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Observational studies have demonstrated that cardiovascular risk factors are associated
with chronic kidney disease (CKD). However, these observational associations are
potentially influenced by the residual confounding, including some unmeasured lifestyle
factors and interaction risk factors. Two-sample mendelian randomization analysis was
conducted in this study to evaluate whether genetically predicted cardiovascular risk
factors have a causal effect on the risk of CKD. We selected genetic variants associated
with cardiovascular risk factors and extracted the corresponding effect sizes from
the largest GWAS summary-level dataset of CKD. Cardiovascular risk factors contain
high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol,
total cholesterol (TC), triglyceride (TG), glycated hemoglobin (HbA1c), fasting glucose,
systolic blood pressure (SBP) and diastolic blood pressure (DBP). A Bonferroni corrected
threshold of P = 0.006 was considered as significant, and 0.006 < P < 0.05 was
considered suggestive of evidence for a potential association. Genetically predicted
DBP was significantly associated with CKD [odds ratio (OR) was 1.35 (95% confidence
interval (CI) (1.10, 1.65); P = 0.004)]. There was suggestive evidence for potential
associations between genetically predicted higher HDL cholesterol [OR: 0.88, 95%CI
(0.80, 0.98), P = 0.025] and lower adds of CKD, and between higher SBP [OR:
1.36, 95%CI (1.07, 1.73), P = 0.013] and higher adds of CKD. However, genetically
predicted LDL cholesterol, TC, TG, HbA1c, and fasting glucose did not show any causal
association with CKD.

Keywords: two-sample mendelian randomization, genome-wide association study, cardiovascular risk factors,
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INTRODUCTION

Chronic kidney disease is a global-health challenge affecting at
least 225.7 million people in the world, especially in developing
countries, in 2010 (Hill et al., 2016). The prevalence rates of
CKD have dramatically increased in the past several decades,
which threaten human health seriously (Romagnani et al., 2017).
Observational studies have detected a close relationship between
increased risk of cardiovascular diseases and CKD, showing that
major cardiovascular diseases account for approximately 50% of
the causes of death in CKD patients (Heywood et al., 2007).
Multiple cardiovascular risk factors, including lipids (Hager
et al., 2017), glycemic traits (Ceriello et al., 2017), and blood
pressure (Hall et al., 2014; Ceriello et al., 2017), have been
reported associated with CKD in observational studies. However,
a review reported a reverse effect of CKD on hypertension and
dyslipidemia (Schiffrin et al., 2007), demonstrating that CKD can
promote hypertension and dyslipidemia, which in turn can lead
to the progression of renal failure (Schiffrin et al., 2007). The
reverse association between cardiovascular risk factors and CKD
might be influenced by potential confounders of unmeasured
lifestyle factors.

Mendelian randomization analysis, analogous to randomized
controlled trials (RCTs), has been widely performed to
investigate the potential causality between genetically predicted
environmental factors and diseases (Katan, 2004; Lawlor
et al., 2008; Boef et al., 2015). As the genotype is randomly
assigned during the meiotic process, MR analysis results will
not be distorted by confounders (Emdin et al., 2017), a major
limitation of traditional observational studies. Compared
with one-sample MR, which extracts the effect estimates for
IV-exposure association and IV-outcome association from
the same sample, TSMR estimates that these associations
in different samples and the estimates are then combined
to infer the potential exposure-outcome causal association
(Davey Smith and Hemani, 2014).

Recently, a TSMR analysis demonstrated that higher
HDL cholesterol concentration was causally associated with
better kidney function, while LDL cholesterol or triglyceride
concentration showed no association with kidney function
(Lanktree et al., 2018). Another MR analysis detected that
genetically determined type 2 diabetes (T2D) was causally
associated with decreased eGFR in populations of Chinese
aged above 40 (Xu et al., 2016). However, no studies have been
conducted utilizing TSMR to summarize the causal relationship
between cardiovascular risk factors and CKD. Therefore,
in this study, we performed TSMR analysis to examine the
causal effect of cardiovascular risk factors, including lipids,
glycemic traits, and blood pressure on CKD, based on GWAS
summary-level data.

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; DBP,
diastolic blood pressure; eGFR, estimated glomerular filtration rate; GWAS,
genome wide association study; HbA1c, glycated hemoglobin; HDL, high
density lipoprotein; IVs, instrumental variables; IVW, Inverse variance weighted;
LD, linkage disequilibrium; LDL, low density lipoprotein; MR, mendelian
randomization; OR, odds ratio; SBP, systolic blood pressure; TC, total cholesterol;
TG, triglyceride; TSMR, two-sample mendelian randomization.

