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Sex reversal induced by temperature change is a common feature in fish. Usually,
the sex ratio shift occurs when temperature deviates too much from normal during
embryogenesis or sex differentiation stages. Despite decades of work, the mechanism
of how temperature functions during early development and sex reversal remains
mysterious. In this study, we used Chinese tongue sole as a model to identify
features from gonad transcriptomic and epigenetic mechanisms involved in temperature
induced masculinization. Some of genetic females reversed to pseudomales after high
temperature treatment which caused the sex ratio imbalance. RNA-seq data showed
that the expression profiles of females and males were significantly different, and set
of genes showed sexually dimorphic expression. The general transcriptomic feature
of pesudomales was similar with males, but the genes involved in spermatogenesis
and energy metabolism were differentially expressed. In gonads, the methylation
level of cyp19a1a promoter was higher in females than in males and pseudomales.
Furthermore, high-temperature treatment increased the cyp19a1a promoter methylation
levels of females. We observed a significant negative correlation between methylation
levels and expression of cyp19ala. In vitro study showed that CpG within the cAMP
response element (CRE) of the cyp19a1a promoter was hypermethylated, and DNA
methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter.
These results suggested that epigenetic change, i.e., DNA methylation, which regulate
the expression of cyp19a1a might be the mechanism for the temperature induced
masculinization in tongue sole. It may be a common mechanism in teleost that can
be induced sex reversal by temperature.

Keywords: high-temperature treatment, RNA-seq, cyp19a1a, DNA methylation, Cynoglossus semilaevis

INTRODUCTION

The types of sex determination are diversified in teleost. Three main types of primary sex
determination have been described in gonochoristic species: genotypic sex determination (GSD),
temperature-dependent sex determination (TSD) and a combination of both (GSD ++ TSD)
(Ospina-Álvarez and Piferrer, 2008; Yamamoto et al., 2014). The sex of fish had strong uncertainty
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in the development process. In addition to genetic information,
environmental factors could influence the sex determination,
such as temperature. Apart from fish, the temperature irreversibly
determining gonadal sex has been well established in reptiles
and amphibians (Sarre et al., 2011; Flament, 2016). Since firstly
described in Menidia menidia (Conover and Kynard, 1981), this
phenomenon had been widely observed in fish, which showed
that sex ratio would become unbalanced if the fish experienced
high temperature during thermosensitive period (TSP). The
imbalance of sex ratio was caused by sex reversal. Usually, it can
be divided into three types: (1) high temperature has positive
correlation with the proportion of males. (2) High temperature
induces females, and has a negative correlation with males.
(3) Both low temperature and high temperature increase the
proportion of males (Baroiller and D’Cotta, 2001; Devlin and
Nagahama, 2002; Ospina-Álvarez and Piferrer, 2008).

To verify the molecular mechanism of temperature effects
(TE), a series of exploration was carried out. Steroid hormone,
glucocorticoid, and epigenetic modification have been reported
to be related to sex reversal and played critical roles during
sex differentiation in TSD (Hattori et al., 2009; Lance, 2009;
Nakamura, 2010; Yoshinaga et al., 2010; Navarro-Martín et al.,
2011; Fernandino et al., 2012, 2013; Kitano et al., 2012;
Piferrer, 2013; Zhang et al., 2013). Besides, it was discovered
that intron retention of JARID2 and JMJD3 genes in Pogona
vitticeps could mediate sex-reversed females (Deveson et al.,
2017). Androgen-to-estrogen ratio determined whether an
undifferentiated gonad differentiated into a testis or ovary in non-
mammalian vertebrates (Simpson et al., 1994). The regulation of
steroid ratio depended on the activity of gonadal aromatase, the
product of cyp19a1a, which converts androgens into estrogens
irreversibly (Simpson et al., 1994). In reptiles, up-regulating
or down-regulating cyp19a1a could alter gonad phenotype.
The expression level of gonadal cyp19a1a was associated with
TSD in Trachemys scripta and Alligator mississippiensis (Pieau
and Dorizzi, 2004; Matsumoto et al., 2016). In teleost, it has
been confirmed that high temperature induced masculinization
is related to the methylation level of cyp19a1a promoter in
Dicentrarchus labrax. Methylation modification in the promoter
region could suppress the binding of transcription factors to
the corresponding sites (SF-1, FOXL2, and CREB) resulting
in the change of expression (Navarro-Martín et al., 2011;
Zhang et al., 2013). Similar conclusions were observed in
Oreochromis niloticus and Oncorhynchus mykiss (Valdivia et al.,
2014; Wang et al., 2017). Meanwhile, FOXL2 and SOX9,
which showed dimorphic DNA methylation patterning were
also considered as the candidate genes in A. mississippiensis
and Paralichthys olivaceus (Parrott et al., 2014; Si et al., 2016).
Other factors have also been suggested to play a role in GSD
+ TE, such as heat shock proteins (HSPs), transient receptor
potential channels (TRPs), cold inducible RNA binding proteins
(CIRBPs), and microRNAs (Kohno et al., 2010; Rhen and
Schroeder, 2010; Bizuayehu et al., 2015; Czerwinski et al., 2016;
Schroeder et al., 2016).

