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Various patterns of multi-phenotype associations (MPAs) exist in the results of

Genome Wide Association Studies (GWAS) involving different topologies of single

nucleotide polymorphism (SNP)-phenotype associations. These can provide interesting

information about the different impacts of a gene on closely related phenotypes or

disparate phenotypes (pleiotropy). In this work we present MPA Decomposition, a new

network-based approach which decomposes the results of a multi-phenotype GWAS

study into three bipartite networks, which, when used together, unravel the multi-

phenotype signatures of genes on a genome-wide scale. The decomposition involves

the construction of a phenotype powerset space, and subsequent mapping of genes

into this new space. Clustering of genes in this powerset space groups genes based

on their detailed MPA signatures. We show that this method allows us to find multiple

different MPA and pleiotropic signatures within individual genes and to classify and

cluster genes based on these SNP-phenotype association topologies. We demonstrate

the use of this approach on a GWAS analysis of a large population of 882 Populus

trichocarpa genotypes using untargeted metabolomics phenotypes. This method should

prove invaluable in the interpretation of large GWAS datasets and aid in future synthetic

biology efforts designed to optimize phenotypes of interest.

Keywords: multi-phenotype associations, pleiotropy, GWAS, SNP clustering, networks, powerset space,

pleiotropic signature, hypothesis generation

1. INTRODUCTION

Unraveling the complex genetic patterns underlying complex phenotypes has previously been
challenging. While individual Genome-Wide Association Studies (GWAS) can provide insight into
the genetic underpinnings of measured phenotypes, they typically involved associations of genetic
variants with only one or a few phenotypes. The field of phenomics involves the collection of high-
dimensional phenotype data of an organism, with the aim of capturing the overall, comprehensive
phenotype (the “Phenome”) of the organism (Houle et al., 2010). Association studies involving
many measured phenotypes, for example, Phenome-Wide Association Studies (PheWAS) present
many advantages, in that they allow for the complex interconnected networks between phenotypes
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FIGURE 1 | MPA signatures. (A) Type 1 MPA: a gene is associated with more

than one phenotype due to a single variant within the gene associating with

multiple phenotypes. (B) Type 2 MPA: a gene is associated with more than

one phenotype because of alternate SNPs within the gene having different

phenotypic associations (figure created from information presented in Solovieff

et al., 2013). (C) Complex combinations of Type 1 and Type 2 signatures.

and their genetic underpinnings to be elucidated, and also allow
for the detection of pleiotropy (Pendergrass et al., 2011, 2013,
2015; Hall et al., 2014).

Pleiotropy is the phenomenon in which a gene affects
multiple phenotypes (Tyler et al., 2009). One can also have
a locus-centric view of pleiotropy involving a single SNP
affecting multiple phenotypes (Solovieff et al., 2013). While
pleiotropy used to be considered an exception to the rules
of Mendelian genetics, it has since been proposed to be a
common, central property inherent to biological systems (Tyler
et al., 2009). Multi-phenotype associations (MPAs) can be
detected in the results of Genome Wide Association Studies
(GWASs) as Single Nucleotide Polymorphisms (SNPs) within
genes/functional regions having multiple significant phenotype
associations. This can be considered to be a pleiotropic pattern
when the two phenotypes are seemingly unrelated. Two main
MPA patterns exist within GWAS results. Type 1 MPAs occur
when a single SNP within a functional region (such as a gene)
is associated with more than one phenotype, whereas Type 2
MPAs occur when two different SNPs within a single functional
region have different phenotype associations (Solovieff et al.,
2013; Hackinger and Zeggini, 2017) (Figures 1A,B).

Multivariate analysis of the results of GWAS studies
across many phenotypes have allowed for the investigation of
complex relationships between genes and phenotypes, including
pleiotropic relationships and the clustering of variants based on
their phenotype associations.Many of these studies have involved
the analysis of SNP associations with complex human disease
traits. Some studies have considered pleiotropy as genes and
SNPs associated with more than one phenotype, and found that
pleiotropic genes tended to be longer, and that SNPs within
pleiotropic genes were more likely to be exonic (Sivakumaran

et al., 2011). Weighted Gene Co-expression Network Analysis
(WGCNA) has been extended to cluster SNPs based on their
phenotype associations using a matrix of beta coefficients,
followed by hierarchical clustering of the Topological Overlap
Matrix (Levine et al., 2017), and show how the resulting clusters
can be used to produce polygenic scores. Gupta et al. (2011)
introduced a biclustering algorithm, simultaneously clustering
SNPs and phenotypes in a matrix of regression coefficients.
Network-based approaches have been developed which construct
bipartite networks of gene-disease phenotype associations from
GWAS, and constructed network projections of this bipartite
network resulting in disease similarity and gene-similarity
networks (Goh and Choi, 2012). Though these studies provide
a baseline of the use of multivariate and network approaches
for the analysis of GWAS results, there is, to our knowledge, no
method which characterizes detailed MPA signatures of genes
and no method which clusters genes based on these detailed
signatures. Simply clustering genes based on their phenotype
associations will not capture the vast amount of combinatorial
possibilities of type 1 and type 2 signatures any given gene can
harbor (Figure 1C), especially when the multi-phenotype GWAS
study involves millions of variants and hundreds of phenotypes.

Methods for multi-trait GWAS have also been developed,
associating variants to groups of phenotypes (see for example
Stephens, 2013; Furlotte and Eskin, 2015; Cichonska et al., 2016;
Kaakinen et al., 2017a,b; Mägi et al., 2017; Porter and OReilly,
2017; Thoen et al., 2017). Mägi et al. (2017) and Kaakinen
et al. (2017a) present interesting methods for identifying the
association between SNPs/genes and multiple phenotypes by
using the phenotypes as predictors in the modeling of the
genotype. These are valuable methods for determining which
phenotypes/sets of phenotypes a given gene or SNP is associated
with that are more sophisticated than standard univariate GWAS
approaches. These methods however do not focus on the ability
to characterize and cluster genes based on the collection of
topologies of SNP-phenotype associations within the gene.