MATERIALS AND METHODS

Data Sources
We selected genetic variants associated with cardiovascular risk
factors, including lipids, glycemic traits and blood pressure, and
then extracted the corresponding effect sizes for CKD using
the largest GWAS summary-level dataset (Dupuis et al., 2010;
Soranzo et al., 2010; Willer et al., 2013; Ehret et al., 2016; Pattaro
et al., 2016). No ethical approval was conducted in our study
due to this being a re-analysis based on previous collected and
published data. Lipids data of HDL cholesterol (n = 187, 167),
LDL cholesterol (n = 173, 082), TC (n = 187, 365), and triglyceride
(TG, n = 177, 861) were extracted from the GLGC consortium
(Willer et al., 2013). We obtained glycemic traits data of fasting
glucose (Dupuis et al., 2010) (n = 133, 010) and HbA1c (n = 46,
368) (Soranzo et al., 2010) from the MAGIC consortium. And
blood pressure data (Ehret et al., 2016) of SBP (n = 317, 754) and
DBP (n = 317, 756) were extracted from UK Biobank imputed
genotype data1. Additionally, people with eGFR based on serum
creatinine (eGFRcrea) < 60 mL/min/1.73 m2 were defined as
CKD, and the dataset were acquired from CKDGen consortium
(n = 117, 165) (Pattaro et al., 2016). All of the dataset were
conducted on European populations from RCTs and population-
based cohorts. Genomic control to each sample was applied to
correct for inflated test statistics due to potential population
stratification in our datasets. Age, sex, and body mass index
were all adjusted in regression models of GLGC, MAGIC and
UK Biobank, and age and sex were also corrected in CKDGen
(Dupuis et al., 2010; Soranzo et al., 2010; Willer et al., 2013; Ehret
et al., 2016; Pattaro et al., 2016) (Supplementary Table S1).

Study Design
The genetic variants used as IVs in TSMR analysis must satisfy
three assumptions as follows (Figure 1): (1) IVs are strongly
associated with cardiovascular risk factors, including lipids,
glycemic traits, and blood pressure. (2) The IVs are independent
of any known confounders. (3) The selected IVs are conditionally
independent of CKD, given cardiovascular risk factors and
confounders. The second and third assumptions are known as
independence from pleiotropy (Bowden et al., 2015). In this
study, we used cardiovascular risk factors as the exposures,
including HDL cholesterol, LDL cholesterol, TC and TG for
lipids, HbA1c and fasting glucose for glycemic traits, SBP and
DBP for blood pressure, and CKD as the outcome to perform
the TSMR analysis.

IVs Selection and Validation
Instrumental variables must be associated with cardiovascular
risk factors, including HDL cholesterol, LDL cholesterol, TC,
TG, HbA1c, fasting glucose, SBP, and DBP. To ensure the close
relationship between IVs and cardiovascular risk factors, we
selected variants with P < 5 × 10−8 in the corresponding
GWAS summary-level dataset. In addition, pairwise-linkage

1http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-
biobank-gwas
2http://www.broadinstitute.org/mpg/snap/ldsearchpw.php
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FIGURE 1 | Schematic representation of TSMR analysis. Three assumptions of MR analysis are as follows: (1) IVs must be associated with cardiovascular risk
factors, (2) IVs must not be associated with confounders, and (3) IVs must influence CKD only through cardiovascular risk factors. IVs, instrumental variables; HDL,
high density lipoprotein; LDL, low density lipoprotein; TC, total cholesterol; TG, triglyceride; HbA1c, glycated hemoglobin; SBP, systolic blood pressure; DBP,
diastolic blood pressure; CKD, chronic kidney disease.

disequilibrium (LD) was calculated by PLINK 1.90 (Purcell et al.,
2007) to ensure the independence among selected IVs and SNPs
with r2 > 0.001 will be removed from our analysis.

Selected IVs should be independent of any known
confounders and conditionally independent of CKD, given
the related traits of cardiovascular risk factors. The two
assumptions indicate that IVs must influence CKD only through
cardiovascular risk factors rather than another pathway (Geng
et al., 2018). Firstly, we obtained the corresponding effect
estimates of these variables on CKD. For the SNPs that were
not available in the CKD, we used proxy SNPs that were
highly correlated (r2 > 0.8) based on the SNP Annotation
and Proxy (SNAP) search system2 (Johnson et al., 2008).
Secondly, MR-Egger regression was performed to assess the
horizontal pleiotropic (Bowden et al., 2015), which will be
introduced in the following statistic analysis. Additionally,
we excluded any palindromic SNPs that have minor allele
frequency above 0.42 to ensure that the effects of the SNPs on
the exposures correspond to the same allele as their effects on
CKD (Davey Smith and Hemani, 2014). Moreover, to adjust for
potential confounding, GWAS Catalog was used to check for the
associations between selected IVs, smoking and type II diabetes
(H1bAc and fasting glucose were excluded). Additionally,
inspired by the idea of Palmer et al. (2012), we used the F statistic
to investigate the association of selected IVs with the exposure on
a web application3.