The effect of temperature on the sex differentiation can be
profound and far-reaching, and needs comprehensive studies to
fully understand the molecular mechanisms. Chinese tongue sole,

Cynoglossus semilaevis, is a GSD+ TSD sex determination teleost
with ZZ/ZW sex chromosomes (Zhou et al., 2005). Female-
specific DNA sequences had been identified in C. semilaevis,
which could be used for distinguishing genetic female and
male (Wang et al., 2009, 2013). Therefore, C. semilaevis
is a unique powerful model to explore molecular events
associated with GSD + TSD. In previous study, it was reported
that epigenetic modification was involved in sex reversal of
C. semilaevis by BS-seq and RNA-seq, and transgenerational
epigenetic inheritance was observed in offspring generated by sex
reversal individuals (Chen et al., 2014; Shao et al., 2014). We
aimed to filter genes related to sex differentiation, explore the
relationship of expression level and methylation modification,
and analyze whether methylation could regulate the binding of
transcription factor. In this study, the genetic female individuals
that inversed to phenotypic male individuals are defined as
pseudomales. These pseudomales are distinguished from high
temperature treatment groups using female-specific markers.
RNA-seq was performed on the gonads of females, males, and
pseudomales. The whole expression profiles were investigated,
and candidate genes involved in sexual gonad development were
identified. The methylation patterns of the putative genes were
also analyzed. The interaction of upstream regulatory sequence
and the corresponding transcription factors was verified by
dual-luciferase reporter system. These findings helped us to
understand the genetic epigenetic programing driving vertebrate
GSD + TE and provide insight for future investigations aimed
at clarifying the mechanisms controlling sex differentiation
and sex reversal.

MATERIALS AND METHODS

Fish Rearing and Temperature Treatment
Fish and embryos were collected from Yellow Sea Aquatic
Product Co. Ltd., Shandong, China. Embryos were incubated
at 20◦C, the natural temperature for C. semilaevis spawning,
fertilization and hatching. For this study, a batch of embryos
collected from three pairs of parents was used. After hatching
the fry were reared at ambient temperature (20–22◦C). The
juveniles at 25 days post fertilization (dpf) with total length
(TL) of 13 ± 2 mm were separated into two groups. One
group (n = 3000) was reared at ambient temperature throughout
the TSP as control group (low temperature group, LT).
The other group (n = 3000) was exposed at 28◦C during
the entire TSP and as the high-temperature group (high
temperature group, HT). The temperature was increased to
28◦C at a rate of 0.5◦C/day, and then maintained for 100 days,
until 125 dpf (Figure 1). Then the water was recovered to
ambient temperature to follow the natural fluctuations until
the end of the study, when the fish were 300 days old. The
proportion of phenotypic males and females was counted by
gonad biopsy and section confirmation in LT group and HT
group, respectively. From these phenotypic males genetic males
and pseudomales were identified using female-specific markers
(Wang et al., 2009). The survival rate was also calculated for
both of the groups.
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FIGURE 1 | Thermal protocols applied in the present study. The experimental groups were: control group, LT, 20◦C from 25 to 100 dpf, thereafter following the
natural fluctuation (blue line). High-temperature group, HT, 28◦C from 25 to 100 dpf, throughout the whole TSP (red line). The major events related to gonad
formation and sex differentiation are also indicated.

Sample Collection and Gonadal
Histology
At 300 dpf, fish were sacrificed and gonadal samples were
collected. For each fish, one gonad was processed for histological
identification of phenotypic gender and DNA/RNA extraction.
Gonads were fixed in 4% PFA in PBS, embedded in paraffin,
cut at 7 µm thickness and stained with haematoxylin-eosin.
Meanwhile, the other gonad was snap-frozen in liquid nitrogen
and stored at −80◦C for RNA-seq analysis. Muscle tissues
were collected to extract DNA for individual sexing and
methylation analysis. The methylation level of muscle was
selected as control.

RNA Isolation, cDNA Library
Construction, and Illumina Sequencing
Gonads from nine individuals including three biological
replicates of females (FO), males (MT), and pseudomales (PMT)
were selected for RNA-seq analysis. Total RNA was extracted
using Trizol Reagent (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s protocol, treated with RNase-
free DNase I (TaKaRa, Dalian, China) to degrade genomic
DNA, and then frozen at −80◦C. RNAclean Kit was applied to
remove proteins. The quality and quantity were evaluated via
1.5% agarose gel electrophoresis and spectrophotometry using
NanoPhotometer Pearl (Implen GmbH, Munich, Germany) and
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, United States).

The nine RNA-seq libraries were constructed with Illumina
TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA,
United States) in accordance with the manufacturer’s instruction.
Then the libraries were subjected to paired-end sequencing of
125 bp on the Illumina HiSeq 2000.

Data Processing and Bioinformatics
Analysis
Raw reads generated from the Illumina sequencing platform
were cleaned by removing adaptors and low quality sequences
using FastQC. The cleaned reads of each sample were mapped
to the reference genome (Chen et al., 2014) by TopHat with
default parameters (Kim and Salzberg, 2011). Then the mapping
files were analyzed using Cufflinks to assemble the reads into
transcripts for each dataset (Roberts et al., 2011). Complete
transcripts were obtained by merging the assemblies of all
datasets using Cuffmerge.

Identification of Differentially
Expressed Genes and Functional
Enrichment Analysis
All the expressed genes were aligned to databases for homology
annotation, including non-redundant protein databases (NR),
Swiss-Prot, Gene Ontology (GO), eukaryotic Orthologs Groups
(KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
by BlastX with e-value of 1e-5 (Kanehisa et al., 2008).

