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Due to the high heterogeneity and complexity of cancer, it is still a challenge to predict

the prognosis of cancer patients. In this work, we used a clustering algorithm to divide

patients into different subtypes in order to reduce the heterogeneity of the cancer patients

in each subtype. Based on the hypothesis that the gene co-expression network may

reveal relationships among genes, some communities in the network could influence the

prognosis of cancer patients and all the prognosis-related communities could fully reveal

the prognosis of cancer patients. To predict the prognosis for cancer patients in each

subtype, we adopted an ensemble classifier based on the gene co-expression network

of the corresponding subtype. Using the gene expression data of ovarian cancer patients

in TCGA (The Cancer Genome Atlas), three subtypes were identified. Survival analysis

showed that patients in different subtypes had different survival risks. Three ensemble

classifiers were constructed for each subtype. Leave-one-out and independent validation

showed that our method outperformed control and literature methods. Furthermore, the

function annotation of the communities in each subtype showed that some communities

were cancer-related. Finally, we found that the current drug targets can partially support

our method.

Keywords: prognosis gene, ovarian cancer, subtype, gene co-expression network, ensemble classifier

INTRODUCTION

Cancer is a disease that seriously endangers human health (Siegel et al., 2017). Cancer prognosis
research is very important to avoid patients receiving excessive or improper treatment (Domany,
2014; Kourou et al., 2015). Ovarian cancer is one of the most common malignant tumors and there
is an urgent need to develop new treatment methods to improve the prognosis (Wang et al., 2017).
Identifying prognostic genes in cancer is important not only for the treatment of cancer patients
but also for drug discovery (Wang et al., 2017). Therefore, the selection of prognostic genes and
prognosis prediction for ovarian cancer is of great importance (Konecny et al., 2016).

These days, many methods have been used in solving biological problems by using high-
throughput biological data (Zhang et al., 2017, 2018a,b,c,d,e,f) and machine learning algorithms
(Zhang et al., 2008). However, the existingmodels for predicting the outcomes of ovarian cancer are
poorly generalized (Konecny et al., 2016), possibly due to the high heterogeneity of cancer (Burrell
et al., 2013). Even in the same cancer, it can be divided into different subtypes (Jiang et al., 2019),
but most of the existing methods do not take this into account (Yu et al., 2016; Pawlovsky and
Matsuhashi, 2017). Recent literature has confirmed that considering the subtype of cancer and then
constructing the cancer prognosis model is conducive to the improvement of the performance of
the cancer prognosis model (Yu et al., 2018).
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In addition, cancer is a complex disease and the occurrence of
cancer is usually not caused by a single gene, but by the combined
action of multiple genes (Yang et al., 2014a). Many current
prognostic methods do not take this into account (Petitjean
et al., 2007; Hu et al., 2010). Gene co-expression networks are
able to reflect the interrelationships between genes in biological
processes (Guo et al., 2015; Deng et al., 2016; Serin et al.,
2016). A community (dense cluster) in a biological network
can work together as a basic functional module to participate
in the occurrence of diseases (Zhou et al., 2014). Therefore,
the community in the gene co-expression network in cancer
patients may be related to the prognosis of cancer, and multiple
communities related to the prognosis of cancer may more
comprehensively reflect the prognosis process of cancer.

In this work, we first applied clustering analysis to the data
set of ovarian cancer from TCGA (The Cancer Genome Atlas)
(Network, 2008) in order to divide the patients into different
subtypes. Our clustering results were validated using survival
analysis to determine whether patients in different subtypes had
different survival risks. We then constructed a co-expression
network for each subtype. In this network, the correlation
between genes was determined by measuring the Pearson’s
correlation coefficient (Sedgwick, 2012). Then, we mined the
dense clusters as gene communities in each network (Ruan
et al., 2010; Zhou et al., 2014). Based on the communities in
each subtype, we construct an ensemble classifier to predict the
cancer prognosis in the corresponding subtype. To validate the
performance of our model, we compared it with two control
models: the classifier constructed without clustering information
and the classifier with clustering information but without the
gene co-expression network. Furthermore, we also compared our
method with two models based on the published papers. Finally,
we adopted the functional annotation with these community
modules in each subtype to reveal some biological mechanisms
of cancer. In addition, based on these communities, we used
hypergeometric distribution tests to validate whether these
communities could be used to screen drugs for ovarian cancer.

