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Imputation of high-density genotypes to whole-genome sequences (WGS) is a cost-
effective method to increase the density of available markers within a population.
Imputed genotypes have been successfully used for genomic selection and discovery
of variants associated with traits of interest for the population. To allow for the use
of imputed genotypes for genomic analyses, accuracy of imputation must be high.
Accuracy of imputation is influenced by multiple factors, such as size and composition
of the reference group, and the allele frequency of variants included. Understanding
the use of imputed WGSs prior to the generation of the reference population is
important, as accurate imputation might be more focused, for instance, on common
or on rare variants. The aim of this study was to present and evaluate new methods
to select animals for sequencing relying on a previously genotyped population. The
Genetic Diversity Index method optimizes the number of unique haplotypes in the future
reference population, while the Highly Segregating Haplotype selection method targets
haplotype alleles found throughout the majority of the population of interest. First the
WGSs of a dairy cattle population were simulated. The simulated sequences mimicked
the linkage disequilibrium level and the variants’ frequency distribution observed in
currently available Holstein sequences. Then, reference populations of different sizes,
in which animals were selected using both novel methods proposed here as well as
two other methods presented in previous studies, were created. Finally, accuracies
of imputation obtained with different reference populations were compared against
each other. The novel methods were found to have overall accuracies of imputation
of more than 0.85. Accuracies of imputation of rare variants reached values above
0.50. In conclusion, if imputed sequences are to be used for discovery of novel
associations between variants and traits of interest in the population, animals carrying
novel information should be selected and, consequently, the Genetic Diversity Index
method proposed here may be used. If sequences are to be used to impute the overall
genotyped population, a reference population consisting of common haplotypes carriers
selected using the proposed Highly Segregating Haplotype method is recommended.
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INTRODUCTION

Globally, over 2.6 million cattle have been genotyped to date and
the number of genotyped animals is expected to further grow in
the coming years1. Dairy cattle genotyping is typically performed
using genotype arrays of low or medium densities. Variants on
genotype arrays are not selected randomly, rather they are evenly
distributed over the whole genome and selected for their high
level of segregation across multiple breeds (Boichard et al., 2012).
Such a selection of variants has the advantage of enabling the
application of the same array for multiple breeds, thus simplifying
comparison between breeds. A disadvantage, however, is that
they show an ascertainment bias, and variants with a low minor
allele frequency (MAF) are underrepresented in genotype array
data. The term “rare variants” henceforth refers to variants with
a MAF lower than 0.05. Depending on the number of animals
included and the alleles they carry, each genomic dataset contains
its share of rare variants.

The lack of knowledge about rare variants hinders the
discovery of quantitative trait loci (QTL) that, for example,
appeared recently in a population through mutation (Fritz et al.,
2013). Observed low MAF of variants can also be due to natural
or artificial selection against an allele that has a negative impact
on animal fitness or performance, thus indicating that a rare
variant could be linked to a trait of interest or even a lethal
malformation. An example of a rare variant associated with a
disease can be found in a study by Drögemüller et al. (2009) in
which a variant with a MAF of 0.03 is associated to arachnomelia
(a calf malformation also called spider legs) in Brown Swiss cattle.
Errors during genotyping or sequencing can also lead to wrongly
identified variants with low MAF (Zhang et al., 2016).

Whole-genome sequencing can help provide better insight
about rare variants (Daetwyler et al., 2014) but the costs of
Next-Generation Sequencing technologies are still too high for
mass sequencing of animals (Fraser et al., 2018). Imputation
allows inference of whole-genome sequence (WGS) information
for animals genotyped with various arrays based on complete
WGS information of a reference population. The in silico creation
of WGS from the readily available high number of genotypes
enables a drastic increase in genotypic information for a large
number of animals. High levels of imputation accuracy, however,
are needed to allow use of the predicted genotypes for genomic
evaluation or GWAS as demonstrated by Marchini and Howie
(2010). The imputation from 50K to HD has been widely studied,
and accurate HD genotypes are routinely imputed in dairy
cattle genetic evaluation centers (e.g., Hozé et al., 2013; Ma
et al., 2013; Pausch et al., 2013). Imputation to WGS variants,
however, still needs to be improved. Accuracy of imputation
is influenced by: (a) the size of the reference population;
(b) the imputation method; (c) the relatedness between the
reference and the target population; (d) the genotyping densities
used, the difference in the number of variants and the linkage
disequilibrium between SNP of both low- and high-density
panels; (e) the MAF of the variants considered; and (f) the genetic
diversity of the reference population. A thorough review of the

1https://queries.uscdcb.com/Genotype/cur_ctry.html, last accessed 2018-09-23

factors influencing accuracy of imputation in livestock species
was written by Calus et al. (2014). The selection of animals
to include in reference populations influences many of these
parameters and is thus of high importance. Druet et al. (2014)
stated that as the MAF of variants becomes lower, the method
used to select animals to be included in the reference population
becomes more important.

The international dataset created under the scope of the
1,000 Bull Genomes Project (Daetwyler et al., 2014) is a possible
reference set for imputation of cattle array genotypes to WGS. Up
to Run 5 of this project, most animals sequenced were selected for
their high genetic contribution to the population of their breed
(Goddard and Hayes, 2009). These key ancestors carry most of
the common variants for the populations they were selected from
but lack information on rare variants. Pausch et al. (2017) showed
that overall average imputation accuracy of array genotypes to
the variant list from the 1,000 Bull Genomes Project was greater
than 90%, but that the imputation accuracy of rare variants did
not reach 70%. Low imputation accuracy of rare variants hinders
the discovery of causal variants, not only for highly polygenic
traits, but also for recent mutations that lead to malformations
or loss of fitness (Li et al., 2011). Zhang et al. (2017) showed
that the lack of accuracy in imputation of variants with low
MAF also limits the success of genomic selection, particularly
for health traits. Improved accuracy of WGS imputation will not
only increase the probability of discovering causal variants for
newly recognized diseases or malformations, but will also enable
more precise categorization and selection of variants for routine
genomic selection programs for traditional and novel traits.