FPKM were used to select the DEGs. The FPKM was
calculated by Cuffdiff (Trapnell et al., 2012). To identify the
differentially expressed genes (DEGs) among female, male and
pseudomale gonads, we set the following standards: genes
with an adjusted log2FoldChange ≥ 2 or log2FoldChange
≤−2, and P < 0.01 were considered as DEGs. The DEGs
were then enriched by GO terms and KEGG categories
using DAVID (Huang et al., 2008). The visualization of
global similarities and differences of expression profiles of
all individuals was accomplished by principle component
analysis (PCA), MA plot and heatmap. These analysis were
completed with R package.
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qRT-PCR Validation
A total of ten DEGs (Sox9, GATA4, Dmrt1, AMH, HSD11b2,
cyp19a1a, esr1, topaz1, GATA6, Sox3) were selected for qRT-
PCR validation. Specific primer pairs were designed by IDT.
qRT-PCR was performed in a 20 µg solution containing 10 ng
of template cDNA and SYBR qPCR SuperMix (Novoprotein,
Shanghai, China) by using LightCycler 480 (Roche, Forrentrasse,
Switzerland) at 95◦C for 5 min pre-incubation, followed by
45 cycles of 95◦C for 15 s and 60◦C for 45 s. The relative quantities
of the target genes expressed as fold variation over GAPDH
were calculated using the 2−11Ct comparative Ct method. qRT-
PCR data were statistically analyzed using one-way ANOVA
followed by LSD test using SPSS 20.0. P < 0.05 indicated
statistical significance.

Methylation Levels Measured by
Bisulfite-Mediated Genomic Sequencing
Methylation sites were prediction and BSP primers design in
promoter were performed by Methprimer. Gonad and muscle
tissues of females, males and pesudomales (six individuals each)
were used to extract genomic DNA. The DNA samples from the
same tissue of the same gender were mixed. The mixed DNA
was modified using the EZ DNA Methylation-Gold Kit (ZYMO
Research). The primers M-cyp19a1a-Fw1/Rv1 and M-cyp19a1a-
Fw2/Rv2 were used for methylation-specific PCR. Eight positive
clones were sequenced for each group. Site-specific methylation
measurements were analyzed using BiQ-Analyzer.

Cyp19a1a-Luc Reporter Vector
Construct and in vitro Methylation
A pGL3-Cyp19a1a-Luc reporter vector was constructed by
inserting the cyp19ala promoter fragment into the pGL3-basic
vector (Promega, Madison, WI, United States) between SacI
and XhoI sites. The promoter was a 1969 bp fragment amplified
from genomic DNA with primers pGL3-cyp19a1a-Fw/Rv
(Supplementary Table S3). The pGL3-cyp19a1a promoter vector
was cytosine-methylated using M. SssI methylase (Thermo Fisher
Scientific, MA, United States) (M-cyp19a1a-Luc) according to
the manufacturer’s instructions. It could methylate all cytosine
residues within the double-stranded dinucleotide recognition
sequence. The methylation status of the vector was checked by
HhaI, which only digested methylated DNA.

Transfection and Luciferase Reporter
Gene Assay
The HEK 293T cell line was used for transfection with
unmethylated and methylated plasmids. Before the experiment,
a total of 5 × 105 cells were seeded into 24-well plates and
cultured for 24 h. Then the plasmids were transfected into
HEK 293T cells by LipofectamineTM 3000 Transfection Reagent
(Thermo Fisher Scientific, MA, United States) according to
the manufacturer’s instructions. At 48 h after transfection, cells
were washed with PBS and analyzed for Luc activity using the
luciferase assay system (Promega, Madison, WI, United States).
Forskolin (5 µM), the activation of cAMP, which binds to CREB
site, was added 10 h before the end of cell culture.

RESULTS

Sexual Ratio Changes After High
Temperature Treatment
The survival rates and proportion of females and males were
counted both in LT group and HT group after treatment. No
difference was found between the two groups in survival rate
(χ2 = 0.190, P = 0.663). The survival rates were 62.97 and
59.80% in LT group and HT group (Figure 2E). The proportion
of females and males as detected by biopsy and gonad tissue
sectioning was 56.58 and 43.53% in LT group (Figures 2A–C),
and 36.51 and 63.49% in HT group (Figure 2D), respectively. The
proportion of males was significantly increased more than 20%
after treatment with high temperature during TSP (χ2 = 7.624,
P = 0.006). These data indicated that masculinization was
induced in genetic females following high temperature treatment.

RNA Sequencing
The genotypic and phenotypic sex of these individuals were dis-
tinguished by molecular marker and tissue section (Figure 2F).
A total nine cDNA libraries were sequenced on the Illumina
platform, generating 655,677,682 raw reads, encompassing about
30 Gb of sequence. Valid ratio and GC content of each cDNA
library were shown in Table 1. Approximately 80.1% of reads
exhibited significant hits to the genome. The transcriptome data
obtained from the samples has been uploaded to NCBI SRA
site, with accession numbers of PRJNA480118 (SAMN09628942,
SAMN09628943, SAMN09628989, SAMN09628990, SAMN096
28991, SAMN09628992, SAMN09628993, SAMN09628994,
and SAMN09628995).