Pleiotropy Assessment
Mendelian randomization-Egger regression was performed to
assess the horizontal pleiotropic pathway between IVs and CKD,
independent of cardiovascular risk factors (Bowden et al., 2015).
MR-Egger regression was developed from Egger regression,

3https://sb452.shinyapps.io/overlap

which has been used to examine the publication bias in meta-
analysis (ref needed here). This approach is expressed as αi = βγi
+β0, αi represents the estimated effect between IVs and CKD; γi
represents the estimated effect between IVs and cardiovascular
risk factors, including HDL cholesterol, LDL cholesterol, TC, TG,
HbA1c, fasting glucose, SBP, and DBP; slope β represents the
estimated causal effect of cardiovascular risk factors on CKD;
intercept β0 could be explained as the estimated average value
of horizontal pleiotropic. Intercept with P > 0.05 indicates no
horizontal pleiotropic exists. Additionally, the slope estimate
provides the pleiotropy-corrected causal effect. However, this
estimate may be underpowered if the selected SNPs collectively
fail to explain a large proportion of the variance in the
exposure (Bowden et al., 2015).

TSMR Analysis
In this study, IVW method was used for TSMR analysis to
estimate the causal effect between cardiovascular risk factors and
CKD (Burgess et al., 2013). The causal effect β was estimated as
wi(αi/γi), where i refers to the ith IV, αi defines as the association
effect of IVs on CKD, γi represents the association effect of IVs
on cardiovascular risk factors, and wi means the weights of the
causal effect of cardiovascular risk factors on CKD. MR Steiger
test was also performed to infer the causal direction between
exposures and CKD. It calculates the variance explained in the
exposures and outcome by the instrumenting SNPs, and tests if
the variance in the outcome is less than the exposures. Given the
multiple testing situation, we used a conservative approach and
applied a Bonferroni corrected significance level of 0.006 (0.05/8).
0.006 < P < 0.05 was considered as suggestive evidence for a
potential association.

Robust Adjusted Profile Score
The TSMR might fail if the selected SNPs are weak instruments.
Therefore, we carried out a recently proposed method called
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robust adjusted profile score (RAPS) (Zhao et al., 2019) which
considers the measurement error in SNP-exposure effects and
is unbiased even when there are many (e.g., hundreds of)
weak instruments, and is robust to systematic and idiosyncratic
pleiotropy. Detailed information about this method please refer
to the original paper (Zhao et al., 2019).

Positive Control and Negative Control
Previous studies already reported established causal relationship
between coronary artery disease (CAD) and CKD (Jansen et al.,
2014), while there is little evidence indicating that cardiovascular
risk factors are associated with myopia. To further demonstrate
the validity of the selected IVs, we included coronary heart
disease and myopia as positive and negative controls in our
analysis. The summary statistics of them were respectively
derived from CARDIoGRAMplusC4D consortium (Nikpay et al.,
2015) and UK Biobank imputed genotype data1, including 184,
305 and 335, 700 individuals from European population.

Sensitivity Analysis of TSMR
In the current study, weighted median and simple median
methods were also applied as the follow-up sensitivity analysis
(Geng et al., 2018). Compared with IVW, the weighted median
and simple median methods have greater robustness to individual
genetics with strongly outlying causal estimates and would
generate a consistent estimate of the causal effect when valid IVs
exceed 50% (Geng et al., 2018; Hemani et al., 2018). Furthermore,
leave-one-out sensitivity analysis was performed to identify if
the association was disproportionately influenced by a single
SNP. The TSMR analysis is performed again but leaving out
each SNP in turn and the overall analysis including all SNPs
was shown for comparison (Mokry et al., 2016). All of the
analysis was implemented by the “TwoSampleMR” package in R
software environment.