Various methods have been proposed to select animals
for sequencing, the first of which relied solely on pedigree
information and targeted influential ancestors of the population
of interest. Boichard et al. (1997) developed a method to
identify animals that have the greatest genetic contribution to
a population based on its pedigree information. This method
was implemented and widely distributed using the software
PEDIG (Boichard, 2002). The key ancestors method, developed
thereafter, relied on the numerator relationship matrix of the
genotyped population of interest and also aimed to maximize the
proportion of genes of the population captured by the selected
animals (Goddard and Hayes, 2009). As the number of genotyped
animals increased, selection methods have been adapted to
consider genomic information. Methods were proposed which
emphasize selection of animals carrying common haplotypes.
Druet et al. (2014) presented a method maximizing the
number of haplotypes selected. The key contributors method
presented by Neuditschko et al. (2017) defines animals as
informative based on the genomic relationship matrix of the
population and aims to select individuals within possible
subpopulations. Another selection method developed by Gonen
et al. (2017) involved the algorithm AlphaSeqOpt that not
only selects individuals that, together, represent the maximum
haplotype diversity of a population, but also suggests different
sequencing coverages in situations where the sequencing costs
are predetermined. An optimized version of AlphaSeqOpt was
proposed by Ros-Freixedes et al. (2017), similarly considering
situations where the sequencing costs were predetermined, but
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additionally targeting haplotypes instead of individuals. This
method was shown to improve the phasing accuracy of the
reference population it formed, even if it still maximizes the
proportion of the total haplotypes included. In contrast to
the previously described methods, which target representative
animals of a population, the Inverse Weighted Selection Method
(Bickhart et al., 2016) was developed to prioritize individuals for
their higher genetic diversity at the haplotype level, classifying
animals based on the rarity of their haplotypes. The Inverse
Selection Methods was shown to allow sequencing of the
maximum number of haplotypes with the fewest number of
animals. In this study, two new selection methods are presented:
the optimized Genetic Diversity Index (GDI), which targets
animals carrying more rare haplotype alleles than the average
individuals and the Selection of Highly Segregating Haplotype
(HSH), which aims at selecting animals whose haplotypes are
highly segregating, but not selected yet. The GDI method aims
to improve the accuracy of imputation of rare variants through
selection of animals that, together, carry the most different
haplotypes, whereas the HSH should help to improve overall
accuracy through selection of animals that carry the highest
segregating haplotypes not previously sequenced.

The objectives of this study were: (1) to describe two
innovative methods to select animals for sequencing from a
population, and (2) to compare these methods to two previously
described selection methods: the key ancestors method and the
Inverse Weighted Selection method.

MATERIALS AND METHODS

Firstly, the WGS and high-density array genotypes of a
dairy cattle population were simulated. Secondly, reference
populations were created by selecting animals based on four
different methods. Thirdly, a set of simulated target animals were
imputed using the different reference populations. Finally, the
imputation accuracies of the different methods were compared
to each other considering sets of variants, defined depending on
their MAF (Figure 1).

Simulation
Population Structure
Large scale WGS data was simulated with the QMsim program
(Sargolzaei and Schenkel, 2009) using three subsequent
populations. First, a historical population was simulated to
create linkage disequilibrium (LD) between the variants. Then,
a second population, termed LongRangeLD, was simulated
to increase long-range LD between variants. Finally, a third
population (CurrentPop) was simulated for downstream
analysis. CurrentPop simulated the latest years of dairy cattle
breeding, in which few selected sires were used heavily in the
breeding population.

The historical population considered an equal number of
individuals from both sexes, discrete generations, random mating
at the gametic level, no selection, and no migration. A total of
800 males and 800 females were simulated for 4,000 generations
to achieve mutation-drift equilibrium. Ten further historical

FIGURE 1 | Structure and number of animals of the simulated populations.

generations were generated expanding the population to 10,100
animals. In the last generation of the historical population, there
were 100 males and 10,000 females.

The founders of LongRangeLD were all animals of the
last generation in the historical population, after which each
generation was composed of 8,000 animals. Through using
different replacement rates, the 20 generations of this population
overlapped. The total LongRangeLD population was composed
of 168,100 animals. Founders of CurrentPop were 100 males
and 4,000 females from the last generation of LongRangeLD
and also 4,000 more females from the second-last generation of
LongRangeLD. The 10 generations of this population had 6,000
animals and overlapped too. Finally, the complete population
for downstream analysis had 66,100 animals, of which 30,168
(±127) were males. Migration was not simulated in any scenario.
Further parameters used for both LongRangeLD and CurrentPop
are presented in Table 1. The complete simulation process
was replicated 10 times and the results reported are averages
of the replicates.

Genome
Gene-dropping simulation was completed using QMSim
(Sargolzaei and Schenkel, 2009). The same genome was
simulated for all populations. Cattle autosomal chromosomes
were simulated with a length that followed the results presented
by Bohmanova et al. (2010) and summed up to a total of 2,496 cM.
Bi-allelic markers and QTL were randomly distributed over all
chromosomes with equal MAF in the first historical generation.
The QTL effects were sampled from a gamma distribution with a
shape parameter of 0.4, following the results obtained by Hayes
and Goddard (2001). The number of crossovers per chromosome
was sampled from a Poisson distribution with mean equal to

Frontiers in Genetics | www.frontiersin.org 3 May 2019 | Volume 10 | Article 510

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00510 May 29, 2019 Time: 19:20 # 4

Butty et al. Selection of Animals for Sequencing

TABLE 1 | Parameters used for the simulation of the populations
LongRangeLD and CurrentPop.

Parameter LongRangeLD CurrentPop

Number of
generations

20 10

Litter size 1.0 1.0

Sire replacement
rate

0.5 0.5

Dam replacement
rate

0.3 0.3

Mating design Positive assortative Positive assortative

on phenotypes on EBV

Selection design On phenotypes On EBV

Culling design Age Low EBV

EBV estimation
method

None BLUP using the true
additive

genetic variance

Number of traits 1.0 1.0

Heritability 0.3 0.3

Phenotypic
variance of trait

1.0 1.0

the chromosome length in centimorgans. The probability of a
second crossover within 25 cM of a first recombination event
was, therefore, lower depending on the proximity of crossovers.
The mutation rate of the markers and the QTL was assumed
to be 10−4. For each replicate, 8,622,767 markers and 4,000
QTL were generated.