Differential Expression and Functional
Enrichment Analysis
Principle component analysis analysis were conducted to detect
the global similarities and differences expression profiles among
FO, MT, and PMT. It displayed that ovary (FO) replicates
clustered closely in a region, and testis (MT and PMT) replicates
clustered into another region. The MT and PMT replicates
clustered together (Figure 3B). These results demonstrated that
the expression patterns of phenotypic females and males was
significantly different. However, the expression profiles showed
more similarity between males and pseudomales. Although
females and pseudomales retained the same genotype, the
expression profiles were quite different. Males and pseudomales
possessed different sex chromosomes, but the expression
patterns were similar.

Among the DEGs, 5851 genes were significantly differentially
expressed in FO vs. MT. 5611 genes were found differentially
expressed in FO vs. PMT. Between MT vs. PMT, only 426
genes were identified as DEGs (Figure 3C and Supplementary
Table S1). Regarding the functions of the DEGs, a large number
of genes related to gonad development and sex differentiation
were identified, which include Dmrt1, Dmrt3, HSD3b1, AMH,
HSD3b7, esr1, SOX9, GATA4, GATA6, cyp19a, AMHR2 (Table 1).
The heatmap of hierarchical clustering of DEGs was generated
to visualize the expression patterns. The profile of phenotypic
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FIGURE 2 | The identification of phenotype and genotype by and PCR. (A–C) Identification of phenotype, the gonadal histology of female, male and pseudomale.
(D) The sexual ratio of LT and HT groups. (E) The survival rate of LT and HT group. (F) The identification of genotype by female-specific fragment.

female was obviously different with all phenotypic male.
The expression pattern of pseudomale was prone to that of
male (Figure 3A).

After filtration, the DEGs were applied to perform GO
analysis and KEGG enrichment. All the DEGs were mapped
to GO terms and compared with the background of the whole

TABLE 1 | Summary statistics of gonad transcriptome sequencing data.

Sample Raw reads Clean reads Error Q20 Q30 GC

Female-1-1 19757381 13615230 0.03 96.81 93.42 48.92

Female-1-2 19757381 13615230 0.03 95.56 91.42 48.92

Female-2-1 19500137 13249659 0.03 96.67 93.12 49.79

Female-2-2 19500137 13249659 0.03 95.83 91.88 49.79

Female-3-1 16918995 16322468 0.03 96.70 91.61 48.96

Female-3-2 16918995 16322468 0.03 96.72 91.61 48.95

Male-1-1 14492850 13853200 0.03 95.56 92.03 46.69

Male-1-2 14492850 13853200 0.03 95.61 92.00 46.78

Male-2-1 15806041 12193814 0.03 96.88 93.80 47.18

Male-2-2 15806041 12193814 0.03 95.73 91.97 47.14

Male-3-1 17961443 13498787 0.03 96.54 93.11 46.25

Male-3-2 17961443 13498787 0.03 95.45 91.30 46.33

Pseudomales-1-1 19970045 13033818 0.03 97.05 94.08 47.09

Pseudomales-1-2 19970045 13033818 0.03 95.40 91.43 46.98

Pseudomales-2-1 21633228 12794338 0.03 96.41 92.76 48.13

Pseudomales-2-2 21633228 12794338 0.04 94.95 90.50 48.02

Pseudomales-3-1 18792243 12507202 0.03 96.99 94.00 46.91

Pseudomales-3-2 18792243 12507202 0.03 94.98 90.76 46.80

transcriptome. They were significantly enriched in several GO
terms in biological process, cellular component and molecular
function (Supplementary Table S2). The results of enrichment
were as follow: (1) In DEGs of FO vs. MT, the terms related
to sexual differentiation and the regulation of reproduction
were enriched, including sperm motility, 3-beta-hydroxy-delta5-
steroid dehydrogenase activity and steroid hormone receptor
activity. Besides, the terms about immune response were
enriched (Figure 4A). (2) In FO vs. PMT, the terms of steroid
hormone and helicase activity were detected, such as steroid
hormone receptor activity and helicase activity (Figure 4B). They
were also involved in reproduction and sexual differentiation
and development. (3) In MT vs. PMT, it was found that
some terms related to reproduction and the generation and
development of testis was detected, comprising of male gamete
generation, spermatogenesis, spermatid development, spermatid
differentiation, and sterol transport (Figure 4C). Interestingly,
the terms about sperm generation and differentiation were
detected, including male gamete generation, spermatogenesis and
spermatid differentiation and development. Surprisingly, the GO
terms about energy metabolism were enriched, including UTP
metabolic process, CTP metabolic process, CTP biosynthetic
process, GTP metabolic process (Figure 4C and Supplementary
Table S2). These terms are involved in meiosis and gamete
generation, and may influence sperm activity. Meanwhile, KEGG
pathway enrichment analysis was performed. A total of 44 KEGG
terms were significantly enriched. The enriched signal pathways
were similar in FO vs. MT and FO vs. PMT, including ribosome
biogenesis, cell adhesion and metabolism and biosynthesis.
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FIGURE 3 | The expression profiles and DEGs among females, males and pseudomales in gonads. (A) Heatmap analysis of hierarchical clustering of DEGs in
females (FO1, FO2, FO3), males (MT1, MT2, MT3), and pseudomales (PMT1, PMT2, PMT3). Each column represented an individual, and each row represented a
gene. The FPKM was transformed by log10. Red color represented the high expressed genes, and green color represented the low expressed genes. (B) PCA plot
of specimens. (C) Venn diagram shown the numbers of expressed genes and DEGs in FO, MT and PTM.

