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Introduction: Patients with glioblastoma (GBM), one of the most aggressive forms of
primary brain tumors, exhibit a wide range of neurologic signs, ranging from headaches
to neurologic deficits and cognitive impairment, at first clinical presentation. While such
variability is attributed to inter-individual differences in increased intracranial pressure,
tumor infiltration, and vascular compromise, a direct association with disease stage,
tumor size and location, edema, and necrotic cell death has yet to be established. The
lack of specificity of neurologic symptoms often confounds the diagnosis of GBM. It also
limits clinicians’ ability to elect treatment regimens that not only prolong survival but also
promote symptom management and high quality of life.

Methods: To decipher the heterogeneous presentation of neurologic symptoms in
GBM, we investigated differences in the molecular makeup of tumors from patients with
and without preoperative neurologic deficits. We used the vy GAP (lvy Glioblastoma
Atlas Project) database to integrate RNA sequencing data from histologically defined
GBM tumor compartments and neurologic examination records for 41 patients.
We investigated the association of neurologic deficits with various tumor and patient
attributes. We then performed differential gene expression and co-expression network
analysis to identify a transcriptional signature specific to neurologic deficits in GBM.
Using functional enrichment analysis, we finally provided a comprehensive and detailed
characterization of involved pathways and gene interactions.

Results: An exploratory investigation of the association of tumor and patient variables
with the early development of neurologic deficits in GBM revealed a lack of robust
and consistent clinicopathologic prognostic factors. We detected significant differences
in the expression of 728 genes (FDR-adjusted p-value < 0.05 and relative fold-
change > 1.5), unique to the cellular tumor (CT) anatomical compartment, between
neurologic deficit groups. Upregulated differentially expressed genes in CT were
enriched for mesenchymal subtype-predictive genes. Applying a systems approach,
we then identified co-expressed gene sets that correlated with neurological deficit
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manifestation (FDR-adjusted p-value < 0.1). Collectively, these findings uncovered
significantly enriched immune activation, oxidative stress response, and cytokine-
mediated proinflammatory processes.

Conclusion: Our study posits that inflammatory processes, as well as a mesenchymal
tumor subtype, are implicated in the pathophysiology of preoperative neurologic

deficits in GBM.

Keywords: glioblastoma, cancer, neurologic deficit, inflammation, mesenchymal subtype, RNA sequencing,

interleukin 1

INTRODUCTION

Glioblastoma (GBM), used to refer to Grade-IV astrocytoma,
is the most common, aggressive, and malignant form of primary
brain tumors in adults. GBM patients typically present a
spectrum of generalized or focal neurologic symptoms including
headaches, partial or generalized seizures, unilateral or bilateral
paresis, hemiplegia, ataxia, visual defects, cognitive impairment,
and personality changes (Iacob and Dinca, 2009; Burks et al.,
2016; Georgakis et al., 2018). These symptoms persist throughout
the course of the disease and worsen following surgical resection,
severely limiting day-to-day functions, impacting patients
quality of life, and even influencing survival outcomes (Martinez
et al, 2008; Iacob and Dinca, 2009; Georgakis et al., 2018;
Lee et al., 2018).

While preoperative neurologic symptoms are common
amongst GBM patients, their form of manifestation is highly
variable (Lee et al, 2018). Such variability is believed to
arise from the direct and indirect interplay of tumor and
patient factors (Kushner and Amidei, 2015). Tumor factors-
such as location, size, molecular composition, microvascular
proliferation, vascular permeability, and vasogenic edema-can
impact local brain architecture and disrupt neuronal connections
and functions (Schoenegger et al., 2009; Faivre et al., 2015;
Madhusoodanan et al., 2017). Solid GBM tumors contribute to
the physical compression and distortion of the central nervous
system, while surrounding migrating tumor cells concurrently
exacerbate intracranial pressure upon infiltrating neighboring
tissue and increasing local swelling (Giglio and Gilbert, 2010).
Patient factors-such as gender, lifestyle, pre-existing medical
conditions, and genetic predisposition-can also increase the
likelihood of developing comorbid neurologic symptoms (Walid,
2008). Whether or not the neurologic effect of such patient factors
is separate from or is in concert with cancer remains unclear.
Altogether, this suggests the existence of molecular processes in
GBM tumors that contribute to neurological signs.