Introduction of Genotyping Error and Selection of
Variant Subsets
Selection of markers in the simulated data was performed to
ensure that the MAF distribution followed that observed in the
real data, described below. From all simulated variants, a first
subset representing WGS was selected that contained all QTL.
Then two subsets of the WGS were selected, which simulated
high-density (HD) and medium density (50K) array genotype
variant panels. In contrast to the WGS set, no QTL were allowed
in the HD and 50K variant panels. Minor allele frequencies
considered at this stage were computed considering a random
sample of 30,000 animals from CurrentPop. Those animals
represented 45% of the total population.

Real data comprised 425 Holstein (HOL) and 25 Red-
Holstein animals from Run 5 of the 1,000 Bull Genomes Project
(Daetwyler et al., 2014), 2,946 HOL animals (males and females)
from the Canadian Dairy Network database (as of August 2017),
and 36,157 HOL bulls with a North American identification tag
born after 2010 for the WGS, HD, and 50K panels, respectively.
The real WGS set was filtered for a minor allele count of 1 and
was composed of 31,787,016 bi-allelic variants. Variants with a
MAF lower than 0.1% were filtered out from the HD dataset. The
real HD genotypes contained information for 587,817 bi-allelic
variants. The same filter for variants with a MAF lower than 0.1%
was applied to the 50K panel leading to 44,347 bi-allelic variants.

The number of selected variants per chromosome was
proportional to the number of variants found in the real data.

Variants were distributed by MAF in 50 bins. The sampling of
the variants occurred randomly within the bin-by-chromosome
groups with the function sample() in R, version 3.4.3 (R Core
Team, 2017). The final simulated data was composed of 3,235,171
(±155,117), 571,661 (±6) and 44,288 (±0) variants for WGS, HD,
and 50K, respectively. Genotyping error was introduced in the
WGS based on error rates observed by Baes et al. (2014) using
the HaplotypeCaller function of the Genome Analysis Toolkit
with a multi-sample approach (McKenna et al., 2010; Table 2).
Missing data was also added at this stage. Inclusion of genotyping
errors and missing data in the genotypes was done using snp1101
(Sargolzaei, 2014).

Creation of the Reference Populations and the
Validation Set
Groups of 50, 100, 200, 400, 800, and 1,200 animals were
created from one pool of candidates using four selection
methods. This pool of candidates was composed by all males
of the CurrentPop and contained 30,027 (±108) bulls. As
the 50K chip represents the preferred SNP chip for bull
genotyping, animals were selected on their 50K haplotypes.
The groups of selected bulls were later used as the reference
populations for imputation from HD to WGS genotype density.
Although imputation was done from HD to WGS genotype
densities, selection of animals, when performed based on
genotypes, was run on the 50K array panel to mimic again real
situations, where the majority of the individuals would have
only 50K genotype information. Haplotypes were defined as
non-overlapping segments of 20 contiguous SNP of the 50K
SNP panel throughout the study and had an average length
of 1,082,875 bp (±264,426 bp). The same candidate pool was
available for each method, so the same animal could be selected
by multiple methods.

The selection methods were: (1) the key ancestors method,
which used the additive genetic relationship matrix; (2) a
combination of the newly developed Genetic Diversity Index
and the simulated annealing algorithm (Kirkpatrick et al.,
1983; Černý, 1985); (3) the Inverse Weighted Selection method
(Bickhart et al., 2016); and (4) a second novel method aiming to
select highly segregating haplotypes in the genotyped population
that are not carried by any animal of the population of
interest already sequenced. These methods are described in
more details next. The 5,000 youngest animals (males and

TABLE 2 | Rate of genotyping change as introduced in the simulated
whole-genome sequence genotypes.

Simulated genotypes including

genotyping error and missing values

AA AB BB −/−

Tr
ue

g
en

o
ty

p
es AA 0.639 0.004 0.001 0.356

AB 0.011 0.970 0.000 0.019

BB 0.002 0.004 0.976 0.018

As an example, 1.1% of the simulated AB genotypes were changed to AA
genotypes. Values were retrieved from the study by Baes et al. (2014).
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females) from CurrentPop that were not selected during the
creation of the reference groups composed the target population
of the imputation.

Selection Methods
Selection of key ancestors was the method of choice to select
the first animals sequenced in populations, as a representative
genotyped group of animals from the population of interest
was not needed (Daetwyler et al., 2014). This key ancestor
method (AMAT) was chosen for comparison because of its
frequent use and because it had indirectly a similar aim
than the novel Selection of Highly Segregating Haplotype
(HSH) method proposed here, i.e., selection of carriers of
commonly found variants. Shortly after the first draft of the
optimized Genetic Diversity Index (GDI) proposed here was
designed, the paper of Bickhart et al. (2016) was published
that presented the Inverse Selection Method (IWS). As GDI,
this method aimed at selecting animals that are genetically
more diverse in the pool of candidates. IWS seemed thus
to be fairly comparable to GDI and was chosen to be
included in this study. Other methods of animal selection for
sequencing considered other objectives such as sequencing some
animals at different coverages or combination of genotyping
and sequencing, given a limited budget. In contrast, this
study only considers situations where a given number of
animals to sequence is given. Focusing on methods with
similar aims than the novel methods proposed here seemed
a way to allow for an in-depth analysis of them, as for
example, differentiating accuracies of imputation of variants
with different MAF.

Selection of Key Ancestors
The AMAT method aimed to identify animals explaining
most of the genetic variation of a population following the
equation pn = A−1

n
∗cn where pn was a vector of the

proportion of gene pool captured by the n selected animals,
A−1
n was the inverse of the numerator relationship matrix of

the n selected animals, and cn was a vector of the average
relationships of the n selected animals with the entire population
(Goddard and Hayes, 2009).

Inverse Selection Method
The IWS method developed by Bickhart et al. (2016) prioritized
sequencing of rare haplotypes following the equation

Index =
NHAP∑
i=1

f 2
i − 2fi + 1 where NHAP was the number

of haplotypes and fi was the frequency of haplotype i in the
population. This inverted parabolic function gave a high
index value to individuals carrying haplotype alleles with low
frequencies, as higher frequencies led to higher penalization
(through the term−2fi). The computation of this index was
iterative: (1) select the animal with the highest index; (2)
recalculate the index of the remaining candidates without
considering the haplotypes present in the genotypes of selected
animals; and (3) pick out the next animal with the best new
index. This method was used as it is implemented in the software
program snp1101 (Sargolzaei, 2014).