RESULTS

Selection and Validation of IVs
We obtained 84, 66, 78, 54, 10, 31, 103, 111 LD-independent
(r2 < 0.001) IVs in total that achieved genome-wide significance
(P < 5 × 10−8) from HDL cholesterol, LDL cholesterol, TC,
TG, HbA1c, fasting glucose, SBP and DBP datasets, respectively.
Not all of the SNPs were directly found in the CKD dataset;
detailed information of all independent IVs in this TSMR
analysis were shown in Supplementary Table S2. In addition,
the intercept term, estimated for the exposures from MR-Egger
regression, demonstrated that no horizontal pleiotropic exists in
our TSMR analysis (Table 1). Moreover, we did not detect a direct
association between selected IVs and smoking or type II diabetes
(H1bAc and fasting glucose were excluded) in GWAS Catalog.

F statistics were presented to demonstrate the strength of
relationship between IVs and exposures, and F statistics greater
than 10 are often considered as strong enough to mitigate against
any bias of the causal IV estimate. Our selected IVs showed
strong strength with F statistics ranging between 802 and 9447
(Supplementary Table S3).

TSMR Analysis
According to the IVW analysis results, the odds ratio (OR) and
95% confidence interval (CI) per 1-SD increase of DBP within
CKD was 1.35 (1.10, 1.65) (P = 0.004). There was suggestive
evidence for potential associations between genetically predicted
higher HDL cholesterol [OR: 0.88, 95%CI (0.80, 0.98), P = 0.025]
and lower adds of CKD, and between higher SBP [OR: 1.36,
95%CI (1.07, 1.73); P = 0.013] and higher adds of CKD. However,
genetically predicted LDL cholesterol, TC, TG, HbA1c and
fasting glucose were not associated with CKD (Figure 2).

Robust Adjusted Profile Score
The results turned out to be consistent with the TSMR results that
increased HDL cholesterol decreases the risk of CKD [OR = 0.89,
95% CI (0.79, 0.98), P = 0.025], but increased SBP [OR = 1.37,
95% CI (1.17, 1.56), P = 0.002] and DBP [OR = 1.33, 95% CI (1.14,
1.51), P = 0.003] increases the risk of CKD (Figure 2).

MR Steiger Directionality Test
The inferred causal direction between exposures (HDL
cholesterol, LDL cholesterol, TC, TG, HbA1c, fasting glucose,
DBP, SBP) and CKD were “TRUE” in our MR Steiger test
(Supplementary Table S4).

Sensitivity Analysis of TSMR
In sensitivity analysis, there was suggestive evidence for
potential associations between higher genetically predicted DBP
[Weighted median: OR = 1.37, P = 0.013, 95% CI (1.07, 1.76);
Simple median: OR = 1.32, P = 0.028, 95% CI (1.03, 1.70)] and
SBP [Weighted median: OR = 1.30, P = 0.050, 95% CI (1.10,
1.70); Simple median: OR = 1.45, P = 0.007, 95% CI (1.11, 1.89)]
and higher odds of CKD. However, genetically predicted HDL
cholesterol, LDL cholesterol, TC, TG, HbA1c and fasting glucose
were not associated with CKD (Figure 2). Furthermore, leave-
one-out analysis showed a consistent significant causal effect of
cardiovascular risk factors on CKD, supporting the robustness of
our IVW analysis findings (Supplementary Table S5).

TABLE 1 | Mendelian randomization (MR)-Egger regression intercepts.

Exposures Outcome MR-Egger regression

intercepts (95% CI) P-value

HDL cholesterol CKD −0.005 (−0.014, 0.004) 0.282

LDL cholesterol CKD 0.007 (−0.001, 0.016) 0.080

TC CKD 0.002 (−0.007, 0.011) 0.687

TG CKD 0.006 (−0.004, 0.016) 0.241

HbA1c CKD −0.006 (−0.034, 0.023) 0.707

Fasting glucose CKD −0.006 (−0.021, 0.01) 0.463

DBP CKD −0.003 (−0.018, 0.013) 0.746

SBP CKD −0.006 (−0.022, 0.011) 0.503

A significant result (P > 0.05) indicates that the y-intercept of the MR-Egger
regression line is not significantly different from zero and thus no pleiotropy exists.
MR, mendelian randomization; HDL, high density lipoprotein; CKD, chronic kidney
disease; LDL, low density lipoprotein; TC, total cholesterol; TG, triglyceride; SBP,
systolic blood pressure; DBP, diastolic blood pressure; CI, confidence interval.
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FIGURE 2 | Two-sample mendelian randomization of cardiovascular risk factors and the risk of CKD. CKD was defined as eGFRcrea < 60 mL/min/1.73 m2. We
used the 1 SD value from HDL cholesterol, LDL cholesterol, TC, TG, HbA1c, fasting glucose, SBP and DBP GWAS summary-level statistics. Results are
standardized to a 1-SD increase in exposures; CI, confidence interval; HDL, high density lipoprotein; IVs, instrumental variables; CKD, chronic kidney disease; LDL,
low density lipoprotein; TC, total cholesterol; TG, triglyceride; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Positive and Negative Control
Consistent with the conclusion of previous published paper
(Jansen et al., 2014), our analysis demonstrated a causal
relationship between all exposures and the positive control
(coronary artery disease). As for negative control (myopia), our
analysis showed no causal relationship between all exposures and
myopia (Supplementary Table S6). Independent IVs of CAD and
myopia were listed in Supplementary Tables S7, S8, respectively.
Both negative and positive control analysis results suggest that the
selected IVs of CKD are appropriate.