In this study, we examined the heterogeneous manifestation
of neurologic symptoms in GBM patients, integrating
transcriptome profiling of GBM tumors with clinical data
to elucidate the underlying molecular machinery. We specifically
focused the analysis on focal neurologic deficits due to their
neuroanatomically localizing nature. Our findings serve as a
baseline for further validation in follow-up studies, with the hope
of ultimately contributing to the design of targeted therapies for
GBM patients at higher risk for neurological complications.

MATERIALS AND METHODS

Clinical Data Collection and Processing
Clinical information for GBM patients (n = 41) and
corresponding tumors (n = 42) was downloaded from the
Ivy Glioblastoma Atlas Project (GAP) Clinical and Genomic
Database' and its partner database® (Puchalski et al., 2018). The
Patient Information tab was used to gather the state of neurologic
deficit (“yes” or “no”). The neurologic deficit measure, which
reflects the manifestation of preoperative and neuroanatomically
localizing focal neurologic deficits, was collected during patient
intake or initial diagnosis prior to surgery. A summary of select
patient and tumor traits, in which we focused on traits previously
associated with GBM patient outcomes (Martinez et al., 2008),
can be found in Table 1 and Supplementary Table 2. Tumor size
was measured in Image] from macroscopic images of resected
tumors with a provided scale bar (Supplementary Figure 1).
Fisher’s exact test was used to evaluate the relationship between
neurologic deficit state and categorical clinical variables. The
Mann-Whitney-Wilcoxon non-parametric test was used to
assess differences in the mean ranks of continuous clinical
variables values between the two neurologic deficit state groups.

RNA-Seq Data Collection and

Processing

RNA sequencing (RNA-seq) data was collected from the Ivy GAP
database that is made publicly accessible by the Allen Institute
(© 2015 Allen Institute for Brain Science. Ivy Glioblastoma Atlas
Project?). RNA-seq data for anatomic structures and putative
cancer stem cells includes samples from the 5 major tumor
anatomic structures—cellular tumor (CT), pseudopalisading cells
around necrosis (PAN), microvascular proliferation (MVP),
leading edge (LE), and infiltrating tumor (IT). For each of
the 5 tumor anatomic compartments, detailed information on
patient ID; corresponding tumor block ID; tumor sample source;
and state of neurologic deficit can be found in Supplementary
Tables 1A-E. Gene-level read counts for each tumor sample
were used for downstream differential gene expression analysis
and weighted gene co-expression network analysis (WGCNA).
Estimated read counts were initially generated using RSEM

'http://ivygap.swedish.org/
Zhttp://glioblastoma.alleninstitute.org/
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TABLE 1 | Select patient and tumor characteristics for analyzed samples.

Patient characteristics

Age (years)

Survival (days) KPS** score at diagnosis  Tumor size (cm?)

Total Count mean (SD) mean (SD) mean (SD) mean (SD)
41 57.8(12.2) 516 (326) 87.8 (11.07) 16.1(11.9)
Gender Male 21 57.43 (14.24) 437.6 (291.0) 90.5 (9.7) 16.5(14.3)
Female 20 58.15 (10.01) 595.3 (349.2) 85 (11.9) 15.7 (9.0)
Neurologic deficit No 23 56.4 (12.05) 516.5 (378.5) 90.4 (9.8) 17.5(13.4)
Yes 18 59.6 (12.5) 516.3 (268) 84.4 (12.0) 14.3(9.7)
Tumor characteristics
Molecular Subtype*  Classical 7 Neural 3
Classical/ Mesenchymal 4 Neural/ Proneural 2
Classical/ Neural 4 Proneural 8
Mesenchymal 5 Unidentified 5
Mesenchymal/ Neural 3
Hemisphere Left 13
Right 27
Both 1
Location Frontal Temporal 14
Parietal 14 Occipital 2
Tumor samples LE (Leading edge) CT (cellular tumor) 34 CTmvp (microvascular 10
proliferation)
IT (Infiltrating tumor) 7 CTpan (pseudopalisading 17

cells around necrosis)

*Molecular subtype was assessed in the vy GAP study using the 840 transcripts from the RNA-seq data provided by Verhaak et al. (2010). **KPS, Karnosky

Performance Status.