Optimized Genetic Diversity Index
Relying on a probabilistic optimization algorithm –simulated
annealing (Kirkpatrick et al., 1983; Černý, 1985) – the proposed
GDI method optimized the count of unique haplotypes of a
group of animals composed of all previously sequenced animals
and a defined number of sequencing candidates. The simulated
annealing algorithm was developed to find the global optimum of
a dataset with multiple local optima. The GDI of the whole group
of animals was optimized with the simulated annealing algorithm
permuting one candidate at a time and recalculating the index.
The GDI was computed by summing the count of unique
haplotype alleles present within a group of animals following

the equation Index =
NHAP∑
i=1

unique(HAPi), where NHAP was the

number of haplotype blocks and HAPi were the haplotype
variants in block i. Figure 2 gives an example of the index
calculation based on five animals and four haplotypes. This
method was also used as implemented in the program snp1101
(Sargolzaei, 2014).

Selection of Highly Segregating Haplotypes
To identify animals with the highest contribution to the
population, the novel HSH method based on haplotype diversity
was developed. The method had the following steps: (1) a
haplotype library was created for all selection candidates using
non-imputed genotypes. Haplotypes that appeared in less than
10 animals were discarded to reduce errors in the computation of
their frequencies due to phasing error or haplotypes from other
breeds; (2) contribution of each animal to the haplotype library
based on the haplotypes’ frequency was calculated following

the equation, Index =
NHAP∑
i=1

fi, where NHAP was the number

of haplotypes and fi was the frequency of haplotype i in the
population. The animal with the highest Index value was then
selected and; (3) frequencies of all haplotypes present in the
selected animal were multiplied by a factor of 0.75 to penalize
these already captured haplotypes. The factor for penalization is
decided based on haplotypes frequency distribution in Holstein.
Then the second most influential animal was selected based on
highest contribution from the penalized haplotypes frequencies
of all haplotypes it carries were multiplied again by the same
factor of 0.75. After selecting an influential animal, total
haplotype coverage (i.e., prevalence) was calculated for the new
group of selected candidates. The process was repeated until
the desired number of animals was selected, increasing the
number of unique haplotypes selected with each animal, but
avoiding selection of possible outliers (which carry many low-
frequency haplotypes from another breed), for example from
crossbred individuals as long as any non-outlier animals were
still in the selection pool. Because the most frequent haplotypes
were penalized first, the next animal chosen tended to carry
haplotypes that are less frequent in the library or population.
This method was also used as it is implemented in the software
program snp1101 (Sargolzaei, 2014). The HSH method could
accommodate any situation where some animals were previously
sequenced, as the choice of the next influential animal is a
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FIGURE 2 | The Genetic Diversity Index is the sum of the unique haplotypes found in a group of animals. On this figure, five animals carry in total 18 unique
haplotypes (5 variants of haplotypes A, 4 variants of haplotype B, 6 variants of haplotype C, and 3 variants of haplotype D). Colors highlight the unique haplotype
alleles of each haplotype block.

function of already selected animals. Therefore, although the
selected candidates may be different depending on which initial
list of sequenced animals is used, the overall contribution to the
population haplotypes should change only minimally.

Measures of Diversity in the Reference
Population
The level of genetic diversity was compared between reference
populations. Next to the number of segregating variants as
presented by Pluzhnikov and Donnelly (1996), the proportion
of the total number of unique haplotypes alleles found in the
candidate groups that were also found in the individuals selected
for sequencing were used to compare the level of genetic diversity
of the reference population of each scenario. The proportion of
the rare haplotypes found in differently selected individuals was
computed using the R package GHap (Utsunomiya et al., 2016).
First, all haplotypes found within the candidates were identified.
Second, the frequencies of the haplotypes within the candidates
were computed. Finally, the proportions of haplotypes found in
different groups were calculated. Following the construction of
haplotypes when the animals were selected, haplotypes were built
here again with 20-SNP windows and without overlap.

Principal Component Analysis
Principal components analysis (PCA) is a statistical method that,
when applied to genotypic data, allows detection of its structure
(Ely et al., 2010). PCA was run on 50K genotypes of the candidate
pool to determine the structure of the simulated population. This
analysis was conducted using the implementation presented by
Abraham and Inouye (2014) and available in snp1101 (Sargolzaei,
2014) with the following parameters: a maximum of 50 iterations
were allowed, 40 principal components were computed and only
variants with a MAF equal or higher than 0.01 were considered.

Imputation
Following results presented by Whalen et al. (2018), the
combination of the phasing software Eagle version 2.3.5
(Loh et al., 2016) and the imputation software Minimac3

(Das et al., 2016) – two programs developed for analysis
of human data for which little to no family information is
available – was used without pedigree information on the
differently created reference populations to impute one set
of target animals. Both software programs were used in their
default mode. A linear genetic map of 1 cM per Mb was used
to approximate the average recombination rate at phasing.
From this step onward, all genotypes were reduced to the 10
first simulated chromosomes to reduce computation time and
memory load. Imputed genotype calls only were used, not the
genotype probabilities.

Measure of Imputation Accuracy
Imputation accuracy was computed on multiple sets of variants
for each scenario. Variants were distributed over multiple bins,
depending on the MAF observed in the true genotypes of
the target population of each simulation replicate. Two non-
overlapping subsets containing common (MAF > 0.05) or rare
(MAF = 0.05) variants were created, as well as a set of adjacent
SNP bins. Variants were distributed following their MAF in the
bins with boundaries at 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50. The bins were
created to allow for the higher bound MAF to be included but
not the lower bound. The composition of all bins is represented
in Figure 3.

Imputation was evaluated at a per SNP basis by the squared
correlation between the true and imputed genotypes and
average. This accuracy measure, called allelic R2 by Browning
and Browning (2009), is advantageous, as it is independent
of the MAF of the variants imputed. Correlations between
true and imputed genotypes were checked to ensure that
negative correlations were not present so that no variants were
filtered out at this stage. Accuracies of variants that were
not segregating anymore after imputation were set to zero.
Genotype concordance rates between all variants of the true and
imputed genotypes were also computed on all variants. This
measure represents the proportion of genotypes that are correctly
imputed and allowed for evaluation of the imputation on a
per animal basis.
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FIGURE 3 | Representation of the distribution of the intervals of minor alleles frequencies used for assessing imputation accuracy.