We present MPA Decomposition and Signature Clustering,
a network-based approach involving a constructed powerset
space, in which clustering distinguishes between genes based
on the detailed topology of their unique MPA signature. MPA
decomposition is a post-GWAS/post-PheWAS approach with is
designed to take the results of a multi-phenotype genome-wide
association-type analysis (such as a standard, univariate GWAS
run on several phenotypes or a multi-phenotype approach such
as SCOPA (Mägi et al., 2017) and provides a framework allowing
the precise mathematical representation of the architecture of
variant-phenotype associations within regions (MPA/pleiotropic
signatures), and thus allows these regions (such as genes) to be
clustered based on these complex signatures.

2. METHODS AND MATERIALS

2.1. Overview
MPA decomposition involves the mathematical characterization
of each gene’s MPA signature in a network-based context.
This process begins in phenotype space. In this multi-
dimensional space, each axis represents a phenotype and
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genes are represented as points, with points close together
representing genes with similar phenotype associations and
points far apart representing genes with very different phenotype
associations. This phenotype space provides no information
on the topology of associations within each gene. MPA
decomposition maps genes to a newly constructed powerset
space, which is constructed through clustering of SNP association
vectors (Figures 2A–E). This clustering produces discrete sets of
SNPs/overlapping sets of phenotypes called association modules
which form the axes of powerset space, which provides the
detailed structure of phenotype associations within a gene.
The second stage—signature clustering—groups genes based
on their detailed MPA signature (Figure 2F). Clustering of
genes in this space results in groups of genes with identical
MPA signatures. These genes grouped by MPA signatures
provide a useful tool for the researcher planning genetic
modification experiments, easily highlighting groups of genes
with favorable signatures for modification to influence a
particular phenotype.

The approach of MPA decomposition and its application
are described below. MPA decomposition is a multi-step
process whose results unify in a simple, matrix decomposition
relationship. The multi-step process allows for the MPA
signatures and signature clusters of genes to be determined from
GWAS summary statistics, and is thus applicable to both newly
generated genotype/phenotype data as well as published GWAS
summary statistics. We apply and demonstrate this method on
GWAS results from a densely genotyped Populus trichocarpa
GWAS population involving approximately 10 million SNPs and
over 400 untargetted metabolomics phenotypes measured across
the population.

2.2. Metabolomics Genome-Wide
Association Studies
Genotyping of 882 P. trichocarpa genotypes and metabolic
profiling of 585 of these genotypes, followed by GWAS
analysis of the 441 resulting metabolite phenotypes provided a
network of associations between SNPs andmetabolic phenotypes.
The process for the construction of the GWAS network is
described below.

2.2.1. Populus trichocarpa SNPs
P. trichocarpa (Tuskan et al., 2006) SNP data (DOI
10.13139/OLCF/1411410) obtained from [https://doi.ccs.
ornl.gov/ui/doi/55] was derived from the whole genome
resequencing of a Genome Wide Association Study (GWAS)
population clonally replicated in common gardens (Tuskan et al.,
2011). This dataset consists of 28,342,758 SNPs called across
882 P. trichocarpa genotypes. Details on the generation of this
SNP dataset can be found in Weighill et al. (2018). VCFtools
(Danecek et al., 2011) was used to extract the most reliable set
of SNPs corresponding to the 90% tranche, resulting in a set of
10,438,861 bi-allelic SNPs.

2.2.2. Metabolomics Phenotypes
Untargetted metabolomics was conducted on P. trichocarpa
genotypes using GC-MS. The metabolite analysis used is

FIGURE 2 | Overview of MPA decomposition and signature clustering. (A) The

GWAS profile matrix M representing SNP-phenotype associations was

constructed, and the Proportional Similarity between all pairs of SNPs (rows of

M) was calculated. (B) Clustering of the SNP association similarity network

results in clusters of SNPs with the same phenotype associations. (C)

Association modules are constructed as elements of the powerset of

phenotypes observed in the SNP clusters. Association modules can thus be

seen as non-overlapping sets of SNPs, or overlapping sets of phenotypes.

These modules form the axes of powerset space. (D) The module-phenotype

network associates the phenotypes present in each element of the powerset

observed in the SNP association clusters. (E) The gene-module network is

constructed by mapping genes to association modules if the module contains

a SNP that resides within that gene. (F) Signature clustering is performed in

GM (powerset) space, grouping genes with the same module associations.

Clustering genes in powerset space results in groups of genes with the same

pattern of MPA signatures with the same set of phenotypes. For example, a

signature cluster could involve G1 and G2 containing SNPs associating with

both phenotypes P1 and P2, as well as a SNP associating with only P3.