(Li and Dewey, 2011). Complete details of the initial RNA-
seq data processing pipeline are presented in the “Overview”
documentation of the Ivy GAP database’.

Differential Gene Expression Analysis

For each tumor anatomic compartment, we applied the DESeq2
(Love et al, 2014) pipeline in R to identify differentially
expressed genes (DEGs) between the two neurologic deficit
groups. With 25,873 genes initially, we first discarded low-
expression genes (mean read count < 1). We then evaluated
the hierarchical structure of the data (multiple samples per
patient, difference tumor sample sources, etc.) and whether it
can contribute to unbalanced random effects in the model. For
each tumor compartment, we demonstrated the independence
between tumor sample source (“Anatomic Structure” or “Cancer
Stem Cell”) and state of neurologic deficit (“Yes” or “No).
We used Fishers exact test (p-value = 1.05 x 10~ for CT;
p-value = 1.00 for PAN; and p-value = 5.04 x 10~! for MVP) to
confirm independence. LE and IT analyses consisted of samples
from anatomic structures only and were therefore independent
of sample source. A summary of the occurrence of tumor
sample sources in each neurologic deficit group is provided
in Supplementary Table 3. We also evaluated the potential
for confounding by correlated samples. Sample clustering using
Euclidean distance highlighted correlated samples that stem
from multiple sampling from within each patient in a group
(Supplementary Figure 2). However, the number of per-patient

samples in each group was comparable (2.79 + 1.12 vs.
335 + 1.60 in CT; 1.83 £ 1.33 vs. 2.36 =+ 1.43 in PAN;
1.67 £ 1.15 vs. 286 £ 090 in MVP; 250 £ 0.71 vs.
220 + 0.84 in LE; and 3.00 £ 0.00 vs. 3.00 & 0.71 in IT)
(Supplementary Table 1). As a result, tumor sample source
and multisampling did not need to be controlled for in the
design formula. We applied shrinkage estimation to perform
stable estimation for the dispersion and fold-change for each
of the 17,375 remaining genes (Love et al., 2014). We finally
extracted significantly differentiated genes within each tumor
region that met a Benjamini-Hochberg FDR-adjusted p-value
cut-off <0.05 and a relative fold-change > 1.5. We used
UpSet (Lex et al., 2014) to visualize the comparison of DEGs
across tumor regions.

Functional Enrichment and Upstream
Analysis

We used Enrichr (Kuleshov et al., 2016) to perform functional
enrichment analysis of DEGs and co-expression gene sets.
Enrichr was run at default settings, with significant gene
ontology (GO) terms and pathways identified using a
combined score (Fisher exact test p-value and z-score
deviation from expected rank) > 10 and a Benjamini-
Hochberg adjusted p-value < 0.1. GO terms were obtained
from “GO Biological Process 2018” and “GO Molecular
Function 2018” whereas pathways were obtained from
“KEGG 2016, “WikiPathways 2016, “Reactome 2016, and
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“BioCarta 2016.” Ingenuity Pathway Analysis (IPA’) was
used to extract potential upstream regulators of target DEGs,
taking into account the directionality and intensity of gene
expression changes.

Enrichment for GBM Molecular

Subtype Genes

We gathered lists of GBM molecular subtype-predictive genes
from 2 sources: (1) The Cancer Genome Atlas (TCGA) transcrip-
tome signature of GBM tumors classified into 4 groups: mesen-
chymal (MES; # genes = 216); proneural (PN; # genes = 178);
neural (NL; # genes = 129); and classical (CL; # genes = 162)
(Verhaak et al., 2010) and (2) TCGA’s subtype gene list filtered
for genes uniquely expressed by glioma cells and corresponding
to 3 groups: mesenchymal (MES; # genes = 5); proneural (PN;
# genes = 50); and classical (CL; # genes = 50) (Wang et al,
2017). We separately evaluated the overlap between our list of
DEGs and each of the 2 GBM molecular subtype gene lists.
We then determined the significance of this overlap using the
hypergeometric test with Benjamini-Hochberg correction for
multiple comparisons.