Only one signal pathway involved in metabolism was enriched,
phosphatidylinositol signaling system (Figure 5).

Identification of Genes Involved in Sexual
Differentiation and Gonad Development
To identify genes involved in reproduction, including gonad
development, gametogenesis and steroid biosynthesis in
C. semilaevis, three strategies were used. (1) Sex-related
genes were retrieved from the enriched GO terms, related
to reproduction and steroid. (2) The DEGs were filtered by
a set of key words that had been reported in other teleost,
including gonad, sex, oocyte, meiosis, steroid, reproduction,
and morphogenesis (Fan et al., 2014; Shao et al., 2014; Robledo
et al., 2015). (3) Part genes were chosen from sex-related KEGG
pathways. In accordance with these strategies, a set of potential
candidate genes were obtained, and qRT-PCR validation
were conducted (Table 2). Additionally, the DEGs of MT vs.
PMT were analyzed independently, and the genes involved
in spermatogenesis, gamete generation and development and
energy metabolism were selected (Table 3).

qRT-PCR Validation
The expression patterns of ten DEGs (Sox9, GATA4, Dmrt1,
AMH, HSD11b2, cyp19a1a, esr1, topaz1, GATA6, Sox3) associated
with gonad development or steroid biosynthesis were selected
for qRT-PCR validation. All the genes displayed consistent

expression patterns both in qRT-PCR and RNA-seq (Figure 6).
The Pearson correlation coefficient analysis exhibited correlation
between qRT-PCR assay and RNA-seq data (R = 0.394, P = 0.031),
indicating the accuracy and reliability of RNA-seq.

Sex-Specific Methylation Levels of
Gonadal cyp19a1a Promoter
The DEGs analysis, qRT-PCR validation as well as the results
of previous study (Shao et al., 2014), indicated that cyp19a1a
played an essential role in sex differentiation, and sex reversal
induced by temperature in C. semilaevis. It was regarded that
proper expression of cyp19a1a is essential for maintaining
the ratio of androgen and estrogen. The balance might be
destroyed by expression changes of cyp19a1a mediated by
abnormal environmental temperature. Epigenetic modification
is considered as one of the factors that might affect cyp19a1a
expression level.

To test our hypothesis, DNA methylation of cyp19a1a
promoter in gonad and muscle was examined. The CpG
dinucleotides ∼2000 bp upstream of the transcription start site
were selected, which had two approximate clusters: 10 CpGs
in the distal promoter region (−1857 to −1718, designated
as region I) and 6 CpGs in the proximal promoter region
(−357 to −220, designated as region II). No difference
in the methylation level was detected in the muscle tissue
among females, males and pseudomales (Figure 7B). In the
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FIGURE 4 | GO enrichment analysis of DEGs. DEGs were annotated to different GO terms in biological process, molecular function, and cellular component. (A) GO
enrichment analysis of DEGs in FO vs MT. (B) GO enrichment analysis of DEGs in FO vs PMT. (C) GO enrichment analysis of DEGs in MT vs PMT.

gonads, however, significant higher methylation levels were
observed in male and pseudomale testis than in the female
ovaries (Figure 7A). It was important to notice that high
temperature-induced sex reversal from females to pseudomales

is accompanied by the significant elevation of methylation level
of gonadal cyp19a1a promoter.

To investigate if the promoter methylation would regulate
the expression of cyp19a1a, qRT-PCR was performed in
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FIGURE 5 | KEGG enrichment analysis of DEGs.

gonads of three groups. The expression level in females from
LT and HT groups was similar, which were significantly
higher (P < 0.05) than that in males (both LT and HT
groups) as well as pseudomales, No expressional difference
was observed between males and pseudomales (P > 0.05)
(Figure 7C). Based on the methylation and expression data,
we conclude that the expression level of cyp19ala showed
highly negative correlation with the promoter methylation
levels in gonads.

However, it was not the same case in the muscle
tissue, where the cyp19a1a was only basally expressed.
The average methylation levels of cyp19a1a promoter
were similar and high in all, regardless of temperature

treatment (Figure 7B). Two-way ANOVA analysis
showed absolutely no differences among three groups
in the cyp19a1a promoter methylation level in terms of
temperature treatment (P > 0.05) and sex (P > 0.05).
Either, no significant interaction between the two factors
was found (P > 0.05).

DNA Methylation Inhibits
cAMP-Stimulated cyp19a1a
Promoter Activity in vitro
Transcription factor binding sites in cyp19a1a promoter were
predicted using MatInspector. Two binding sites for CREB were
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TABLE 2 | DEGs associated with sex differentiation and gonad development in FO vs. MT and FO vs. PMT.