MATERIALS AND METHODS

Data Set and Preprocessing
To evaluate our method, two ovarian cancer data sets, each
containing gene expression profiles and clinical information
(including the time to death and the status of death) were
collected in this work. One data set from TCGA (Network,
2008) containing 574 patients was used to test the model.
A merged data set containing 1287 patients, collected from
previous work (Gyorffy et al., 2012), was used as an independent
data set. The platform of TCGA data set is Agilent G4502A.
Since the merged data set contains the samples of TCGA, we
removed the samples of TCGA and 782 samples were remained.
Quantile normalization (Bolstad et al., 2003; Belorkar andWong,
2016) was then applied to all the data sets in terms of data
preprocessing. Since all the data sets come from gene chips,
this standardized method can eliminate the errors caused by
experimental technologies and keep the data of all samples at the
same level (Bolstad et al., 2003).

The prognosis information of the cancer patients was
discretized when constructing the classifier. If the death of a
patient occurred within 3 years, we set the phenotype as high-
risk. If a patient’s total survival time was more than 3 years, we set
the phenotype as low-risk. Otherwise, the patients that were alive
but still within 3 years were abandoned.

In order to validate whether the genes involved in the
community could be used to screen drugs for ovarian cancer
patients, we obtained the drug target information from the
Therapeutic Target Database (TTD) (Yang et al., 2015),
DrugBank (Wishart et al., 2008; Law et al., 2014), and Drug-Gene
Interaction Database (DGIdb) (Wagner et al., 2016). The drug
targets were set as the combined set of the entire three databases.
Adaptation diseases for each drug were also obtained from the
three databases.

Clustering Analysis
We applied the K-means (Jain, 2010) algorithm to cluster the
cancer patients into different subtypes. First, the top 15% of
genes with the greatest variance were selected as the clustering
features as they are considered to contribute to interesting
variance (Belorkar and Wong, 2016). Second, using the selected
genes as features, we used the K-means (Jain, 2010) clustering
method to divide the patients in TCGA into different subtypes,
and the Euclidean distance was used to measure the distance
between samples. Third, the Dunn Index (Dunn, 1973) was used
as the indicator to evaluate the quality of the cluster and to
find the best number of clusters, which are calculated from the
following equation,

DIm =

min
1≤i≤j≤m

δ(Ci,Cj)

max
1≤k≤m

1k
(1)

where m is the number of clusters, 1k is the mean distance
between all sample pairs in the same cluster Ck, and δ(Ci,Cj)
is the distance between the centroids of cluster Ci and Cj. The
higher the value of DIm, the better the quality of the cluster.
Finally, we selectedmwith the highest Dunn Index as the number
of subtypes.

Constructing the Co-expression Network
In this work, we constructed a gene co-expression network
for each subtype based on the gene expression data of cancer
patients. First, the Pearson correlation coefficient was used to
calculate the correlation between every two genes (Sedgwick,
2012). The Pearson correlation coefficient (r) was calculated
as follows:

r =
1

n− 1

∑n

i=1
(
Xi − X̄

σX
)(
Yi − Ȳ

σY
) (2)

where n is the number of cancer samples, X represents the gene
expression value of gene X in sample i, X̄ is the mean value of
gene X in all samples, and σX is the standard deviation of gene X
in all samples. Similarly, the values Y , Ȳ , and σY correspond to
the Y chromosome in the gene pairs.
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Next, a rank-based method (Ruan et al., 2010) was applied to
construct the gene co-expression network (Serin et al., 2016). For
each gene, the top n genes most related to it were selected as
its neighbors. In our project, we set n as 4 following a previous
literature report (Ruan et al., 2010). Finally, all the selected gene
pairs could create a co-expression network for each subtype.

Network Visualization and Community
Mining
Cytoscape 3.6.1 was used to visualize the network of every
subtype and topology analysis was applied to these networks.
The MCODE plug-in (Bader and Hogue, 2003) was then used in
Cytoscape to mine communities in these networks.