Co-expression Network Analysis

We used CT read counts from both neurologic deficit groups
to construct the co-expression network. A max raw read
count > 1 filter was applied to discard genes with low expression
levels across most tumor samples. We also discarded non-
varying genes, to mitigate noise in gene expression data, by
only keeping those in the upper 75 percentile. The dataset
was then log-transformed to reduce skewness and used as
input in the WGCNA R package (Langfelder and Horvath,
2008). We used median-based biweight midcorrelation, for its
robustness to outliers, and applied a soft-thresholding power
p = 6 to construct the signed hybrid network. We then used
a dynamic tree cut method to designate gene modules that
meet a minimum size of 30 genes, a minimum merging
height of 0.25, and module membership kME > 0.7. We tested
the association of network modules with select tumor and
patient characteristics using Spearman’s correlation of their
eigengenes (first principal component, which can be viewed
as the average gene expression of a module). Asymptotic
p-values were then adjusted for multiple comparisons and
significant correlations were extracted using a Benjamini-
Hochberg adjusted p-value < 0.1. Co-expression network
construction details can be found in Supplementary Table 7.
GeneMANIA (Warde-Farley et al, 2010) was later used
to visualize DEGs within network modules that correlated
with the state of neurologic deficit. Gene-gene connections
were generated using molecular function gene ontology-
based weighting and were set to represent physical protein
interactions, pathway involvement, and predicted functional
relationships. Functional terms enriched amongst network genes
were identified using an FDR < 0.1.

3QIAGEN Inc,
pathway-analysis/

https://www.qiagenbioinformatics.com/products/ingenuity-

RESULTS

Neurologic Deficit Variation in GBM Was
Not Fully Explained by Differences in

Prognostic Patient and Tumor Variables
Clinical data for our GBM cohort was downloaded from Ivy
GAP (Material and Methods; Table 1). 41 patients, with a
total of 42 tumors, had available neurologic deficit information.
We first investigated the association of neurologic deficits with
various prognostic clinical attributes that have been previously
shown to predict patient outcome in GBM (Figure 1 and
Supplementary Table 1). GBM patients with neurologic deficits
exhibited a higher rate of left-hemispheric tumors (Fisher’s exact
test; p-value = 9.05 x 1072), with the majority being female
(Fisher’s exact test; p-value = 5.36 x 1072). The distribution of
tumor molecular subtypes also varied across patients, with an
overrepresentation of mesenchymal tumors in the neurodeficient
group and classical tumors in the non-neurodeficient group
(Fisher’s exact test; p-value = 2.90 x 1072). On the other hand,
GBM patients with and without neurologic deficits exhibited less
differences in tumor location (Fisher’s exact test; p-value = 5.43 x
107!) and size (Wilcoxon test; p-value = 3.15 x 10~ !). They
also had a relatively similar distribution of ages (Wilcoxon
test; p-value = 2.39 x 10~!) and survival length (Wilcoxon test;
p-value = 5.61 x 1071).

Our association results were limited by statistical power
and therefore could not be used to make inferences and
draw definite conclusions. They did, however, highlight a lack
of well-defined connection between neurologic deficits and
patient / tumor factors.

CT Exhibited the Highest Number of
Differentially Expressed Genes and a
Strong Inflammatory Signature in the

Neurological Deficit Group

We used DESeq?2 to perform differential gene expression analysis
of tumor sample transcriptomes collected from GBM patients
with and without neurological deficits (Material and Methods).
The analysis was done separately for samples taken from each
of the five tumor anatomic blocks: cellular tumor (CT; 106
samples from 34 tumors); leading edge (LE; 16 samples from
7 tumors); infiltrating tumor (IT; 21 samples from 7 tumors);
microvascular proliferation (MVP; 25 samples from 10 tumors);
and pseudopalisading cells around necrosis (PAN; 37 samples
from 17 tumors). This enabled us to mitigate effects due to
inherent intratumor heterogeneity and uncover tumor regions
with the strongest association with neurologic deficit.