described in Tschaplinski et al. (2014). Briefly, samples were
freeze dried for 48 h and then ground with a microWiley
mill with a 20 mesh screen, with samples then twice extracted
in 80% ethanol (aqueous) and the extracts combined before
an aliquot was dried under nitrogen. Dried extracts were
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dissolved in acetonitrile followed by the addition N-methyl-N-
trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane.
Samples were heated for 1 h at 70◦C to generate trimethylsilyl
(TMS) derivatives. Samples were injected in an inert XL gas
chromatograph-mass spectrometer (Agilent Technologies Inc.,
Santa Clara, CA, U.S.A.), fitted with an Rtx-5MS with Integra-
Guard (5% diphenyl/95% dimethyl polysiloxane) capillary
column (30 m by 250 µm by 0.25 µm film thickness) (Restek,
Bellefonte, PA, U.S.A.). A standard quadrupole GC-MS was
operated in the electron impact (70 eV) ionization mode,
targeting 2.5 full-spectrum (50–650 Da) scans per second, as
described previously (Tschaplinski et al., 2012). A large user-
created database (>2,400 spectra) of mass spectral electron
impact ionization fragmentation patterns of TMS-derivatized
compounds, as well as the Wiley Registry 10th Edition with
the NIST 2014 mass spectral database, were used to identify
the metabolites of interest. Metabolites were quantified by
extracting a key, characteristic mass-to-charge (m/z) for each
known and unidentified metabolite using an automated data
extraction program. Preprocessing of the resulting raw GC-MS
data included alignment using XCMS (Smith et al., 2006) and
normalization for amount of leaf sample analyzed, fraction of
extracted sample analyzed, and internal standard recovered.

2.2.3. Outlier Analysis
We performed outlier detection on each of the metabolomic
phenotypes, to account for measurement variability and
technical/experimental error, using R (R Core Team, 2013).
This determines which, if any, metabolite intensities that
are measured over the respective genotypes (individuals), are
very different from the median observed intensities for that
metabolite. We applied a variant of the method discussed in
Leys et al. (2013), using the median absolute deviation (MAD)
from the median. Our approach differs in that it takes into
account the asymmetry of the distribution of intensity values,
as lower intensities are more frequent. We thus calculated
the MAD for the upper and lower tails of the distribution
separately. By investigating the distribution of intensities and
the MAD distance from the median, for a random sample
of metabolites, we determined that a MAD distance of 5
is appropriate for outlier detection, this was done using the
ggplot2 package in R (Wickham, 2009). Any intensity value
of a metabolite for a given genotype that was more than 5
MADs from the median was removed from the analysis. Also,
to mitigate potential biases from under-represented metabolites,
we excluded any metabolite that had less than 100 non-zero,
non-outlier values.

2.2.4. GWAS
The EMMAX software (Kang et al., 2010) was used to
statistically associate measured phenotypes with SNPs in Populus
trichocarpa. Covariates were included to account for population
structure by estimating a kinship matrix using the default
parameters for Balding-Nichols method implemented in the
emmax-kin program (Balding and Nichols, 1995). This was run
in a parallel fashion using a customized Python script which
made use of the NumPy (van der Walt et al., 2011), SciPY

(http://www.scipy.org/) (Jones et al., 2001), pandas (McKinney,
2010) and mpi4py (Dalcín et al., 2005, 2008; Dalcin et al.,
2011) modules. A hierarchical procedure similar to the approach
described in Peterson et al. (2016), consisting of the Benjamini-
Hochberg stepwise procedure (Benjamini and Hochberg, 1995)
with a relaxed threshold of q1=0.1, together with the Gavrilov-
Benjamini-Sarkar adaptive step-down procedure with a q2∼7.9e-
06, was applied to control the false discovery rate (FDR).
Associations passing the respective thresholds were considered
significant associations. A total of 413 phenotypes had at least
one significant SNP association, and 131,282 SNPs had at least
one significant phenotype association.

2.3. MPA Decomposition
The process for MPA decomposition described below is
represented visually in Figure 2.

2.3.1. GWAS Profile Matrix Construction
The GWAS profile matrix is the input to MPA decomposition
(Figure 2). The GWAS profile matrix M was constructed in
which each row represented a SNP that resides within a gene
region, each column represented a phenotype and each entryMij

was defined as:

Mij =

{

1 if SNP i is associated with phenotype j

0 otherwise
(1)

Each row of the matrix M represents the GWAS profile of a
particular SNP. SNPs weremapped to their respective genes using
the P. trichocarpa version 3 genome annotation (Tuskan et al.,
2006) available on Phytozome (Goodstein et al., 2012) through
the genome portal of the Department of Energy Joint Genome
Institute (Grigoriev et al., 2012; Nordberg et al., 2014). A gene was
considered to consist of its coding sequences as well as regulatory
elements such as 5′ and 3′ UTRs.

2.3.2. Module Construction
The procedure for the construction of association modules is
shown in Figure 2, steps A through C. The GWAS profiles of
all pairs of SNPs in the GWAS profile matrix M were compared
by calculating the Proportional Similarity Index between all pairs
of rows of M. The Proportional Similarity Index between two
vectors X and Y is defined as (Bloom, 1981):

PS(X,Y) =
2
∑

imin(xi, yi)
∑

i(xi + yi)
(2)

where X and Y are the GWAS profiles of two SNPs (i.e., two rows
of the matrixM), xi is the ith entry in row X and yi is the ith entry
in row Y . This was performed in parallel using a customized Perl
script which made use of the Parallel::MPI::Simple Perl module,
developed by Alex Gough and available on The Comprehensive
Perl Archive Network (CPAN) at www.cpan.org. This all-vs-all
comparison results in a complete, unpruned SNP association
network in which nodes represent SNPs and edges represent the
similarity between the phenotype associations of SNPs.
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We extracted association modules from the SNP association
network as follows: First we identify SNPs that reside within
genes with multiple phenotype associations (MPA genes). We
extracted SNPs within MPA genes and the edges between these
SNPs, and then pruned the network to only include edges
between SNPs which have identical phenotype associations.
This was achieved by applying a Proportional Similarity
threshold of 1 (Supplementary Texts S1, S2). Nodes of the
resulting subnetwork were then clustered into groups using MCL
(Van Dongen, 2000, 2008) available from http://micans.org/mcl/.
Each resulting cluster represents a group of SNPs with the same
phenotype associations, i.e., a group of SNPs driven together by
a particular set of phenotypes, or, an element of the powerset of
phenotypes. These modules of phenotypes form the axes of the
powerset space.