Constructing the Ensemble Classifier
Ensemble strategy has made great achievements in
bioinformatics (Lin et al., 2013, 2014; Zhou et al., 2013;
Zou et al., 2013, 2015; Wan et al., 2017). In this work, we also
used an ensemble classifier to predict the prognostic of ovarian
cancer patients. The main frame of constructing our ensemble
classifier is shown in Figure S1. To begin with, our training data
set was divided into different subtypes (Method 2.2) and we
constructed the gene co-expression network for each subtype
(Method 2.3). Then we mined the dense clusters as modules
for each network (Method 2.4) and constructed the centroid
classifier for each module as sub-classifier. In each subtype,
the sub-classifiers were filtered by ACC (accuracy) and the
ensemble classifier was constructed. The subtype of each sample
in independent data set was determined and its prognosis was
predicted by the corresponding ensemble classifier. The detail
process to construct the prognostic model was shown as follow:

(1) Based on the gene expression data, the subtypes of the ovarian
cancer patients were identified by clustering analysis.

(2) Using the gene expression profiles of the patients in each
subtype, a gene co-expression network was constructed for
each subtype.

(3) The dense clusters in each gene co-expression network
were detected.

(4) The community modules in each subtype may have a
significant effect on the prognosis of its corresponding
subtype. Therefore, the genes involved in a community may
be good features to predict the prognosis of cancer patients.
In this work, the genes in each community were used as
features to construct a classifier to predict the prognosis of
cancer patients in the corresponding subtype. The centroid
classifier is particularly suited for microarray data, which
has large feature size but few samples. In addition, it has
few model parameters and can even give better results than
conventional methods (Abraham et al., 2010). Therefore, the
centroid classifier was applied to construct the classifiers.

(5) After that, the classifiers with an ACC (evaluated by leave-
one-out validation) no less than a threshold were set as
sub-classifiers and all the sub-classifiers were integrated as
an ensemble classifier by majority voting strategy. Then an
ensemble classifier was constructed for each subtype and the

prognosis of each patient was predicted by the ensemble
classifier of the corresponding subtype.

Comparison With the Control Classifiers
In order to evaluate our main hypothesis that the clustering
information and ensemble classifier based on communities in
gene co-expression network could contribute to the prognosis
of cancer patients, we compared our method with two controls.
That is, the classifier without using the subtype information
and the ensemble strategy, and the classifier using subtype
information but not the ensemble strategy.

In the first control method, a centroid classifier is constructed
without the subtype information and the gene co-expression
network. The t-test is used to select the differentially expressed
genes between low- and high-risk groups in all the patients. The
t-test is calculated using the following equation (3),

t =
X̄ − Ȳ

√

S2x
n +

S2y
m

(3)

where X̄ and Ȳ are the average gene expression levels of low- and
high-risk patients, respectively. Sx and Sy are their corresponding
standard deviations, and n and m are the sizes of the data sets of
patients with good and bad prognosis, respectively.

Based on the t-test, the top n genes with the smallest p-value
were selected as features. We varied n from 1 to 100 and using
the leave-one-out method each feature set was used to construct
a centroid classifier to predict the prognosis in training data set.
Next, we chose the control classifier with the best validation result
as the final classifier. That is, only one classifier was construct for
prognosis. The prognosis of the samples in independent data set
were predicted directly using the chosen classifier.

The second control method used the clustering information
to the construction of the model. That is, it constructed a
centroid classifier for each subtype, and each centroid classifier
was constructed using the same strategy with the first control
method. For each patient in the independent data set, its subtype
was determined based the Euclidean distance of the vector of its
expression levels to the centroid of each subtype. That is, the
patient was assigned to the subtype which it is the most similar
with. And its prognosis was predicted using the centroid classifier
of the corresponding subtype.

Construction of the Representative
Classifiers
In previous works, some gene-signatures were selected to predict
the prognosis of ovarian cancer patients (Gyorffy et al., 2012;
Martinez-Ledesma et al., 2015). Herein, we also compare our
work with two literature methods (Gyorffy et al., 2012; Martinez-
Ledesma et al., 2015).

The first method (Martinez-Ledesma et al., 2015) used 41
genes for cancer prognosis and the authors demonstrated that it
could perform well on 11 types of cancer prognosis, including
ovarian cancer. Using these genes, we constructed a centroid
classifier based on a training data set which was denoted as a
38-gene classifier in this work (only 38 genes was present in our
training data set).
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The second method (Gyorffy et al., 2012) identified 34 genes
which were considered to be related to the prognosis of ovarian
cancer. Among the 34 genes, 33 were present in our training data
set. Based on these genes, a centroid classifier was constructed
(denoted as a 33-gene classifier in this work).