Cellular tumor yielded the highest number of DEGs (n = 878),
with 728 that did not overlap with other tumor compartments
(Figure 2A and Supplementary Tables 3A,C). 154 CT DEGs
exhibited over 2-fold relative change in expression levels
(Supplementary Table 3B) and included the following top fold-
change genes: CDK4, MFAP5, CA3, CNTNAP3, and CXCL5
(Figure 2B). We also detected 385, 114, and 93 tumor
compartment-specific DEGs in PAN, IT, and LE, respectively,
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FIGURE 1 | Differences in tumor and patient phenotypic features across glioblastoma (GBM) patients with and without preoperative neurologic deficits.
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FIGURE 2 | Differential gene expression results for neurodeficiency. (A) UpSet diagram showing the intersection size of differentially expressed genes (DEGs; with an
FDR-adjusted p-value <= 0.05 and [fold change| >= 1.5 cutoff) across tumor anatomic blocks. (B) Volcano plot displaying DEGs in the Cellular Tumor (CT) tumor
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enriched gene ontology terms and pathways for downregulated tumor anatomic block DEGs, generating using Enrichr. Bar plots indicate statistical significances
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as well as 94 DEGs that recurred in both CT and PAN
(Supplementary Tables 3D-G). We noted the lowest number
of compartment-specific DEGs in MVP (n = 7) and an overall
minimal degree of overlap in DEGs between the distinct tumor
anatomic blocks.

Using Enrichr (Material and Methods), we then functionally
categorized gene-level findings from tumor anatomic blocks
that harbored the majority of identified DEGs: CT; PAN;
IT; CT and PAN; and LE (Figures 2C,D). CT-specific DEGs
produced the highest functional enrichment signal, with genes
upregulated in the neurologic deficit group revealing a strong
inflammatory signature and downregulated genes showing cell
cycle-related processes (Supplementary Table 4). To identify
potential upstream pathways leading to differential expression in
CT, we performed upstream regulator analysis using Ingenuity
Pathway Analysis (IPA; Material and Methods). Accounting for
the directionality of changes, we identified several potential
transcriptional regulators associated with CT-specific differential
expression. The full list can be found in Figure 3 and
Supplementary Table 5. Top potential regulator genes include
interleukin-1 receptor agonists IL1A (p-value = 6.54 x 10~%) and
IL1B (p-value = 2.45 x 107%) (Figures 3A,B). An upregulation
of those two genes could theoretically elicit a biological cascade
leading to the gene expression changes we observed in CT DEGs.

CT Genes Upregulated in the Neurologic
Deficit Group Were Overrepresented in
the Mesenchymal Subtype

To further evaluate the relationship between neurologic deficit
state and tumor molecular subtype, we scoped out overlaps
between our list of CT DEGs and GBM subtype-predictive genes.
While Ivy GAP tumor samples were predesignated using TCGA’s
list of subtype-predictive genes (Verhaak et al., 2010), 5 out
of 41 patients had mismatched subtype assignments between
corresponding CT and bulk tumor samples, 13 out of 41 patients
had multiple matching subtypes, and 4 out of 41 patients had no
subtype assignments (Materials and Methods). The incomplete
stratification of GBM patients is attributed to the high degree of
intratumor and microenvironment heterogeneity in GBM, with
a varying collage of tumor, stroma, normal, and immune cell
populations (Bonavia et al., 2011). In addition to TCGA list of
GBM subtype genes, we therefore also included another list that
further filtered for glioma cell-specific genes (Wang et al., 2017)
(Materials and Methods).

We identified a significant overlap between upregulated CT
DEGs and mesenchymal subtype-predictive genes provided by
Verhaak et al. (2010) (n = 23; hypergeometric test; FDR-
adjusted p-value = 4.18 x 107°) and Wang et al. (2017)
(n = 8; hypergeometric test; FDR-adjusted p-value = 1.05 x 107>)
(Figure 4A and Supplementary Table 6A). On the other
hand, we noted a significant overlap between downregulated
CT DEGs and proneural subtype-predictive genes provided by
Verhaak et al. (2010) (n = 31; hypergeometric test; FDR-adjusted
p-value =2.20 x 1072%) and Wang et al. (2017) (hypergeometric
test; n = 13; FDR-adjusted p-value = 3.20 x 107!?) (Figure 4B
and Supplementary Table 6B).