Performance of the Haplotype-Based
Selection Methods With Crossbred
Animals in the Candidate Pool
Selection of animals for sequencing is often run in one population
at a time. Depending on the quality of the data recording,
a proportion of the animals declared to be purely from one
population may be crossbred or from another population. It
is important that the method of selection avoids selecting
individuals that are not part of the population of interest.
BovineSNP50 genotypes of 16,420 Holstein and 2,920 Jersey
(JE) males born after 2011 were retrieved from the Canadian
Dairy Network database to create pools of 5,840 selection
candidates with different degrees of admixture as presented on
the horizontal axis of Figure 4. From the complete dataset,
animals were randomly selected to enter each pool. The IWS,
GDI and HSH methods were then used to select 100 animals
out of each pool and the number of JE animals that were
picked were counted.

Statistical Tests of Average Differences
Between Scenarios
After testing for the normality of the replicates within methods-
by-reference size scenarios with Shapiro–Wilk tests, Kruskal–
Wallis Rank Sum tests, and Wilcoxon Rank Sum statistical
tests were performed for each MAF category to determine
significant differences in accuracies among all methods or
pairwise, respectively. The Bonferroni correction was used
to adjust for multiple comparisons for an experimental-wise
significance level of 0.05.

RESULTS

LD Structure, MAF Distribution and
Structure of the Simulated Population
A rapid decrease in LD over increasing genomic distance was
observed in both real and simulated genomic data (Figure 5).
The high level of LD at distances shorter than 100kb in the real
Holstein population already described by Sargolzaei et al. (2008)
is mimicked in the simulation. Rare variants comprised 52.43%
(±2.2%) of the WGS variants over the replicates. Principal
component analysis showed a compactly distributed population
on the two first components, which explained 6.11% of the
total genomic variance (Figure 6). Spearman’s rank correlation

between the first principal component and the generation of the
animals was 0.87 (data not shown). Density curves of the MAF
over the generations of the simulated population showed that an
increasing number of variants became rare (Figure 7).

Haplotype Coverage in the Reference
Population
The number of segregating variants and the proportion of
unique haplotype alleles found in each reference population
had a correlation of 0.68 (P < 0.0001). Increasing the number
of animals in the reference population led to an increased
proportion of unique haplotypes covered (Figure 8). Overall,
haplotypes coverage ranged from 8.6% of the total haplotypes
from the scenario with 50 animals selected on the basis of HSH,
to 35.5% in the scenario including 1,200 animals selected through
GDI. The reference groups created following the AMAT and HSH
methods captured a lower proportion of the total haplotypes
than reference populations created following the IWS and GDI
methods. The proportion of haplotypes with a frequency equal or
below 5% that were selected in each reference group followed the
proportion of total haplotype selected.

Overlap in Selection
The same pool of candidates was made available for selection for
each method and reference size so that the same animals could be
selected by multiple methods. The proportions of animals present
in two groups for each reference size are shown in Table 3.
Overlaps were higher between AMAT and HSH and between
IWS and GDI. Small reference population sizes led to a higher
proportion of animals found in multiple reference populations,
with a maximum of 26% of animals found in common between
the reference groups of AMAT and HSH that contained 50
animals in total. GDI did not have any overlap with AMAT or
HSH for groups containing 50 and 100 animals. The overlap
in the selected references of 100 individuals can be observed
in Figure 6 where plusses, representing the animals selected
with IWS, and crosses, representing the animals selected with
GDI, are superposed.

Selection With Possible Crossbred
Animals
With a pool composed of animals from two populations in a
50:50 ratio, no genotype-based method could avoid selecting at
least half of them from the JE population (Figure 4). Differences
were observed between methods in the more realistic scenarios
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FIGURE 4 | Number of Jersey (JE) animals selected by the Highly Segregating Haplotype selection (HSH), the Inverse Weighted Selection (IWS), and the Genetic
Diversity Index (GDI) methods from candidate pools with different proportion of JE animals.

FIGURE 5 | Decay of linkage disequilibrium (LD) over genomic distance in the
real and the simulated sequences.

with a proportion of 5% or less non-target animals. HSH
did not select any JE animals until they comprised 5% of
the candidate pool. In contrast, GDI already selected 58 JE
animals when JE comprised 1% of the candidate pool. The 58
JE selected in this scenario were 45% of all JE animals present
in the pool. In the scenarios with a candidate pool composed
of 5% or less JE animals, IWS consistently selected only 5%
of the JE animals.

FIGURE 6 | Distribution of the different groups of animals on the first and
second principal components. The variance explained by the components is
given in brackets. Gray crosses represent all the candidates, the green
triangles are the animals selected by the key ancestors (AMAT) method, the
purple plusses are the animals selected by the Inverse Weighted Selection
(IWS) method, the green plusses are the animals selected by the Highly
Segregating Haplotypes selection (HSH) method, and the blue crosses are the
animals selected with the Genetic Diversity Index (GDI) method.
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FIGURE 7 | Density curves of the minor allele frequencies observed in the simulated population over the generations.

Accuracy of Imputation
Accuracies of imputation were observed on all variants and on
two non-overlapping subsets: the rare variants with a MAF below
0.05 and the common variants with a MAF equal or above 0.05.
Results are presented about these sets in the following order:
first, all variants, then the rare variants and finally the common
variants as the later showed re-ranking in comparison with the
two other groups.