DISCUSSION

In the current study, by using genetic variants associated
with cardiovascular risk factors as proxies, our TSMR analysis
confirmed the causal association between DBP and increased risk
of CKD. Genetically predicted SBP showed suggestive evidence
for a possible causal association with CKD. We also detected

suggestive evidence for an inverse causal association between
genetically predicted HDL cholesterol and CKD. However,
no evidence was found to support the associations between
genetically predicted LDL cholesterol, TC, triglycerides, HbA1c,
fasting glucose, and CKD.

Our conclusion of the causal relationship between LDL
cholesterol, TC and CKD was consistent with the results
of Lanktree et al. (2018). They also reported MR evidence
for the association between genetically predicted higher HDL
cholesterol and lower odds of CKD, but we did not draw
the same conclusion in our sensitivity analysis (Lanktree
et al., 2018). This inconsistency may be caused by a different
selection of IVs and different analysis methods applied. Previous
MR analysis, based on the GLGC and CKDGen dataset,
reported a causal effect of HDL cholesterol on kidney function
(Coassin et al., 2016). However, our study focused on CKD
(eGFR < 60 mL/min/1.73 m2) rather than kidney function,
which may be more directional compared with eGFR, due
to the CKD’s clearly stages definition in clinical diagnosis
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(Coassin et al., 2016). Another MR analysis performed in a
Chinese population demonstrated a causation between T2D and
CKD, but we did not detect a significant causal relationship
between glycemic traits (HbA1c and fasting glucose) and CKD
in a European population (Xu et al., 2016), which demonstrates
the importance of ethnicity in MR analysis.

Observational studies demonstrated that hypertension is
almost invariably present in patients with renal failure, which
is a powerful risk factor for cardiovascular diseases and
CKD (Schiffrin et al., 2007). The renin–angiotensin system
and sympathetic nervous system have been considered as
important mechanisms involved in the elevation of blood
pressure in subjects with CKD (Guyton and Coleman,
1999). The elevation of plasma catecholamine might increase
nerve sympathetic traffic in CKD. Serving as a regulator
of blood pressure (Converse et al., 1992; Neumann et al.,
2004), renalase could metabolize catecholamines through
dopamine, epinephrine, and norepinephrine (Xu et al., 2005).
Investigators have discovered that renalase is an oxidase
expressed mainly in glomeruli and proximal tubules of the
kidney and cardiomyocytes (Vaziri et al., 2002). All the
detected potential mechanisms suggest the relationship between
blood pressure, cardiovascular disease and CKD, but the
mechanism remains unclear (Schiffrin et al., 2007). Our current
study successfully detected a causal relationship between
genetically predicted blood pressure and CKD, which may
provide novel evidence to further explain the mechanism of
hypertension in CKD.

There are several strengths in our current study. First,
we included multiple cardiovascular risk factors (8 in total)
as the exposures, hence we were able to include a relatively
large number of IVs. Then, to provide relatively consistent
causal effect estimates, we also performed sensitivity analysis
using several different approaches. In addition, we used
a web application3 to investigate the magnitude of bias
arising from sample overlap with a conservative value of
concentration parameter, and it would not be substantial
due to sample overlap in our study. Furthermore, CAD
and myopia were used as positive and negative controls,
respectively, to demonstrate the validity of selected IVs.
However, this study also has some limitations. Firstly, as
we only used summary statistics and had no access to the
original individual clinical outcome measures, we could not
conduct analyses stratified by subtypes of CKD. Secondly,
different standards of quality control in individual-level GWAS

may affect our results. Therefore, the results cannot be
easily generalized.

Using a genetic approach, we found DBP is causally associated
with CKD risk. Furthermore, we provided suggestive evidence
that SBP is causally associated with CKD risk and HDL
cholesterol is inversely causally associated with CKD. However,
additional human and animal studies are still needed to further
confirm our TSMR results.
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