In their previous work, they both used the Cox model to
evaluate their methods. Based on their gene signatures, we also
used the Cox model to evaluate the prognostic capability of their
genes. First, the Cox proportional hazards regression was applied
to the correlation between each gene expression level and the
prognostic risks of all the patients in TCGA. Next, we adopted the
same strategy using the Gene expression Grade Index (Sotiriou
et al., 2006) to calculate the prognosis risk of each patient in the
independent data set, based on all the genes in the corresponding
gene signature.

The risk score is calculated by the following equation (4),

Risk Score =
∑

xi −
∑

yj (4)

where xi is the expression level of the gene whose Cox coefficient
is positive and yi is the expression level of the gene whose Cox
coefficient is negative. According to the risk scores of the patients,
they were equally divided into high- and low-risk groups.

Performance Measures
The area under the curve (AUC), Matthews Correlation
Coefficient (MCC) and Accuracy (ACC) were used as indexes
to evaluate the classifiers in our work. The receiver operating
characteristic (ROC) curve is a graphical plot that illustrates the
sensitivity vs. one minus the specificity at different threshold
settings. The AUC is the area under the curve and it is a
widely used indicator to evaluate the performance of a classifier.
The MCC is also an important indicator of the quality of
classifiers and was used as an accuracy index in the US
FDA-led initiative MAQC-II (Jurman et al., 2012). The MCC
values fluctuate between −1 and +1 (a coefficient of +1 for
completely correct predictions, 0 for meaningless predictions,
and −1 for completely incorrect predictions) (Zhou et al., 2012).
The ACC is the most natural performance measure indicator
(Jurman et al., 2012). It is defined as the probability that a
random event will be correctly classified, which is estimated by
diving the number of correct classes by the total number of
classes (Klinkenberg and Renz, 1998).

Enrichment Analysis
We used the Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005) to perform functional annotation
of the genes in the selected communities of each subtype.
The hypergeometric distribution test (5) was used to calculate
whether the intersection set between the genes in a community
and the targets of a drug were significant:

p− value = 1−
∑m−1

i=0

(
M
i
)(
N −M
n− i

)

(
N
n
)

(5)

where N is the number of all the genes in our training data set,
M is the number of genes in the community, n is the number
of the targets of the drug, and m is the size of the intersection
set. The hypergeometric distribution test was also used to test
whether the ratio of screened cancer drugs by the community is
significantly high, compared with the number of cancer drugs in
the entire database.

RESULT

Survival Analysis of the Cancer Patients in
the Three Subtypes
Some works have succeeded in identifying the subtypes of cancer
patients based the high—throughput data of cancer patients
(Sørlie, 2004; Justin et al., 2015; Jiang et al., 2019). In order
to reduce the heterogeneity among the patients in the same
group, we divided the ovarian cancer patients into different
subtypes based on transcriptome data of these patients. In this
work, we used K-means to cluster the patients into different
subtypes. The Dunn Index (Dunn, 1973) was used to evaluate
the clustering quality on the TCGA training data set, where
the number of clusters (K) was varied from 2 to 6. The Dunn
Index of the clustering result shows that the optimal number
of clusters is three (Figure 1). In addition, we applied survival
analysis to patients in the three subtypes of the TCGA data
set, which indicated that the patients in our three subtypes
have different survival risks (Figure 2A). In a previous work,
NMF clustering method was applied to cluster the ovarian
cancer patients into four subtypes (Network, 2011). Here, we
also applied this method to the training data set and survival
analysis shows that the difference of the survival risks of the
patients divided by our method is slightly significant than theirs
(Figure S2). Considering that our approach is simpler, we still use
K-means to cluster the cancer patients in ovarian cancer.

FIGURE 1 | The evaluation of the clustering analysis in the training data set.

The Dunn Index was used to evaluate the quality of the clustering analysis. The

K (the number of the clusters) was varied from 2 to 6.
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FIGURE 2 | (A) TCGA, (B) the merged data set. Survival analysis of the patients in the three sub-types. In each data set, the patients were divided into three groups

according to the three sub-types.