Considering all variants, accuracy of imputation reached
values between 0.55 and 0.85, depending on the method used
to create the reference groups and their sizes. Increasing
the number of animals in the reference population led to
corresponding increases in accuracies. Table 4 shows the
accuracies of imputation reached in scenarios with 50, 200,
and 1,200 reference animals selected by the four methods and
across all adjacent MAF bins. In general, AMAT and HSH
reached lower accuracies than IWS and GDI. The differences in
accuracies, however, were smaller when the reference population
size increased (Figure 9). In the scenario in which only 50 animals
composed the reference population, IWS and GDI had the
highest accuracies and were not significantly different (P > 0.05).
AMAT had a significantly lower accuracy and the accuracy of
HSH was even lower than that of AMAT (P < 0.0001) (Table 4).
By increasing the size of the reference population to 100, 200, or
400 animals, differences in accuracy between AMAT and HSH

were small, so that only two groups of methods, AMAT/HSH and
IWS/GDI, could be differentiated. With reference groups of 800
and 1,200 individuals, only GDI and AMAT were significantly
different (P < 0.0001), where GDI had the highest accuracy
(0.944). Genotype concordance rates reached values above 0.96
in all cases (Figure 10). Significant differences between methods
were only observed with reference populations comprising 50,
100, or 200 animals. Concordance rates were higher when
animals were selected with HSH or AMAT than with IWS or
GDI for reference sizes of 50 or 100 animals (P < 0.0001).
Only the concordance rate of GDI for a reference population
comprised of 200 animals was significantly lower than any
other (P < 0.0001).

When the accuracies of imputation were estimated on rare
variants only, accuracies reached values between 0.33 and 0.76,
but the rank of the methods from best to worst was consistent
with results based on all variants (IWS/GDI > AMAT/HSH),
and significant differences were also observed at any reference
populations size (P < 0.0001). With reference size of 1,200
individuals, differences were only found between AMAT vs.
HSH and AMAT vs. GDI, where AMAT had lower accuracy
in both contrasts. In contrast, when only common variants
were considered, the ranking was reversed: AMAT and HSH
produced significantly higher accuracies than IWS and GDI
(P < 0.0001). Accuracies took values as high as 0.99 and were
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FIGURE 8 | Selected proportion of unique haplotypes from the total haplotype library found in the reference group created with different selection methods. The
methods compared are the key ancestors (AMAT), the Highly Segregating Haplotype selection (HSH), the Inverse Weighted Selection (IWS), and the Genetic
Diversity Index (GDI).

never below 0.84. With a reference population of 50 animals,
HSH reached a greater accuracy than AMAT and both were
better than IWS and GDI. With reference sizes of 100 and
200, significant differences were again observed between the
groups of methods AMAT/HSH and IWS/GDI (P < 0.0001).
With 400 animals as reference, the accuracy reached by GDI
was significantly lower than the other methods. Scenarios where
800 and 1,200 animals composed the reference population did
not show difference in accuracy value before the fourth decimal.
Although no change in the values was observed for these
scenarios (Table 4), variances between replicates were very small
(standard deviation < 0.004), therefore testing the methods
against each other still led to significant results after correction
for multiple testing.

Distribution of the variants into 14 adjacent bins allowed
a more precise evaluation of the effect of the reference
composition on the imputation accuracy. With no exception,
increased MAF led to increased accuracy values. For example,
accuracies increased from 0.21 to 0.94 when using a reference
group of 50 individuals selected with AMAT (Figure 11).
Only pairs of contiguous MAF bins were analyzed and no
significant differences within reference size-by-method scenario
were found in imputation accuracy of variants with a MAF
greater than 0.3 (P > 0.05).

DISCUSSION

In the first step of this study, the WGSs of a dairy cattle population
were simulated. They were compared to currently available real
Holstein sequence data to ensure they mimicked observed levels
of LD and MAF distribution. In the second step, reference
populations of different size were created with animals selected
by both proposed novel methods as well as two other methods
presented in previous studies. The selection methods were
assessed with respect to their propensity to select animals that
might not be of the population of interest, the genetic diversity of
the groups of animals picked, and the distribution of those over
generations. Finally, accuracies of imputation were compared for
imputation runs with the different reference populations. The
differentiation of imputation accuracy of variants with specific
MAF allowed comparison between the strengths and weaknesses
of each method of selection.

Different software programs were developed to simulate
genomic information such as AlphaSim (Faux et al., 2016), ms2gs
(Pérez-Enciso and Legarra, 2016), and QMsim (Sargolzaei and
Schenkel, 2009). With its highly flexible genome and population
configuration system, QMsim allowed for simulation of a great
number of WGSs that had a LD structure properly following
the parameters of the real data available. With the aim of
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TABLE 3 | Proportion of animals overlapping between selection methods in
reference populations of different sizes.

Size Method

AMAT HSH IWS

50

HSH 0.26

IWS 0.04 0.00

GDI 0.00 0.00 0.08

100

HSH 0.23

IWS 0.03 0.01

GDI 0.00 0.00 0.1

200

HSH 0.20

IWS 0.05 0.03

GDI 0.01 0.02 0.14

400

HSH 0.13

IWS 0.04 0.06

GDI 0.02 0.03 0.09

800

HSH 0.09

IWS 0.03 0.12

GDI 0.03 0.06 0.12

1,200

HSH 0.08

IWS 0.03 0.16

GDI 0.04 0.09 0.12

The methods were the key ancestors (AMAT), the selection of Highly Segregating
Haplotypes (HSH), the Inverse Weighted Selection (IWS), and the Genetic
Diversity Index (GDI).

simulating a Holstein population, only sequences of Holstein
animals from the 1,000 Bull Genomes Project Run 5 were
retrieved. These animals were mostly sequenced because they had
a great genetic contribution to their population (Daetwyler et al.,
2014). Although they are considered representative, these animals
became influential as they were used heavily for breeding in their
population and probably had a high genetic merit. They may, in
fact, carry alleles at frequencies different from those in the overall
population. This difference between the influential animals and
the complete population limits the possible true closeness of
the simulation with the whole real Holstein population. The LD
level of the simulated sequences followed the real observed LD
decay (Figure 5). Similarly, the distribution of the variants used
in this work in MAF bins followed the distribution observed
in real datasets.

Once the sequence was simulated, multiple reference
populations were created by selecting animals using methods
of selection that can be divided into two groups: AMAT
and HSH, which mainly target animals that are carriers of
commonly found haplotypes, whereas IWS and GDI are
methods aiming to maximize the selection of animals carrying
more haplotype alleles. Moreover, although AMAT keeps on
searching for commonly found haplotypes, the penalization

of those implemented in HSH leads to a shift from the search
of commonly found haplotypes to rare ones. Through this
shift, not only selection of common, but also of rare haplotypes
is optimized. This shift, however, is highly dependent on
the size of the candidate pool and the number of animals to
be selected, as the increasing ratio of selected animals over
the candidate pool facilitates the capture of more different
haplotypes. A disadvantage of the haplotype-based selection
method is that candidates must all be genotyped. In this sense,
selection of animals for genotyping or sequencing in populations
in which only a small proportion of individuals are genotyped
should be done with AMAT, as long as a correct and complete
pedigree is available.