2.3.3. Module-Phenotype (MP) Matrix Construction
The MP matrix was constructed by mapping modules to
phenotypes which drive the association between SNPs within
the module (Figure 2D). Thus, the MP matrix was constructed
such that each entry ij was defined as 1 if phenotype j had a
significant GWAS association with all SNPs in module i. This
could alternatively be seen as creating a network by connecting
phenotype nodes to module nodes if that phenotype has a GWAS
association with all SNPs in that module.

2.3.4. Gene-Module (GM) Matrix Construction
The GM matrix was constructed by mapping modules to genes
which contained SNPs within that module (Figure 2E). Thus, the
GM matrix was constructed such that each entry ij was defined
as 1 if module j contained a SNP that resides within gene i, and
zero otherwise. This can also be seen as constructing a network
by connecting gene nodes to module nodes which contain SNPs
that reside within that gene region.

2.3.5. Signature Clustering
Signature clustering (Figure 2F) was performed by calculating
the similarity between all pairs of rows (genes) of the GM matrix
using the proportional similarity metric, applying a threshold
of 1, and clustering the resulting similarity network using MCL
(Van Dongen, 2000, 2008).

2.4. Annotation and Functional Enrichment
P. trichocarpa gene boundaries as defined in the
Ptrichocarpa_210_v3.0.gene.gff3 annotation file obtained
from version 3 genome annotation (Tuskan et al., 2006) available
on Phytozome was used. Functional annotations of P. trichocarpa
genes were obtained from version 3 genome annotation (Tuskan
et al., 2006) available on phytozome (Goodstein et al., 2012)
through the genome portal of the Department of Energy Joint
Genome Institute (Grigoriev et al., 2012; Nordberg et al., 2014).

Mapman annotations of P. trichocarpa were obtained by
splitting the protein translations of P. trichocarpa genes into
three sets and using the Meractor tool (Lohse et al., 2014) to
assign Mapman terms to each gene. The BINGO Cytoscape
plugin Maere et al. (2005) was used to determine enriched Gene
Ontology (GO) terms in the set of type 1 and type 2 MPA genes.

2.5. Co-expression Network
A P. trichocarpa gene co-expression network was constructed
as described in Weighill et al. (2018) making use of the P.
trichocarpa (Nisqually-1) RNA-seq data derived from JGI Plant
Gene Atlas project (Sreedasyam et al., unpublished), consisting of
samples for various tissues (leaf, stem, root and bud tissue) and
libraries generated from nitrogen source study. A list of sample
descriptions was accessed from Phytozome at https://phytozome.
jgi.doe.gov/phytomine/aspect.do?name=Expression.

3. RESULTS AND DISCUSSION

3.1. MPA Decomposition: Construction of a
New Space
MPA decomposition is a multi-step process which involves the
construction of a new space, allowing for the multi-phenotype
signatures of genes to be easily interpreted and clustered. This
method makes use of bipartite networks as data structures.
Bipartite networks represent connections (edges) between two
classes of objects (nodes). The results of a standard GWAS
analysis were represented as a bipartite SNP-phenotype network,
connecting SNP nodes to phenotype nodes between which there
were significant associations. While most SNPs had only a
single phenotype association, there were several SNPs which
had significant associations with multiple metabolite phenotypes
(Figure 3A). Mapping SNPs from the GWAS associations to
the genes in which they reside resulted in gene-phenotype
associations, which can be represented as multiple different
data structures. Firstly, genes can be represented as points in
multi-dimensional phenotype space, indicating their respective
phenotype associations (Figure 4). The closer genes are to
each other in phenotype space, the more shared phenotype
associations they have. Alternatively, these associations can be
represented as a gene-phenotype (GP) bipartite network, linking
a gene gi to phenotype pk if gi contained a SNP significantly
associated with pk (Figure 4). Bipartite networks are useful for
the visualization and investigation of points in high dimensional
space, as well as for the representation of complex relationships
between multiple objects. Thus, bipartite networks were used
throughout MPA decomposition as the mathematical foundation
as well as a visualization tool.

GWAS associations represented as a bipartite network of
SNPs connected to their associated phenotypes (Figure 5A)
do not give any indication of MPA signatures as there is no
obvious information about which SNPs belong to which genes.
Thus, bipartite SNP-phenotype networks give no indication
of how many phenotype associations a given gene has.
GWAS associations represented as a bipartite network of genes
connected to their associated phenotypes (Figure 5B) can give
an indication as to whether or not a gene has multiple phenotype
associations in that it is associated withmore than one phenotype,
but cannot give any indication as to the type of MPA signature
(type 1 or type 2) exhibited by the gene. Mapping the SNPs
in the SNP-phenotype network to the genes in which they are
present results in a gene-SNP-phenotype network (Figure 5C).
From this network, it is possible to deduce the type of MPA
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FIGURE 3 | Distributions. (A) Degree distribution of SNP nodes in the SNP-phenotype GWAS bipartite network. (B) Distribution of the Proportional Similarity edge

weights in the SNP association network.

signature exhibited by a gene through some amount of visual
inspection, for example, looking at the SNPs within a gene and
what their associated phenotypes are. However, the structure of
this network does not allow the MPA signature of a gene to be
readily extracted using simple node properties such as degree. For
example, one cannot simply calculate the connectivity (degree)
of each gene node in Figure 5C in order to determine the type
of MPA signature exhibited, since one can have multiple SNPs
within the same gene associating with the same set of phenotypes.
In addition, it is not easy to determine which genes exhibit the
sameMPA signatures. The process of MPA decomposition allows
one to maintain the topology of SNP associations within a gene
while still being able to determine the type of MPA signature
using simple network measures such as degree.