In addition, we also divided the patients in the merged data set
into three subtypes according to the Euclidean distance between
the expression level vector of each patient in the independent
data set and the centroid of the clusters in training data set.
We also applied survival analysis to the patients in the three
subtypes on the merged data set. As a result, the patients
could be significantly distinguished by the survival probability
(Figure 2B). These results may indicate that the three subtypes
identified by our method have different prognostic risks and the
patients in each subtype may have more similarities than the
patients in different subtypes.

The Co-expression Networks of the
Three Subtypes
In order to describe the relationship among the genes in each
subtype of ovarian cancer patients, we constructed a gene co-
expression network for each subtype. Adopting a similar strategy
as the rank-based method for each gene (Ruan et al., 2010), we
selected the top four genes that were most related to its neighbors
to construct the co-expression network. Each of the three
networks has 11,049 nodes and 44,196 edges (Figure S3). The
average number of neighbors in the network of the first, second
and third subtype are 6.633, 6.617, and 6.525, respectively. All
the three networks are shown in the Tables S1–S3. Furthermore,
we applied the power-law fitting to the three networks, and the
correlation and R-square of the fittings indicated that all the
networks fitted the power law distribution well (Table 1). Our
topology analysis showed that the three networks were scale-free
and could be used to mine communities, which could be used to
construct prognostic models in ovarian cancer.

Forecasting Ability of Our Classifier
As the genes in a community work together to play an important
role in many biological processes, we used MCODE (Bader and
Hogue, 2003) to mine the communities in each subtype. Next,
we used the genes in each community as features to construct a

TABLE 1 | Correlation and R-square of power-law fitting in three networks.

Networks Correlation R-square

First subtype 0.836 0.948

Second subtype 0.860 0.940

Third subtype 0.778 0.929

centroid classifier to predict the prognosis of the cancer patients
in the corresponding subtype, using leave-one-out validation to
evaluate its performance. Using the majority voting strategy, the
classifiers capable of distinguishing prognosis were selected as
weak classifiers to construct the ensemble classifier. We used
the ACC of the classifier as an index to evaluate its prognostic
capability and changed the threshold from 0.55 to 0.60. As a
result, the ensemble classifier based on the weak classifiers with
an ACC of more than 0.56 could achieve the best performance
(Figure 3). Finally, we obtained 50 communities in the first
subtype (Table S4), 73 communities in the second subtype
(Table S5), and 92 communities in the third subtype (Table S6).
These subtypes can be used to construct three ensemble classifiers
for the three subtypes, which could be used as prognostic models
for ovarian cancer patients.

In training data set, our method could achieve an AUC of
more than 0.86, MCC of 0.57 and ACC of 0.79. An independent
data set containing 782 samples was applied to verify ourmethod.
The AUC, MCC, and ACC values using our method were
0.64, 0.22, and 0.61, respectively (Figure 4). These performances
showed that our classifier has a good forecasting ability in both
the training and the independent data set.

Comparison With Two Control Classifiers
In order to validate the hypothesis that the clustering information
and the ensemble strategy based on gene co-expression network
could improve the performance of the prognostic model, we
compared the performance of our method with two control
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FIGURE 3 | The leave-one-out result with different ACC threshold. The

threshold of ACC was varied from 0.55 to 0.60.

FIGURE 4 | Comparison of the ensemble classifier with two control classifiers.

The AUC, ACC and MCC of our classifier and two control classifiers on the

independent data set.

classifiers. The first one used a t-test to select features in all the
patients in the training data set and used the selected features
to construct a centroid classifier to predict the prognosis of all
the ovarian cancer patients. The second one also used a t-test to
select features and adopted the centroid classifier as a prognostic
model but it constructed a centroid classifier for each subtype, i.e.,
the second method used clustering information in the process of
constructing the model.

The performances of the two control methods in the training
data set are shown in Table 2. From these results, it is evident
that our method was better than both control methods, and the
method without the clustering information is better than the
method using clustering information. In addition, our classifier

TABLE 2 | The leave-one-out result of classifier based on different methods.