Candidate pools for animal selection are often composed
of individuals belonging to more than one population due to
errors at the time of data recording, and thus crossbred animals
could be erroneously selected. Testing methods for their tendency
to pick crossbred animals revealed that methods targeting rare
variants selected more animals that were not from the population
of interest, which was expected. HSH was the only method
in which no animal of the JE population was selected before
their proportion in the candidate pool reached 5%, which can
be considered a usual proportion of crossbred animals wrongly
declared as purebreds (Figure 4). If GDI or IWS are used on
real datasets, population structure analysis and analysis of the
relationships between the candidates is essential to ensure that
crossbred animals are removed prior to selection.

Following the control of the non-target animals selected with
each method, a principal component analysis was used. This
allowed for comparison of the distribution and overlap of the
selected animals over the complete candidate pool. Methods
targeting rare haplotypes picked the same animals more often
(Table 3). The concentration of points representing the animals
selected by IWS and GDI or the superposed dark and light brown
points on Figure 6 follows the same idea. The animals selected
for their higher genetic diversity were mostly of generation 1
and 2 out of the 10 simulated generations. Selection applied
without allowing for migration in the simulated population led
to a reduction of the MAF of the variants under selection
pressure (Figure 7). Accordingly, the number of combinations
of SNP alleles at the haplotype level was reduced, and less
unique haplotypes alleles could be found in animals in generation
three or more. Fewer unique haplotype alleles also led to
higher haplotype frequencies of the remaining ones. Finally,
carrying less unique haplotype and haplotypes alleles of higher
frequencies, individuals of generation three or more were less
likely to be selected by GDI and IWS.

It is of interest to assess the genetic diversity within and
between the created reference populations. The proportion of
selected haplotypes alleles increased with the number of animals
selected, which was expected, as more animals can collectively
carry additional different haplotypes. Similarly, when looking at
the overlap of picked haplotypes alleles between methods, the
methods presented more overlap if they targeted the common
(AMAT, HSH) or the rare variants (IWS, GDI). Notably, when
reference populations were smaller, animals selected with AMAT
carried a greater number of different haplotypes than HSH.
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TABLE 4 | Accuracies for reference populations of 50, 200, and 1,200 individuals and increasing MAF of the variants considered, all variants, the rare variants
(MAF < 0.05), or the common variants (MAF ≥ 0.05).

50 200 1,200

MAF bin AMAT IWS HSH GDI AMAT IWS HSH GDI AMAT IWS HSH GDI

0.00−0.01 0.212a 0.282b 0.146c 0.281b 0.471a 0.527b 0.468a 0.540b 0.625a 0.641a,b 0.643a,b 0.647b

0.01−0.02 0.624 0.640 0.557 0.629 0.903 0.912 0.908 0.906 0.960 0.962 0.961 0.961

0.02−0.03 0.712a 0.704b 0.678a 0.691b 0.931 0.936 0.935 0.929 0.970 0.972 0.971 0.970

0.03−0.04 0.761a 0.732b 0.746a 0.725b 0.944a,b 0.948a 0.948a,b 0.940b 0.975 0.976 0.975 0.975

0.04−0.05 0.793a 0.754b 0.790a 0.745b 0.952 0.954 0.956 0.946 0.979 0.979 0.978 0.978

0.05−0.10 0.837a 0.786b 0.848a 0.776b 0.964 0.966 0.966 0.957 0.983 0.984 0.983 0.983

0.10−0.15 0.887 0.834 0.898 0.825 0.974 0.975 0.976 0.969 0.987 0.988 0.987 0.987

0.15−0.20 0.911a 0.865b 0.920a 0.855b 0.979 0.980 0.980 0.974 0.990 0.990 0.989 0.989

0.20−0.25 0.925a 0.878b 0.932a 0.870b 0.982 0.982 0.983 0.978 0.991 0.991 0.990 0.990

0.25−0.30 0.933a 0.892b 0.940a 0.881b 0.984a,b 0.984a 0.984a,b 0.980b 0.991 0.992 0.991 0.991

0.30−0.35 0.939a 0.904b 0.944a 0.896b 0.985a,b 0.985a 0.985a,b 0.982b 0.992 0.993 0.992 0.992

0.35−0.40 0.942a 0.908b 0.948a 0.900b 0.986 0.986 0.986 0.982 0.992 0.993 0.992 0.992

0.40−0.45 0.944a 0.911b 0.949a 0.904b 0.986 0.986 0.986 0.983 0.993 0.993 0.992 0.992

0.45−0.50 0.945a,b 0.914b,c 0.949a 0.908b,c 0.986a 0.986b 0.986a 0.983b 0.993a 0.993b 0.992b 0.993b

All 0.580a 0.589b 0.549c 0.583b 0.765a 0.789b 0.765a 0.790b 0.840a 0.847a,b 0.847a,b 0.849b

Common 0.894a 0.848b 0.903c 0.839b 0.976a 0.976b 0.977a 0.970b 0.988a 0.989a,b 0.988b 0.988b

Rare 0.387a 0.429b 0.331c 0.425b 0.635a 0.673b 0.635a 0.679b 0.749a 0.759a,b 0.761b 0.763b

MAF bins “x-y” stands for “x < MAF ≤ y”. a,b,c Different letters represent significant differences in accuracies among the methods within a bin-by-size set of values
(pairwise Wilcoxon Rank Sum Test significant with p-value after experimental-wise Bonferroni correction).

FIGURE 9 | Accuracy of imputation for all SNP, only common SNP (minor allele frequency ≥ 0.05), or only rare SNP (minor allele frequency < 0.05), using reference
population sizes from 50 to 1,200 individuals. The methods compared are the key ancestors (AMAT), the Highly Segregating Haplotype selection (HSH), the Inverse
Weighted Selection (IWS), and the Genetic Diversity Index (GDI). All standard errors are below 0.013.
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FIGURE 10 | Genotype concordance rates for all SNP using reference population sizes from 50 to 1,200 individuals. The methods compared are the key ancestors
(AMAT), the Highly Segregating Haplotype selection (HSH), the Inverse Weighted Selection (IWS), and the Genetic Diversity Index (GDI). All standard errors are below
0.009.