Co-expressed Gene Modules Correlated
With Neurologic Deficit Were Implicated
in Proinflammatory Cytokines and

Oxidative Stress Response

We ran weighted gene co-expression network analysis (WGCNA;
Material and Methods), using CT samples, to evaluate gene-
gene interaction patterns with respect to the variable presentation
of neurologic deficits amongst GBM patients. We identified 19
modules and explored their association with prognostic tumor
and patient characteristics (Figure 5A). We observed significant
positive correlation between modules M13, M15, and M17 and
recorded neurologic deficit state (FDR-adjusted p-value < 0.1;
Figure 5A and Supplementary Table 7).

We then performed functional enrichment analysis using
Enrichr (Material and Methods) to gain mechanistic insights
into the M13, M15, and M17 neurologic deficit modules. M13
and M15 were significantly enriched for inflammatory processes
that include tumor necrosis factor (TNF)-mediated NF-«B
activation, cytokine, and interferon signaling (Figure 5B). M17,
on the other hand, had a less distinctive functional signature,
with only protein C-linked glycosylation as significantly
enriched (Figure 5B).

Thirty-one out of 70 genes in MI13 overlapped with our
previously identified upregulated CT DEGs (Supplementary
Table 7). SOD2 (superoxide dismutase), a CT DEG with
a 1.9 times higher expression in the neurologic deficit
group, exhibited the highest M13 module interconnectivity
(correlation between gene expression level and module eigengene
(kME) = 0.911; Supplementary Table 8A). Using GeneMANIA
(see section “Materials and Methods”), we demonstrated its
significant involvement in oxidative stress response, along
with other CT DEGs: IL6 (interleukin 6); TNFAIP3 (tumor
necrosis factor alpha-induced protein 3); DUSPI (dual specificity
phosphatase 1); and HMOX1 (heme oxygenase 1) (Figure 5C).
We also observed a central functional role for NFKBIA (NF-kB
inhibitor alpha; kME = 0.78; Supplementary Table 8B) in
inflammatory response and CIR (complement Clr; KME = 0.84;
Supplementary Table 8B) in complement activation (Figure 5C).
In M15, we identified 9 upregulated CT DEGs out of 52 module
genes (Supplementary Table 7). A GeneMANIA represen-
tation of the functional connections of those genes revealed
their involvement in innate immune response and cytokine
production regulation (Figure 5C).

DISCUSSION

Neurologic symptoms in GBM, while varying in clinical
manifestation, have a substantial impact on the everyday life of
patients. Scientists continue to struggle in deciphering causal
mechanisms for the preoperative neurological comorbidity in
GBM due to its multifactorial nature, multifaceted clinical
presentation, and incomplete documentation. We selected the
Ivy GAP GBM cohort, with RNA sequencing information from
histologically characterized anatomical tumor compartments and
detailed neurological records, to identify factors potentially
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involved in the pathophysiology of preoperative neurologic
deficits in GBM.

We first investigated clinical data to evaluate the relationship
between GBM prognostic patient and tumor variables and
the manifestation of preoperative neurologic deficits. We did
not observe a tumor size-, location-, or survival length-
specific association with neurologic deficit. A low preoperative
performance and functional status is often perceived to confer
poor prognosis in GBM (Chambless et al., 2015; Smedley et al.,
2018). Its predictability of survival length, however, continues

to be unreliable (Lee et al., 2018). We posit that the missing
association between neurologic deficit and survival length, within
our cohort and across the wider GBM population, is due to
the need to incorporate a combination of multiple clinical
attributes to accurately predict patient outcome. This finding can
also allude to the lack of specificity in manifested neurological
symptoms that can go undetected during the initial visit.
This highlights the importance of establishing a standardized,
objective, and comprehensive neurologic function assessment
tool that can adequately capture the functional state of GBM
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patients upon diagnosis. On the other hand, we noted a higher
prevalence of left-hemispheric tumors, a mesenchymal molecular
subtype, and female gender in the neurodeficient group. To the
best of our knowledge, a clear connection between lesion
lateralization, molecular subtype, patient gender, and cancer-
associated neurologic deficits has not been previously reported.
As a result of the small size of samples investigated in this
analysis, and thus insufficient statistical power, we are unable to
further elaborate on these relationships or generalize our findings
to the wider GBM population. The three relationships were
also weak, with unadjusted p-values ranging from 2.90 x 102
to 9.05 x 1072, It is therefore necessary to further investigate
these findings with a different cohort in order to validate the
relationship between clinical traits and neurologic deficits. While
unable to draw definite conclusions from this analysis, we are able
to illustrate the lack of robust and consistent clinicopathologic
prognostic factors for the early development of neurologic
deficits in GBM.