Control classifier

without clustering

information

Control classifier

with clustering

information

Ensemble classifier

AUC 0.6800 0.5517 0.8660

MCC 0.2986 0.0843 0.5727

ACC 0.658 0.5509 0.7911

and the other two classifiers were independently verified using
the independent data set (Figure 4). Our classifier can achieve an
AUC of 0.64 (MCC of 0.22 and ACC of 0.61), the control classifier
with clustering information had an AUC of 0.58 (MCC of 0.16
and ACC of 0.54), and the control classifier without clustering
information had an AUC of 0.55 (MCC of 0.07 and ACC of 0.54).

Our method outperformed the two control methods in both
the training data set and the independent data set. The control
method with clustering information performed better in the
independent data set, although it is not better in the training data
set. As we know, the control method without clustering used all
the samples in the training data set to construct the classifier.
However, the control method with the clustering information
only applied the samples in each subtype to fit the model.
The classifier with more samples may perform better in the
training data set. However, the independent data set does not
performwell using this method because of overfitting, whichmay
be caused by the high heterogeneity of the cancer patients in
different subtypes.

As we know, the cox regression is also a frequently-used
method to select features in cancer prognosis. Here, we also used
cox regression to select features for the two control classifiers.
A similar result could be found that our ensemble classifier was
the best, and the control classifier using subtype information was
better than the one without the subtype information (Figure S4).
All these results showed that the clustering information and the
ensemble strategy based on gene co-expression network could
improve the performance of the prognostic model.

Comparison With Two Representative
Works
Two representative methods were compared with our method.
We constructed the centroid classifiers based on their gene sets
as we did in our work. From Figure S5, our classifier was better
than the 33-gene and 38-gene classifiers. The AUC performance
of our classifier achieved 0.64 and MCC achieved 0.22 (ACC of
0.61). Compared to our method, the other two classifiers AUC
was lower and the MCC was 0 (ACC <0.5). Thus, the classifier
based on our method outperformed the other two methods.

In their previous work, they both used Cox models to
evaluate their methods. Based on their gene signatures, we also
used the Cox model to evaluate the prognostic capability of
their genes (see Materials and Methods). In order to give a
more direct comparison of the performance of our method
with two other prognostic gene sets, a total of 789 patients
of the merged data set were predicted prognostic outcome by
our ensemble classifier. Meanwhile, their risk scores based on
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FIGURE 5 | (A) Our method, (B) 38-gene signature, (C) 33-gene signature. Survival analysis of the patients divided by our ensemble classifier and representative

works. Patients in the independent data set were divided into two groups according to the prediction result of our ensemble classifier, and the risk scores calculated

by the representative gene sets, respectively.

two gene sets from these two representative methods were
calculated. As a result, the log-rank p-value between the patients
in the two groups predicted by our method is 8 × 10−9. The
p-values of the log-rank test between the low-risk and high-risk
group calculated by the two representative methods are 0.016
and 0.026, respectively (Figure 5). In summary, our ensemble
classifier outperformed the two representative methods, both in
classification and survival analysis.

Functional Annotation of the Filtered
Communities
As the communities with distinguishing capability in cancer
prognosis may play important roles in cancer prognosis, we
applied enrichment analysis to the genes in the top ten
communities according to the ACC performance in each
subtype with gene ontology (GO) terms by GSEA (Subramanian
et al., 2005). In these top ten communities, we selected the

most significant related biological processes for each annotated
community, which are listed in Tables S7–S9.

In the first subtype, three out of ten communities were
significantly annotated. The first community was enriched by
“ethanol metabolism process.” As we know, this biological
process can produce a type of carcinogens-reactive aldehydes
(Kottemann and Smogorzewska, 2013). In addition, “positive
regulation of proteolysis” was reported to be related to the
occurrence of ovarian cancer (Lengyel, 2010) and it was
significantly enriched in the fourth community. In addition, “the
glutathione derivative metabolic process” is the most significant
one in the ninth community of the first subtype, with a
p-value of 9.52 × 10−11. It was reported that glutathione played
an important role in cancer progression and chemoresistance
(Traverso et al., 2013).