This can be explained by the following arguments. The HSH
method makes sure that all commonly found haplotypes are
selected before animals carrying rare variants get targeted, while
AMAT relies solely on pedigree and thus has no possibility to
consider the Mendelian sampling happening over generations.
This limitation of AMAT, when compared to haplotype-based
methods, was observed in our study when 1,200 animals
comprised the reference group and only rare variants were
considered. In this case, AMAT had a significantly lower accuracy
than both HSH and GDI (Table 4). Moreover, it is likely that
a real pedigree would contain errors that would not allow for
a better haplotype coverage using AMAT than HSH as missing
and incorrect information would impeach correct computation
of the kinship among animals and thus the probable proportion
of haplotypes they share. The pedigree-based method AMAT also
showed a limitation once the number of animals increased, as
redundancy of the added haplotype in the selected group was
not directly avoided and effective Mendelian sampling could not
be evaluated, which was in contrast to the results obtained for
HSH. GDI consistently obtained greater haplotype coverage in
the selected group of animals (Figure 8). This shows that the
targeted optimization at the group level of the number of rare
haplotypes was also achieved. Therefore, GDI and IWS seem to
be the methods of choice when the objective is to select animals

for their propensity to carry novel, rare or deleterious variants.
The influence of the selection of genetically more diverse animals
on the accuracy of selection, however, must be carefully assessed.

Overall, accuracies of imputation from HD to WGS were
similar to previous results observed in real dairy cattle datasets
(e.g., Pausch et al., 2017), although rare variants were kept
throughout the whole analysis in the current study. Differences
between scenarios were significant (P < 0.0001), however, the
accuracies were mostly similar between methods. This was
probably due to very low variance between the replicates, as the
simulation algorithm is highly stable. All methods of selection
avoided redundancy of the haplotypes selected, thus only minor
differences between methods were observed after enough animals
were selected. The greatest differences in accuracy of imputation
between the methods were found when the reference population
was small. Moreover, when observing genotype concordance
rates, no differences were found when the reference populations
comprised more than 200 animals. In contrary to the allelic r2

and as demonstrated in the review by Calus et al. (2014), the
genotype concordance is dependent on the MAF of the variants
considered and increases artificially with lower MAF. Differences
in the distribution of the MAF of the rare variants between the
reference population led to the observed re-ranking. Considering
that animals selected with IWS and GDI were mainly from

Frontiers in Genetics | www.frontiersin.org 13 May 2019 | Volume 10 | Article 510

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00510 May 29, 2019 Time: 19:20 # 14

Butty et al. Selection of Animals for Sequencing

FIGURE 11 | Accuracy of imputation increases with higher minor allele frequency (MAF) of the variants. Here the accuracies reached with 50 animals in a reference
group of key ancestors (AMAT) are presented. MAF bins “x-y” stands for “x < MAF ≤ y”. All standard errors are below 0.008.

generation 1 and 2 of the simulated population (Figure 6),
and that the MAF distribution of the rare variants shifted
toward zero generation after generation (Figure 7), the MAF
distribution within the rare variants category might be different
between reference populations selected for high coverage of rare
or common haplotypes. More different haplotype alleles were
present in the reference populations selected with GDI and IWS
(Figure 8), whereas animals selected with AMAT and HSH
carried, as intended, more common variants. Animals selected
with AMAT and HSH, however, still carried some rare variants
but those had more often a MAF below 0.01. Figure 11 shows
a distinctly bigger change in accuracy between monomorphic
or rare variants with a MAF lower than 0.01 and rare variants
with MAF between 0.01 and 0.05. It is this difference in the
distribution of the MAF of the rare variants that explain the
re-ranking of the methods between the genotype concordance
and the allelic r2 values. Targeting rare haplotypes at selection
(GDI and IWS) led to the creation of a reference population
with more rare variants, but most of the added rare variants
had a MAF between 0.01 and 0.05, whereas targeting common
haplotypes led to the creation of a reference population carrying
mainly common variants, but also some rare variants that mainly
had a MAF below 0.01. Those variants with a MAF below
0.01 artificially increased the genotype concordance so that a
re-ranking was observed.

Considering the re-ranking observed between method group,
i.e., HSH/AMAT and IWS/GDI when looking at either rare
or common variants, the method to select animals should be
chosen using one of two principles: if the future imputed
genotypes will be used as full genotypes and the imputation
needs to be specially accurate for variants that will explain

most of the genetic variation of a trait, animals should be
selected using AMAT or HSH. In contrast, if future analysis
will focus on the discovery of novel functional rare variants
animals should be selected using IWS or GDI. Genotype
concordance is the measure of imputation accuracy of choice
when common variants that explain most of the genetic
variance of most traits of interest for the dairy industry, are of
interest for future analyses. Our results showed that genotype
concordances with small reference populations were higher when
the individuals were selected with AMAT or HSH. The first
line of Table 4, where only the segregating variants with a
MAF below 1% were considered, is a good example of the
differences in accuracy of imputation for rare variants, variants
that could have a novel deleterious effect. In this example,
when the reference population only contained 50 animals,
the difference in accuracy of imputation reached 0.18 points
between the best (IWS) and the worst (HSH) methods. The
accuracy of imputation increased with the MAF of the variants,
but this increase stopped once segregation reached a level
of 30% (Figure 11).

CONCLUSION

Selection of animals for sequencing is an important task, as
it greatly impacts the information gained about a population
of interest, especially in populations with limited effective
population size. Different selection methods are available that
either rely solely on pedigree or that utilize information on
previously genotyped individuals. In the first case, selecting key
ancestors is highly recommended. Otherwise, the best method
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depends on the use of the future set of sequences. If the newly
selected animals will be the first sequenced animals in their
population and should allow for the overall imputation of the rest
of the population, it is better to select animals carrying common
haplotypes using the new HSH method instead of any of the other
methods described in this study. If the resulting sequences of the
selection of animals in a population will be used for discovery of
new variants or should allow annotation of possible deleterious
ones, animals carrying novel information should be selected and,
consequently, the GDI method proposed here may be used.
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