The first phase of MPA decomposition involved the
construction of module space, a new multi-dimensional space
in which each dimension/axis represented a particular subset
of phenotypes. The powerset of a set is the collection of all
possible subsets of that set. Thus, we can refer to the module
space as “powerset space,” as each axis of the space is defined
by a particular subset of phenotypes which are observed as
co-associating phenotypes in the GWAS results. Modules of
SNPs with the same co-associating phenotypes were identified
using the Proportional Similarity metric. The distribution of
Proportional Similarity values can be seen in Figure 3B. Of the
pairs of SNPs which have non-zero Proportional Similarity values
(i.e., those pairs of SNPs which shared at least one phenotype
association), many had a proportional similarity value of 1.
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This is explained by the degree distributions of the SNPs in
the original SNP-phenotype GWAS network (Figure 3A). The
degree distribution of a network indicates the probability (or,
in this case, frequency) at which a node can be found to have

FIGURE 4 | Representation of matrices as spaces and bipartite networks.

Matrices of GWAS results can easily be represented as points in high

dimensional space, with rows representing points and columns representing

variables/axes. Equivalently, matrices can be represented as bipartite

networks, connecting row objects (genes) with column variables if the

corresponding entry is non-zero. This provides a useful way to visualize high

dimensional spaces as bipartite networks.

a certain number of edges connected to it (Barabási and Oltvai,
2004). Therefore, the distribution in Figure 3A indicates that,
of the SNPs which had significant phenotype associations, most
of them had precisely one phenotype association. This could
skew the Proportional Similarity distribution since any pairs
of these “1-phenotype-hit” SNPs which are associated with the
same phenotype will have a Proportional Similarity index of
1. However, it is important to keep in mind that these “1-
phenotype-hit” SNPs can still contribute to MPA signatures
within genes, as two “1-phenotype-hit” SNPs within the same
gene that have different associations is precisely what we define
as Type 2 MPA signatures.

The modules form the building blocks of MPA signatures,
and also conveniently collapse SNPs that are close together in
genes and associate with the same set of phenotypes, and thus
likely in LD. While representing non-overlapping sets of SNPs,
these modules also represented overlapping sets of phenotypes.
In particular, each module represented the set of phenotypes
which were associated with all SNPs within the module. Thus,
each module also represented an element of the powerset
of phenotypes P(P) observed in the SNP-phenotype GWAS
associations. These observed elements of the powerset were
used to construct the powerset space, with each element/module
representing a different dimension of this space.

These modules allowed for the construction of the gene-
module (GM) and the module-phenotype (MP) matrices, which
are referred to as the decomposition matrices. Represented as
bipartite networks, the MP bipartite network defined the axes
of powerset space, and the GM bipartite network mapped the
genes into powerset space. While phenotype space provided
information as to the individual phenotype associations of
genes, powerset space indicated a gene’s associations with sets
of phenotypes at the SNP level, providing a detailed MPA
signature. The mapping from phenotype space to powerset
space results in a decomposition relationship between the GP,
GM and MP matrices (Figure 6, Supplementary Texts S3–S5,
Supplementary Figure 1). In the GP network (Figure 7), nodes

FIGURE 5 | Example of SNP-phenotype, gene-phenotype networks and gene-SNP-phenotype networks. (A) SNP-phenotype bipartite networks simply connect

SNPs to phenotypes with which they have a significant association, and do not provide information regarding MPA signatures within genes. (B) Gene-phenotype

networks contain connections between genes and phenotypes. An edge will be drawn between a gene and a phenotype if that gene contains a SNP associated with

that phenotype. Gene-phenotype networks do not provide information as to which type of MPA signature is exhibited. (C) Gene-SNP-phenotype networks are

SNP-phenotype networks with the SNPs connected to genes in which they reside. These networks are more complicated, and MPA signatures can be deduced from

their structure through further analysis, however, the network is not in a form in which MPA signatures can be extracted easily using standard network topology

measures such as degree.
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represented either genes or phenotypes, and an edge was defined
between gene Gi and phenotype Pj if gene Gi contained a SNP
which was statistically associated with phenotype Pj in the GWAS

FIGURE 6 | MPA decomposition. The gene-phenotype matrix is decomposed

into two matrices, a gene-module (GM) matrix and a module-phenotype (MP)

matrix (Supplementary Texts S3, S4, Supplementary Figure 1). The GM

matrix represents genes in powerset space. Association modules (elements of

the powerset of phenotypes) form the basic units of MPAs and are considered

latent variables. Signature clustering is performed on genes in module space

(GM matrix).

analysis. Nodes in the GM network (Figure 8) represented either
genes or modules, and an edge was defined between gene Gi

and module Mj if Mj contained a SNP that resided within gene
Gi. Nodes in the MP network (Figure 9) represented either
association modules or phenotypes, and an edge was defined
between module Mi and phenotype Pj if the correlation of SNPs
withinMi is driven by phenotype Pj.

3.2. Powerset Space Unravels
Multi-Phenotype Association Signatures
The GP network (Figure 7) represents genes in phenotype space,
and provides information regarding which genes are associated
with which phenotypes, and can thus indicate which genes have
multiple phenotype associations and are potentially pleiotropic.
Of the 41,335 genes in P. trichocarpa, 2,964 genes had GWAS
hits with more than 1 metabolite phenotype each, and are thus
considered MPA genes with respect to the metabolic phenotypes.