Gene FPKM P-value Annotation

Female Male

FO vs. MT

LOC103389072 0 4.79 5.00E-05 Spermatid perinuclear RNA-binding protein-like, partial

spata22 0 5.94 5.00E-05 Spermatogenesis-associated protein 22

dmrt1 0 62.29 5.00E-05 Doublesex- and mab-3-related transcription factor 1

dmrt3 0 42.99 5.00E-05 Doublesex- and mab-3-related transcription factor 3

HSD3b1 0.24 48.53 0.0001 3 beta-hydroxysteroid dehydrogenase

AMH 1.20 138.89 5.00E-05 Muellerian-inhibiting factor

LOC103389439 0.39 40.41 5.00E-05 Steroid 17-alpha-hydroxylase

LOC103384146 0.23 22.01 5.00E-05 EGF-like module-containing mucin-like hormone receptor-like 1

LOC103381541 0.37 30.15 5.00E-05 Lutropin-choriogonadotropic hormone receptor-like isoform X1

HSD3b7 0.25 18.96 0.0001 3 beta-hydroxysteroid dehydrogenase type 7

LOC103388483 1.06 75.06 5.00E-05 Steroid 21-hydroxylase isoform X1

spef2 0.06 2.98 0.0001 Sperm flagellar protein 2

LOC103381193 2.35 89.68 5.00E-05 Estrogen receptor beta-like isoform X1

esr1 0.22 6.48 5.00E-05 Estrogen receptor isoform X2

Sox9 0.36 10.15 5.00E-05 Transcription factor SOX-9

amhr2 2.14 51.65 5.00E-05 Anti-Muellerian hormone type-2 receptor

GATA6 1.59 35.29 5.00E-05 Transcription factor GATA-6

topaz1 0.71 14.88 5.00E-05 Testis- and ovary-specific PAZ domain-containing protein 1

GATA4 0.54 10.33 5.00E-05 Transcription factor GATA-4

srd5a2 1.67 26.28 5.00E-05 3-oxo-5-alpha-steroid 4-dehydrogenase 2

ddx17 3.22 26.45 5.00E-05 Probable ATP-dependent RNA helicase DDX17

HSD17b1 3.42 13.93 5.00E-05 Estradiol 17-beta-dehydrogenase 1

LOC103386902 2.55 10.32 5.00E-05 Oocyte zinc finger protein XlCOF6-like

spata5l1 45.09 8.41 5.00E-05 Spermatogenesis-associated protein 5-like protein 1

ebp 75.74 8.35 5.00E-05 3-beta-hydroxysteroid-Delta(8), Delta(7)-isomerase

LOC103377895 37.95 4.18 5.00E-05 Oocyte zinc finger protein XlCOF6-like

cyp19a1a 5.85 2.14 5.00E-05 Aromatase-like

FO vs. PMT

LOC103388599 0 5.70 5.00E-05 R-spondin-3-like

LOC103389072 0 4.06 5.00E-05 Spermatid perinuclear RNA-binding protein-like, partial

spata22 0 3.07 5.00E-05 Spermatogenesis-associated protein 22

dmrt1 0 55.04 5.00E-05 Doublesex- and mab-3-related transcription factor 1

dmrt3 0 64.61 5.00E-05 Doublesex- and mab-3-related transcription factor 3

HSD3b1 0.24 51.35 0.0001 3 beta-hydroxysteroid dehydrogenase

AHM 1.20 146.5 5.00E-05 Muellerian-inhibiting factor

LOC103388483 1.06 121.78 5.00E-05 Steroid 21-hydroxylase isoform X1

HSD3b7 0.25 25.85 5.00E-05 3 beta-hydroxysteroid dehydrogenase type 7

LOC103389439 0.39 36.53 5.00E-05 Steroid 17-alpha-hydroxylase/17,20 lyase-like

LOC103381193 2.35 110.53 5.00E-05 Estrogen receptor beta-like isoform X1

esr1 0.22 9.96 5.00E-05 Estrogen receptor isoform X2

amhr2 2.14 93.25 5.00E-05 Anti-muellerian hormone type-2 receptor

Sox9 0.36 8.77 5.00E-05 Transcription factor SOX-9

smox 5.35 41.32 5.00E-05 Spermine oxidase isoform X2

LOC103387725 3.38 20.17 5.00E-05 Steroid 17-alpha-hydroxylase/17,20 lyase

meiob 123.82 8.06 5.00E-05 Meiosis-specific with OB domain-containing protein isoform X2

found in the CpGs in position −1818 and −226, respectively
(Figure 8B). In vitro study demonstrated that the methylation
could decrease the activity of cyp19a1a promoter. The activity
of unmethylated promoter could be significantly induced by
forskolin stimulation. In contrast, no significantly change was
observed in methylated promoter (Figure 8A).

DISCUSSION

Since the initial discovery of vertebrate GSD + TE, the
mechanism by which temperature exerts its influence on sex
determination has been extensively investigated (Ferguson and
Joanen, 1982; Rhen and Schroeder, 2010; Czerwinski et al., 2016;
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TABLE 3 | DEGs associated with spermatogenesis and energy metabolism in MT vs. PMT.

