the
influence brought about by heterogeneity (Li et al.,, 2014). In
this study, to differentiate between tumor and normal tissues,
we concluded that 14 CpG methylation sites were enough for
the diagnosis. To check the overfitting potential, we applied
5-fold cross-validation. The efficiency of the model above was
tested by a ROC curves in five different training and validation
datasets, which showed the high efficiency and specificity of
the 14-CpG-based classifier in differentiating between LUAD
tumor tissues and the normal tissues. Furthermore, we also
validated our regression model on the external dataset from one
study (Bjaanees et al., 2016). Results showed an AUC value of
98.4% to differentiate the tumor and normal tissues by the ROC
analysis. The external dataset further confirmed the accuracy
of the regularized logistic model which we applied to build the
both classifiers above. From the two classifiers, we obtained an
overlap cluster of CpG sites: ¢g03502002 and ¢g07915921. The
information for ¢g07915921 is not clear. cg03502002 is on the
CpG island of the promotor region of the GALRI gene. The
methylation status of the GALR1 promoter and the level of
GALRI gene expression have been correlated in a large number of
head and neck squamous tumor specimens (Misawa et al., 2008).
Ectopic expression of GALR1 suppresses tumor cell proliferation
through Erk1/2-mediated regulation of cyclin-dependent kinase
inhibitors and cyclin D1 (Kanazawa et al., 2009). One study
revealed that hypermethylated GALRI1 plays important roles in
smoking-associated LUAD (Tan et al., 2013).

We also built a model to predict the OS of LUAD patients
by means of methylation CpG sites. The LASSO Cox regression
model generated risk score for each patient. When we assessed
the survival status and distribution of risk scores, patients with
low risk scores generally had a better OS than those with high
risk scores. The model will help guide individualized follow-up
schedules for LUAD patients. The high-risk patients have poor
OS prediction. This could be the basis of a future clinical trial.
The LASSO Cox regression results were further confirmed by
the time-dependent ROC analysis. When we compared the time-
dependent ROC from the OS-prediction model and metastasis-
prediction classifier, the OS-prediction model turned out to be
more precise in the long-term survival prediction while the
metastasis-prediction classifier worked better in the short-term
survival prediction. One explanation could be that when the
LUAD patients were accompanied by lymph node metastasis,
the tumor progressed and the patients had a poorer prognosis.
The OS expectation of patients with lymph node metastasis
was shorter than those without lymph node metastasis. Hence,
the metastasis-prediction classifier would work better for the
short-term prediction.

To further utilize the risk scores from the Cox regression
model, we classified patients into several subgroups according
to the clinicopathological risk factors (EGFR mutation, KRAS
mutation, LNM status and AJCC stages). The 16-CpG-based
classifier still showed clinical and statistical significance
regardless of the clinicopathological status of LUAD patients.

The independent prognostic values of the 16-CpG-based
model were validated by multivariable survival analysis, which
integrated other clinicopathological risk factors for the OS of
LUAD patients. The Cox regression risk scores were applied
together with age, gender, EGFR status, AJCC stages as indicators
to generate a nomogram to predict the 3- and 5-year survival
probability. We verified the performance of the nomogram by
calibration plots. The predicted OS of LUAD patients by the
nomogram was highly consistent with the observed 3- and 5-year
OS of LUAD patients. Log-rank test and time-dependent ROC
curves at vary follow-up times further confirmed the nomogram.
Thus, the nomogram could provide an accurate and simple
prognostic prediction for LUAD patients.

In previous studies, mnRNA expression files (Beer et al., 2002),
the mutation of key genes (Takano et al., 2008; Kosaka et al,
2009), long no-coding RNA expressions (Kosaka et al., 2009;
Huarte, 2015; Zhou et al., 2016), and histone modifications
(Seligson et al., 2009; Zhou et al., 2016) showed the prognostic
potential for different types of cancer. Here, we emphasized
that the methylation patterns could also be a meaningful
tool for the prognosis of LUAD patients. Some studies have
identified that multiple CpG sites are differentially methylated
in lung cancer compared to normal tissues (Genome Atlas
Research Network., 2014; Poirier et al, 2015; Hao et al,
2017). The key for methylation pattern-based early diagnosis
is the identification of crucial CpG sites in LUAD. The use of
supervised machine learning methods allowed us to integrate
all methylation CpG sites identified by the methylation chip
into one model, which improved the prognostic accuracy
over that of a single CpG site alone. Our findings show
that three DNA CpG signature-based models can effectively
identify lymph node metastasis by the CpG sites from primary
tumor tissues, differentiate between tumor and normal tissues,
and predict the OS of LUAD patients. The tissues would be
collected by preoperative biopsy or at surgery. The classifiers
for identifying lymph node metastasis and differentiation
between tumor and normal tissues would help the preoperative
diagnosis. The Lasso Cox model would be helpful for adjuvant
treatment and prognostic planning. Therefore, the 3 methylation
signatures could be of great value in assessing the status,
predicting prognosis and achieving individualized treatments of
LUAD patients.

The limitations of our study should be mentioned. The
methylation 450k chip did not identify as many CpG sites
as the methylation 850k chip or methylation sequencing. The
methylation CpG site candidates identified here did not represent
the complete CpG sites in the genome of LUAD patients.

In conclusion, we built three DNA CpG signature-based
models to identify LUAD lymph node metastasis by the
CpG sites from primary tumor tissues, differentiate between
tumor tissue and normal tissue, and predict the OS of LUAD
patients, which highlight the relationship between clinical
results (metastasis, survival) and methylation biomarkers in
LUAD patients. The nomogram comprising LASSO Cox risk
scores and clinicopathological factors may help predict the
OS of LUAD patients and help individualized treatment of
LUAD patients.
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