The GM network (Figure 8) represents genes in powerset
space, which in turn is defined by theMP network (Figure 9). The
GM network unravels the MPA signatures of genes, representing
their associations with sets of phenotypes. Genes that are
connected to onemodule exhibit a Type 1MPA signature because
they contain SNPs which are associating with the same set of
phenotypes, whereas genes connected to more than one module
exhibit a Type 2MPA signature because they contain SNPs which
associate with different sets of phenotypes. Mapping of genes to
module space thus reveals the Type 1 and Type 2 MPA patterns,

FIGURE 7 | Gene-phenotype (GP) network. (A) The GP network. Green nodes represent MPA genes, pink diamonds represent metabolites (phenotypes). An edge

connects a gene to a phenotype if that gene contains a SNP associated with that phenotype. (B) Degree distribution of the gene (green) nodes in the GP network. (C)

Degree distribution of the phenotype (pink) nodes in the GP network.
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FIGURE 8 | Gene-module (GM) network. (A) The GM network. Green nodes represent MPA genes and yellow nodes represent association modules. A gene node is

connected to a module node if the module contains a SNP which resides within that gene. (B) Degree distribution of the module (yellow) nodes in the GM network. (C)

Degree distribution of the gene (green) nodes in the GM network.

as well as complex combinations of Type 1/Type 2 patterns
that exist within genes (Figure 10). Phenotype associations of
genes cannot be distinguished as Type 1 or Type 2 in phenotype
space, whereas module space clearly indicates the MPA signature
exhibited by a gene (Figure 10). Module space also goes beyond
classifying genes as exhibiting Type 1 or Type 2 MPA signatures,
but characterizes each unique topology of variant-phenotype
associations within a gene separately. Thus, mapping of genes to
module space gives information on the type of MPA signature
exhibited by a gene, as well as the phenotypes involved in the
signature. The high density of SNPs in this population and
the rapid decay of LD allows for the high resolution of MPA
signatures. Supplementary Figure 2A shows the variation in LD
in the region including 5 kb upstream and downstream of
Potri.001G419800, the type 2 MPA gene in Figure 10F. One
can see that both associating variants in this gene are in a
region of low LD. Supplementary Figure 2B shows a pairwise
LD heatmap of 100 variants in this region including the two
associating variants in Potri.001G419800. One can see that these
two associating variants exist within two separate LD blocks.

The beta value derived from each SNP-phenotype association
gives an indication of the effect that the SNP has on the value
of the phenotype. One can look at the beta values from the
GWAS analysis to see if the minor allele of a given SNP has
statistically a positive or negative affect on the phenotype value.

This will inform the researcher of the potential functional affect
of each SNP. Overall, positive and negative beta values are present
in associations in the set of type 1 MPA genes, type 2 MPA
genes and single phenotype association (SPA) genes, although
negative beta values are far more prevalent across all categories
(Supplementary Figure 3) indicating that most minor alleles
have negative effects on the phenotype (metabolite) values.

Of the 10,566 genes that had at least one phenotype
hit, 2,964 exhibited a MPA signature by associating with
more than one phenotype (Supplementary Figure 4A).
Of those MPA genes, type 2 MPA signatures were far
more abundant, with 2,468 genes exhibiting a type 2 MPA
signature and 496 genes exhibiting a type 1 MPA signature
(Supplementary Table 1, Supplementary Figure 4B). MPA
genes represented a broad range of functions (Figure 11).
No functional enrichment was found in the set of type
1 MPA genes. However, various GO terms were found
to be enriched in the set of type 2 MPA genes, including
developmental functions such as root development, shoot
development, leaf development, fruit development, symbiosis,
encompassing mutualism through parasitism, various regulatory
functions such as RNA gene silencing function and response
to stress and DNA repair (see Supplementary Figures 5–7,
Supplementary Table 2, Supplementary File 1 for complete
enrichment results).
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FIGURE 9 | Module-phenotype (MP) network. (A) The MP network. Yellow nodes represent association modules and pink nodes represent phenotypes. A module

node is connected to a phenotype node if the phenotype is associated with all SNPs within the module and is thus considered a driving phenotype of the module. (B)

Degree distribution of the phenotype (pink) nodes in the MP network. (C) Degree distribution of the module (yellow) nodes in the MP network.

Chaperones are classic examples of pleiotropic genes, assisting
in the folding of various proteins. (Sung and Guy, 2003; Sangster
et al., 2004; Gong and Golic, 2006). Querying the MPA networks
for potential pleiotropic chaperones, we uncovered 14 potential
chaperones based on there best Arabidopsis hit annotation, that
contain MPA signatures (Supplementary Table 3), 12 of which
contain type 2 MPA signatures. It is encouraging to see these
classic pleiotropic genes appearing in the MPA networks, and
interesting that they mostly exhibit type 2 MPA signatures.

3.3. Signature Clustering in Powerset
Space
Clustering of genes in phenotype space produces groups of
genes with the same overall set of phenotype associations.
However, it does not provide any information as to the
topology of Type 1/Type 2 associations of SNPs within the
gene. Powerset space is defined by sets of phenotypes, and
thus, clustering genes in this space groups genes based on the
topology of Type 1/Type 2 associations of SNPs within the
gene. After mapping genes to the newly constructed powerset
space, genes were clustered (Figure 2F, Methods and Materials)
resulting in groups of genes containing the same MPA signature.
Members of a given cluster represented genes harboring
identical MPA signatures. This means that genes within the
same signature cluster have associations with the same modules.
For example, the signature cluster driven by two modules, one

involving associations with cis-3-O-caffeoyl-quinate and the
other involving associations with gentisic acid-2-O-glucoside
contains two genes, Potri.016G125500.v3.0 (homolog of
Arabidopsis thaliana TRICHOME BIREFRINGENCE-LIKE 34)
and Potri.012G132600.v3.0 (homolog of Arabidopsis thaliana
AGAMOUS-like 6). These genes have associations with both
cis-3-O-caffeoyl-quinate and gentisic acid-2-O-glucoside,
however a given SNP within these genes is associated with either
caffeoyl-quinate or gentisic acid-2-O-glucoside, but not both
(Figure 12). This exemplifies what MPA decomposition and
signature clustering accomplishes—the extraction of detailed
multi-phenotype association signatures within genes, and the
grouping of genes based on these detailed MPA signatures.