Gene FPKM P-value Annotation

Male Pseudomale

Spermatogenesis

LOC103396997 0.56 2.67 5.00E-05 Endothelial lipase-like

LOC103394959 1.33 8.987 5.00E-05 ATP-binding cassette sub-family G member 4-like

ldlr 0.53 8.227 5.00E-05 Low-density lipoprotein receptor

spef1 13.57 57.88 5.00E-05 Sperm flagellar protein 1

LOC103380361 11.79 48.08 5.00E-05 LOW QUALITY PROTEIN: oxysterol-binding protein-related protein 5-like

LOC103394710 2.60 17.04 5.00E-05 Kelch-like protein 10 isoform X3

tbx3 2.77 13.81 5.00E-05 T-box transcription factor TBX3 isoform X2

LOC103386655 3.39 19.34 5.00E-05 Kelch-like protein 10

LOC103380607 0.311 1.75 5.00E-05 MYCBP-associated protein-like

LOC103390132 2.16 9.965 5.00E-05 Galactosylceramide sulfotransferase-like

LOC103398025 4.40 0.685 5.00E-05 Spermatid perinuclear RNA-binding protein-like isoform X2

LOC103391171 1.73 19.68 5.00E-05 Nucleoside diphosphate kinase homolog 5-like

LOC103397033 0.41 1.895 5.00E-05 Citron Rho-interacting kinase-like, partial

LOC103395317 6.11 43.27 5.00E-05 DNAJ homolog subfamily B member 13-like isoform X2

Energy metabolism

LOC103391171 1.73 19.68 5.00E-05 Nucleoside diphosphate kinase homolog 5-like

LOC103393462 3.14 50.06 5.00E-05 Nucleoside diphosphate kinase A-like

LOC103392972 7.17 29. 70 5.00E-05 Nucleoside diphosphate kinase, mitochondrial-like isoform X2

FIGURE 6 | Verification of the expression patterns both in qRT-PCR and RNA-seq. The data was shown as mean ± SD (n = 6). Groups with different letters were
significantly different (P < 0.05).

Schroeder et al., 2016; Yatsu et al., 2016). Sex reversal can be
induced when the temperature achieved a threshold, and cause
sex ratio change. The sex of embryos, larva or juveniles can
be reversed completely or partly under a threshold temperature
in reptiles and teleost (Ferguson and Joanen, 1982; Strüssmann
et al., 1996; Hattori et al., 2013; Czerwinski et al., 2016). The
pseudomales have the same chromosome complement with
females, but the phenotype is completely different (Hu et al.,
2014). Usually, temperature exerts its influence at TSP of embryo,
larva or juvenile development, when the individuals remain sexu-
ally flexible (Navarro-Martín et al., 2011; Holleley et al., 2015).

In this study, a teleost, C. semilaevis, sensitive to temperature
was used. We demonstrated the significant imbalance of sex

ratio and survival rate after high temperature treatment in TSP.
The proportion of males was about 20% higher in HT group,
indicating masculinization was induced by high temperature.
This phenomenon have also been reported in M. menidia,
D. labrax, O. niloticus, and O. mykiss (Conover and Kynard, 1981;
Navarro-Martín et al., 2011; Valdivia et al., 2014; Wang et al.,
2017). Interestingly, only part of the females were easy to be
induced sex reversal. In a recent study, a SNP (A/T) of FBXL17
had large controlling effect on sex reversal in C. semilaevis,
and ZAW genotype would never reverse into phenotypic males,
while those with ZTW genotypes would sometimes undergo sex
reversal (Jiang and Li, 2017). Based on these results, we speculated
that some mutation might cause the females to be sensitive to
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FIGURE 7 | C. semilaevis cyp19a1a promoter methylation levels and correlation with gonad gene expression according to sex and temperature treatment. (A) The
methylation patterns of C. semilaevis cyp19a1a promoter in gonads. (B) The methylation patterns of C. semilaevis cyp19a1a promoter in muscle. Numbers indicated
CpG positions with respect to the transcription starting site. Open and filled circles denoted unmethylated or methylated positions, respectively, while no circles
denoted unknown methylation status due to sequencing problems. Eight to ten clones per fish were analyzed. (C) The relative expression level of C. semilaevis
cyp19a1a in gonads by qRT-PCR. The data was shown as mean ± SD (n = 6). Groups with different letters were significantly different (P < 0.05).

temperature, and sex reversal emerged when the temperature
exceeded threshold.

To explore the different expression profiling of female,
male and pseudomale, RNA-seq was performed. A lot of GO
terms involved in reproduction and steroid biosynthesis were
identified by DEGs and enrichment analysis. Interestingly, some
GO terms related to immune responses were also enriched.
Similar results were displayed in Pogona vitticeps, in which the
expression levels of prominent immune genes were significantly
lower in pseudomales than in females and males. Further,
canonical stress-related GO terms were enriched, including
defense response, response to biotic stimuli (Deveson et al.,
2017). It has been known that immune system was intertwined
with stress. Meanwhile, evidences showed that stress and sex
were connected in vertebrates. In Amphiprion akallopisos and
Odontesthes bonariensis, cortisol was considered the regulator
of sex change in response to environmental or social stress
(Hattori et al., 2009; Yoshinaga et al., 2010; Fernandino et al.,
2012, 2013; Kitano et al., 2012; Todd et al., 2016). In reptiles,
POMC and corticosterone-mediated stress was observed in sex-
reversed individuals (Deveson et al., 2017). In birds and rats,
elevated maternal corticosterone and ACTH skewed the sex ratio
of offspring (Barbazanges et al., 1996; Pike and Petrie, 2006). In
human, evidence indicated that maternal stress could enhance
the circulation of corticosterone and affect neuroendocrine
system. These stresses had long-lasting effects on offspring
morphology, behavior, physiology, and phenotype, which could
cause the imbalance of sex ratio (Obel et al., 2007; Navara, 2010;

Schnettler and Klüsener, 2014; van den Heuvel et al., 2018).
According to a series of studies, we speculated that the
C. semilaevis larva was stressed by high temperature, and immune
response was activated. Then, these responses influenced
endocrine system, which caused the up-regulation or down-
regulation of cortisol. The biosynthesis and secretion of steroid
were interfered, which leaded to sex reversal under the stress of
high temperature treatment. Till now, the evidence has not been
adequate, so the interaction of stress and endocrine and specific
mechanism need further study.