In the second subtype, five communities were significantly
enriched. Among them, disturbing “DNA metabolic process”
was reported to contribute to oncogenesis (Hoeijmakers, 2001).
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In addition, the other four GO Terms were also significantly
enriched, such as the “response to steroid hormone,” “response
to endogenous stimulus,” “response to topologically incorrect
protein,” and “response to fatty acid.” The steroid hormone
receptor has been previously demonstrated to be a potential
prognostic marker for ovarian cancer patient survival (Lenhard
et al., 2012). The endogenous stimulus comes from the
microenvironment difference between normal and tumor tissues,
and it could be used to treat cancer (Yang et al., 2014b). The
incorrectly folded protein could affect the survival of tumor
cells (Goloudina et al., 2012), the fatty acid which had been
validated to be related to the rapid growth of tumor (Nieman
et al., 2011) and the abnormal expression of its synthase have been
often found in ovarian cancer with poor prognosis (Kuhajda,
2000). From the results of the survival analysis of the patients in
the three subtypes, the prognosis of the patients in the second
subtype was the poorest.

In the third subtype, “protein localization to centrosome” and
“cell cycle process” were significantly related to the sixth and
the tenth community, respectively. The “protein localization to
centrosome” demonstrated that some proteins could affect the
tumor cell cycle by the centrosome (Zhou et al., 1998; Kimura
et al., 1999) and that cell cycle proteins are promising targets
in cancer therapy (Otto and Sicinski, 2017). In other words, the
communities in the third subtype were annotated by two cell-
cycle related GO Terms. To summarize, the communities in the
three subtypes were all cancer-related but each different subtype
corresponded to aspects of different biological processes.

Drug Screening Using Filtered
Communities
As described above, some communities in the three subtypes are
cancer-related. Therefore, genes involved in these communities
may be candidates for therapy. In this work, we used
these communities to screen drugs using the hypergeometric
distribution test. We tested whether the targets for each
drug could be enriched significantly with the genes in the
corresponding community (Materials and methods).

In the first subtype, three drugs were screened by the
community which was annotated as “positive regulation of
proteolysis.” Among these three drugs, two drugs could be used
as therapy for ovarian cancer. They were Carfilzomib (Tagawa
et al., 2012) and Bortezomib separately and both could target
to the gene PSMB1 in this community. Specially, Bortezomib
has been used as the treatment drug for ovarian cancer in
clinical trials (Bruning et al., 2009). The ratio of drugs that
could be used as therapy for ovarian cancer, among the drugs
screened by the community, is significantly high compared
with the proportion of the ovarian cancer drugs among all the
drugs in the database, with a p-value of 0.021. In the second
subtype, nine drugs were obtained by the community (enriched
by the “DNA metabolic process”) and six drugs could be used
to treat ovarian cancer, and the p-values of the community were
2.73 × 10−5. Specially, the drug Niraparib could target to the
PARP2 in this community and it was one of the most familiar
drug for recurrent ovarian cancer (Kanjanapan et al., 2017;

Scott, 2017). Using the community enriched by the “response to
endogenous stimulus,” 183 drugs were screened and 115 drugs
could be used for cancer patients, (p-value of 4.08 × 10−7).
In the third subtype, the ratio of drugs for ovarian cancer
screened by the community, which were related to the “cell cycle
process,” was significantly higher than the ratio in all the drugs
(p-value of 2.32 × 10−4). Among the 50 drugs screened by the
community, 13 drugs were used as therapy for ovarian cancer
and all of the drug could target to the YES1 or TYMS. Among
these drugs, the Dasatinib could inhibit YES1 directly (Pathak
et al., 2015). Besides, the drug Gemcitabine is reported that it
can combine the gene TYMS to regulate the cell cycle (Duran
et al., 2017). All these results indicate that the genes involved
in the filter communities may be candidates for drug targets in
ovarian cancer.

CONCLUSION

Considering the heterogeneity and complexity of ovarian cancer,
we demonstrated a new method to predict the prognosis of
ovarian cancer based on the clustering information and gene
co-expression network in each subtype of cancer patients. We
divided the ovarian cancer data into three subtypes by clustering
analysis and we found that the survival risks in these three
subtypes were significantly different. We mined the important
communities based on the co-expression networks in each
subtype. There are 50, 73, and 92 communities in the first, second
and third subtype, respectively. Next, we constructed a new
ensemble classifier based on these communities to predict the
prognosis of cancer. Compared to other literature methods, our
classifier had improved performance. Furthermore, the function
annotation of the communities in each subtype showed that
some representative communities were cancer-related and the
enrichment analysis of the genes in the communities with
the drug-ontology data can partially support our biomarker
identification method.
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