MPA signature clusters varied in size and complexity,

ranging from large sets of genes having simple MPA signatures

(Supplementary Figures 8A,B; Supplementary Table 4) to

single gene clusters harboring very complex MPA signatures

(Supplementary Figures 8C,D). An inverse relationship

existed between the cluster size, and the number of associated

phenotypes, with a minimum gene cluster size of one and a
maximum gene cluster size of 42 (Figure 13). Complex MPA
signatures are possible in this population partly because of the
rapid rate with which Linkage Disequilibrium (LD) decays,
dropping below 0.2 within 100 bp (Supplementary Figure 9).

These signature clusters are easily combined with
other data types in a “lines of evidence” fashion, as introduced

Frontiers in Genetics | www.frontiersin.org 10 May 2019 | Volume 10 | Article 417

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Weighill et al. MPA Decomposition

FIGURE 10 | Signature decomposition example. Two genes, Potri.013G092400 (A) and Potri.001G419800 (B) have the same surrounding network topology in the

GP network in that they are both connected to two phenotypes. Projecting the genes into powerset space through MPA decomposition of the GP network indicates

that they exhibit different MPA signatures in that Potri.013G092400 exhibits a type 1 MPA signature (C), containing a SNP associating with two phenotypes (E) and

Potri.001G419800 exhibits a type 2 MPA signature. (D) containing two SNPs, each with a different phenotype association (F).

in Weighill et al. (2018). Signature clusters such as those in
Figure 12 can be merged with their neighbors in a co-expression
network, providing additional insights into the functioning of
these genes. Potri.016G125500 (TBL34) and Potri.012G132600
(AGL6) appeared in the same signature cluster, and are
associated with many cell-wall related genes/phenotypes. TBL34
and AGL6 both associated with gentisic acid-2-O-glucoside and
cis-3-O-caffeoyl-quinate, and both co-expressed with the same
two transcription factors (Figure 14). An interesting regulatory
circuit is potentially revealed, in that AGL6 potentially activates
two transcription factors (positive co-expression edges) which,
in turn potentially repress TBL34 (negative co-expression edges).
TBL34 is also positively co-expressed with 12 genes involved
in cell wall and lignin biosynthesis functions (Figure 14). TBL
genes are known to o-acetylate xylose (Gille et al., 2011), a
function which has been found to be essential for resistance
to certain pathogens (Gao et al., 2017). Gentisic acid and its
conjugate is a pathogen-induced signaling molecule (Bellés
et al., 1999) which itself has been found to induce pathogen
resistance in plants (Campos et al., 2014) and induce expression
of pathogenesis-related proteins (Bellés et al., 1999). Various
AGL genes are also cell-wall related in that they impact lignin
content (Ferrándiz et al., 2000; Giménez et al., 2010; Cosio et al.,
2017). This could be a regulatory circuit of biotic-stress-related
cell wall remodeling, in which AGL6 potentially regulates xylose
o-acetylation via TBL34.

3.4. Extensions to Pleiotropy
Several definitions of pleiotropy involve a gene associating with
multiple, apparently disparate, unrelated phenotypes (see for
example Stearns, 2010), and not all MPAs can be interpreted
as pleiotropic signatures. However, if the two phenotypes are
disparate enough, one can begin to hypothesize about potential
pleiotropic functioning of the gene in question. In this particular
study, we demonstrated our method on a collection of molecular
phenotypes of metabolite concentrations. If two metabolites in
a MPA exist within separate pathways, one could consider it a
potentially pleiotropic interaction.

A particular example of this phenomenon found in
our analysis is Potri.002G178400. This gene has a type
2 MPA association with shikimic acid and raffinose
(Supplementary Figure 10). Based on existing knowledge
found in PlantCyc on the Plant Metabolic Network
(PMN) online resource (Schlapfer et al., 2017), these two
metabolites are found in different pathways. Shikimic
acid is involved in reactions in pathways “chlorogenic
acid biosynthesis I,” “chlorogenic acid biosynthesis II,”
“phaselate biosynthesis,” “phenylpropanoid biosynthesis,”
“simple coumarins biosynthesis,” and “chorismate biosynthesis
from 3-dehydroquinate” whereas raffinose is involved in
reactions in pathways “lychnose and isolychnose biosynthesis,”
“stellariose and mediose biosynthesis,” “ajugose biosynthesis
II (galactinol-independent),” “stachyose degradation,” and
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FIGURE 11 | Functional annotations. Number of genes annotated with different high-level MapMan categories for (A) non-MPA genes, (B) all MPA genes, (C) type 1

MPA genes, and (D) type 2 MPA genes.

“stachyose biosynthesis.” Supplementary File 2 contains a high
resolution PDF showing the positions of raffinose (red boxes) and
shikimic acid (blue box) in the P. trichocarpa Cellular Overview
metabolic map generated on the Plant Metabolic Network
online resource. Potri.002G178400 contains two Pfam domains,

namely pfam01565 (FAD binding domain) and pfam04030 (D-
arabinono-1,4-lactone oxidase). This is an interesting example
of a potentially pleiotropic gene, which affects two different
metabolic phenotypes. A possible explanation for the mechanism
of this pleiotropic interaction is through competition for carbon,
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FIGURE 12 | Type 2 signature cluster. (A) Signature cluster defined by a Type

2 association with gentisic acid-2-O-glucoside and cis-3-O-caffeoyl-quinate.