A series of evidences of environmental influences on
phenotype plasticity in vertebrate mediated by epigenetic
mechanisms, such as DNA methylation and histone deacetylation
has been obtained (Reik et al., 2001; Jaenisch and Bird, 2003).
Epigenetic regulation can inhibit or stimulate gene transcription,
which alters gene expression from the same genetic blueprint
and thus affects development and differentiation (Rottach et al.,
2009). In previous studies, whole-genome methylation has been
found to be involved in sex-induced by high temperature in
C. semilaevis, and methylation modification in sex-reversed males
was inherited. Besides, dosage of Z chromosomal region was
related to sex reversal in C. semilaevis (Chen et al., 2014;
Shao et al., 2014). However, it was found higher levels of
methylation of cyp19a1a and also higher levels in gene expression
of cyp19a1a (Shao et al., 2014). In the present study, we found
that the methylation level of C. semilaevis cyp19a1a promoter
was significantly higher in males than in females. Importantly,
the methylation profiles of pseudomales were similar with males,
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FIGURE 8 | The effect of DNA methylation of cyp19a1a promoter on cAMP-stimulated activities. Unmethylated and methylated reporter plasmids were transfected
to HEK 293T cells. Luciferase activities were measured 48 h after transfection. Fold change was calculated, and cyp19a1a-Luc group was used as control. (A) The
CREB mediated stimulation of cyp19a1a promoter activities by forkolin in HEK 293T cells. (B) The location of CG sites and CREB sites in two approximate clusters
of cyp19a1a promoter. The data was shown as mean ± SD (n = 3). ∗∗P < 0.01 represented significantly different.

FIGURE 9 | The possible diagram of generating sperm and reproducing next generation in pesudomales and normal males.
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but absolutely different from females, although pseudomales had
the same genotype (ZW) with females. Based on the methylation
and expression data, we concluded that the expression level of
cyp19a1a showed highly negative correlation with the promoter
methylation levels in ovaries and testes. In Oryzias latipes,
DNA methylation of cyp19a1a promoter was reported to be
related to sex differentiation (Contractor et al., 2004). The
methylation levels were twice in males compared with females
in D. labrax gonads (Navarro-Martín et al., 2011). Besides,
the allied discoveries was also observed in O. niloticus and
P. olivaceus (Fan et al., 2017; Wang et al., 2017). Cyp19a1a played
important roles in sex differentiation by regulating estrogen
synthesis. In C. semilaevis, females and pseudomales had the
same genetic background (ZW), but different DNA methylation
and expression levels of cyp19ala. Epigenetic modification caused
by high temperature might transform the topology of DNA
and block the binding of transcription factor, which could
change the expression of cyp19a1a. In vitro study demonstrated
that the methylation of −1818 and −226 sites in cyp19a1a
promoter inhibited the binding of transcription factor CREB
and suppressed the promoter activity, which could regulate the
expression level of cyp19a1a. Thus, our results clearly showed that
epigenetic modification, most likely DNA methylation, regulated
the expression of gonadal cyp19a1a, which then mediated
sex differentiation.

Interestingly, a lot of DEGs between males and pseudomales
were enriched to GO terms involved in spermatogenesis,
including spermatogenesis, male genitalia development, male
gamete generation, spermatid development, and spermatid
differentiation. Both males and pseudomales generate sperms,
but the process seemed to be significantly different. In males, only
Z type sperms were generated, but both Z type and W type sperms
were generated theoretically in pseudomales. The generation of
different types of sperm might influence spermatogenesis and
spermatid differentiation and development. Surprisingly, GO
terms related to energy metabolism such as UTP, GTP, and CTP
biosynthetic process and metabolic process were also enriched in
DEGs between males and pseudomales. Energy metabolism could
affect the sperm vitality. The results implied the quality of sperm
generated from males and pseudomales might be significantly
different. In theory, super female (WW) individuals could be
generated by W type sperm fertilized with W type eggs. However,
super females were never observed in the larval stage in our
lab produced by pseudomales (unpublished data). These lines of
evidence suggest that W type sperm generated from pseudomale
might have weak vitality. Pseudomales might unable to generate
function W type sperms or the WW embryos could not develop
normally to larva (Figure 9).

CONCLUSION

In conclusion, we demonstrated that high temperature could
induce masculinization in C. semilaevis. The expression patterns
of pseudomales was similar to males, but the genes involved
in spermatogenesis and energy metabolism were differentially
expressed. Besides, high-temperature treatment could change the
epigenetic modification of cyp19a1a promoter, leading to DNA
methylation level increase in pseudomales, which results in the
decrease of cyp19a1a expression. There was a negative correlation
between methylation levels and expression of cyp19ala. Thus the
epigenetic regulation of cyp19a1a might play an essential role in
the sex reversal induced by high temperature in C. semilaevis.
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