We next pursued a transcriptome-based investigation in an
attempt to characterize differences in the molecular landscape
of GBM tumors corresponding to patients with and without
neurologic deficits. We identified the CT tumor anatomic region
as harboring the majority of genes significantly differentially

expressed between the two neurologic deficits groups, with
IL1A (interleukin 1 alpha) and IL1B (interleukin 1 beta) as
putative regulators of their expression profile changes. We
also noted an overlap between DEGs in CT and PAN and
little to none between other tumor anatomic regions. Both
CT and PAN comprise neoplastic core tumor cell populations
and therefore often cluster together (Puchalski et al., 2018).
Functional evaluation of upregulated CT DEGs revealed a
strong proinflammatory signal, which was again separately
detected when investigating co-expressed gene sets in CT
that positively correlated with neurologic deficit. We also
demonstrated functional interrelations between upregulated CT
DEGs within those co-expressed gene sets and their overlapping
involvement in oxidative stress, inflammatory response,
and complement activation as well as associated regulatory
mechanisms. Collectively, we speculate that tumor cells in
GBM may elicit immunological activation and proinflammatory
signaling cascades that can contribute to the early development
of neurologic deficits. This process is potentially orchestrated by
IL1, a well-established mediator of innate immune response and
a master regulator of neuroinflammation, through its induction
of several proinflammatory cytokines, including TNFA and IL6,
and reactive oxygen species (Basu et al., 2004).
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The distinct etiology and morphology of GBM tumors
has rendered molecular subtyping a major focus in recent
medical investigations of GBM (Verhaak et al., 2010; Young
et al,, 2015). In our exploratory association analysis, we already
noted a higher percentage of the mesenchymal subtype in
the neurodeficient group. However, given that our results
were marginally significant, we wanted to further explore this
relationship by comparing our list of CT DEGs with established
GBM subtype gene lists. We observed significant enrichment
for mesenchymal predictive genes (Verhaak et al., 2010; Wang
et al, 2017) within our upregulated CT DEGs. This is in
agreement with previous studies, in which mesenchymal tumors
have been characterized by an overexpression of inflammatory
genes (Zanotto-Filho et al., 2017) that are also overrepresented
in our upregulated CT DEGs.

While this study is the first to investigate a molecular
signature for the variable presentation of neurologic deficits
in GBM, our results are limited by experimental design
and thus require confirmation through a follow-up study
to ensure reproducibility. The small patient sample size of
the cohort (n = 41) may lend itself to inherent biases and
higher rates of type II error. We were able to mitigate the
concern of selection bias by selecting a sample that is highly
representative of the entire GBM population. For example,
18/41 (~43.9%) of our GBM patients had neurologic deficits
at first presentation, which matches the 40-60% rate identified
in previous epidemiological studies (Lombardi, 2018). We also
pursued multiple layers of independent yet complementary
analytical approaches to identify a neurologic deficit signature
with a higher level of confidence. Furthermore, the small patient
pool size in CT (n = 34) corresponded to a total of 106
tumor samples. The large tumor sample size lends itself to
an easier rejection of a fold-change-based null hypothesis and
therefore the identification of genes with less relevance to the
biological question at hand. We therefore used both a fold-
change and a stringent FDR-adjusted p-value cutoff of 0.05 to
minimize false positives. A better design for a future study
would have to include a set number of samples per donor
and a larger number of donors overall. This will improve the
study’s statistical power, allowing us to identify, with higher
confidence, molecular, patient, and tumor factors implicated
in GBM-associated neurologic deficits. Last but not least, the
state of neurologic deficits for each patient in the study was
gathered from the clinical summary in the Ivy GAP web portal.
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