(B) Associating SNP positions within genes in this signature cluster. These

SNP associations have negative effect sizes (beta values) on the phenotype

values. See Table 1 for gene information.

TABLE 1 | IDs, Arabidopsis thaliana best hits and corresponding descriptions of

genes in the gentisic acid/cis-3-caffeoyl-quinate signature cluster (Figure 12).

Gene ID A. thaliana best hit Description

Potri.012G132600 AT2G45650 AGAMOUS-like 6

Potri.016G125500 AT2G38320 TRICHOME BIREFRINGENCE-LIKE 34

with shikimic acid committing carbon to secondary metabolism
and raffinose being the product of storage for primary carbon
metabolism.

It is however important to note that pleiotropic signatures
can be difficult to disentangle true pleiotropic associations from
other multi-phenotype associations, and should be addressed
carefully. Multi-phenotype associations can be interpreted as true
pleiotropy, but could also be various forms of spurious pleiotropy
(see Solovieff et al., 2013 for a useful review).

3.5. Future Prospects and Implications
P. trichocarpa was an ideal species for the demonstration of
the MPA decomposition for several reasons. Firstly, a large
collection of 1,100 P. trichocarpa accessions have been clonally
propagated in common gardens, resequenced and genotyped,
(Tuskan et al., 2006; Slavov et al., 2012; Evans et al., 2014)
providing a dense set of ∼28 million variants which are
publicly available (DOI 10.13139/OLCF/1411410). Secondly,
linkage disequilibrium (LD) decays very rapidly within this
population of P. trichocarpa (Supplementary Figure 9). This,
in combination with the dense SNP genotyping, allowed for
very fine-scale MPA signatures to be resolved. Thirdly, many

FIGURE 13 | Signature clusters in powerset space. (A) Cluster size

distribution for signature clusters containing ≥ 2 genes. (B) Heatmap showing

cluster size (green), average number of modules associated with genes of a

given cluster size (yellow) and average number of phenotypes associated with

genes in clusters of a given size (pink).

other different ’omics datasets exist for P. trichocarpa including
genome scale methylation data across 10 different tissues (Vining
et al., 2012) as well as a gene expression atlas are available
on Phytozome (Goodstein et al., 2012). This provides extra
data layers which can be integrated with the MPA networks
in order to provide further interpretation and context to the
GWAS associations seen in the MPA signatures, in a Lines
of Evidence approach (Weighill et al., 2018). Lastly, Poplar is
an important bioenergy crop (Sannigrahi et al., 2010) and is
the target of extensive research. Thus, this method should be
highly valuable to researchers aiming to attempt to genetically
modify P. trichocarpa in order to impact phenotypes important
to bioenergy.
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FIGURE 14 | Co-expression lines of evidence. Co-expression relationships of the signature cluster consisting of TBL34 and AGL6 from Figure 12.

The ease with which these MPA networks can be integrated
with other network layers such as co-expression, co-methylation
and SNP co-evolution networks provides a powerful strategy
for furthering understanding and knowledge about the
components of the system, which could aid in the annotation of
genes/metabolites of previously unknown function.

Other previously published methods are able to provide
information on multi-phenotype associations. The MARV
(Multi-phenotype Analysis of Rare Variants) method (Kaakinen
et al., 2017a) is a rare variant test that associate a gene with
single or multiple phenotypes, with rare variants collapsed,
so the result is gene-to-phenotype or gene-to-multi-phenotype
association. This is a very valuable method to determine the
potential multi-phenotype associations of a gene harboring rare
variants. This method however results in a score for each
gene indicating its association with a set of phenotypes, and
SNP-phenotype associations within the gene are not reported.
Cichonska et al. (2016) present a method of performing SNP-to-
multi-phenotype and multi-SNP-multi-phenotype associations.
Another method by Mägi et al. (2017) associates SNPs with
multiple phenotypes through a “reverse regression” approach,
using phenotypes as the predictors in the model. Both of these
methods can provide a unified measure of a given variant’s
association with multiple phenotypes, and thus could prove to be
a valuable alternative to standard univariate GWAS approaches
and potentially provide an alternative, useful input set of SNP-
multi-phenotype input associations to be characterized and
clustered using MPA decomposition.

MPA decomposition produces signature clusters from GWAS
results which can easily be merged with other data types for
further interpretation. It is intended that this method will be

a valuable tool in the planning of future genetic modification
experiments. The resolution of the MPA signatures revealed by
this method provides a useful tool to use alongside new CRISPR-
based gene editing technologies to achieve high precision genome
editing. This method thus provides an informed strategy for
increasing the precision of future synthetic biology efforts.
Researchers aiming to modify a specific gene in order to impact
a particular phenotype can select genes from the signature
cluster best suited to the functions they want to modify. The
module decomposition also provides information as to which
variants/parts of genes are associating with one phenotype or
more than one phenotype, and thus can inform the researcher
whether the modification of a particular location within a gene
will affect more than one phenotype.

MPA decomposition will also be particularly useful in the
processing and interpretation of large GWAS datasets such
as eQTN studies, involving associations between millions of
variants and tens of thousands of phenotypes. Future application
of this method to the expanding pool of phenotypic data available
will allow for the generation of comprehensive signature clusters
representing the global pleiotropic potential of a given organism,
and inform the planning and precision of future synthetic biology
efforts to impact a wide variety and scale of phenotypes. As such,
this approach should have broad impacts by developing high
resolution models of MPA/pleiotropy prediction that will form
the foundation of future bioengineering design efforts.
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