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Selective breeding for improving host responses to infectious pathogens is a promising
option for disease control. In fact, disease resilience, the ability of a host to survive or
cope with infectious challenge, has become a highly desirable breeding goal. However,
resilience is a complex trait composed of two different host defence mechanisms,
namely resistance (the ability of a host to avoid becoming infected or diseased) and
endurance (the ability of an infected host to survive the infection). While both could
be targeted for genetic improvement, it is currently unknown how they contribute
to survival, as reliable estimates of genetic parameters for both traits obtained
simultaneously are scarce. A difficulty lies in obtaining endurance phenotypes for genetic
analyses. In this study, we present the results from an innovative challenge test carried
out in turbot whose design allowed disentangling the genetic basis of resistance and
endurance to Philasterides dicentrarchi, a parasite causing scuticociliatosis that leads
to substantial economic losses in the aquaculture industry. A noticeable characteristic
of the parasite is that it causes visual signs that can be used for disentangling
resistance and endurance. Our results showed the existence of genetic variation for
both traits (heritability = 0.26 and 0.12 for resistance and endurance, respectively) and
for the composite trait resilience (heritability = 0.15). The genetic correlation between
resistance and resilience was very high (0.90) indicating that both are at a large extent
the same trait, but no significant genetic correlation was found between resistance
and endurance. A total of 18,125 SNPs obtained from 2b-RAD sequencing enabled
genome-wide association analyses for detecting QTLs controlling the three traits.
A candidate QTL region on linkage group 19 that explains 33% of the additive genetic
variance was identified for resilience. The region contains relevant genes related to
immune response and defence mechanisms. Although no significant associations were
found for resistance, the pattern of association was the same as for resilience. For
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endurance, one significant association was found on linkage group 2. The accuracy
of genomic breeding values was also explored for resilience, showing that it increased
by 12% when compared with the accuracy of pedigree-based breeding values. To our
knowledge, this is the first study in turbot disentangling the genetic basis of resistance
and endurance to scuticociliatosis.

Keywords: aquaculture, disease, resilience, resistance, endurance, scuticociliatosis, turbot

INTRODUCTION

Infectious diseases represent a major threat to farmed animal
populations. In addition to their impact on health and welfare
of the affected animals and the associated production losses,
they can also have implications for food security and human
health (Wiethoelter et al., 2015). In recent years, genetic disease
control strategies through artificial selection for enhancing
host response to infectious pathogens have received increasing
interest. In particular, disease resilience, the ability of a host
to survive or cope with infectious challenge, has become
a highly desirable breeding goal (Bisset and Morris, 1996;
Ødegård et al., 2011a; Hermesch, 2014; Colditz and Hine, 2016;
Gjedrem and Rye, 2016; Houston, 2017). However, resilience
to infections is a complex trait composed of different types of
response mechanisms (Bisset and Morris, 1996; Doeschl-Wilson
and Lough, 2014; Colditz and Hine, 2016). For diseases with
potential lethal outcome, two host traits in particular affect
survival. These are resistance, here defined as the ability of
a host to avoid becoming infected or diseased when exposed
to infectious material, and endurance, here defined as the
ability of the host, once infected or diseased, to survive the
infection (Ødegård et al., 2011b). Note that endurance is closely
related to tolerance, which refers to the ability of an infected
host to reduce the fitness consequences of infection (Roy and
Kirchner, 2000). However, to date, the relative importance of
either mechanism (resistance and endurance) to survival is
unknown. Disentangling both components is critical in genetic
improvement programmes because they could be antagonistically
related and also because they may have different effects on
disease spread in a population; whereas individuals with high
resistance likely reduce disease spread, infected individuals
with high endurance may be more tolerant and transmit
infections for longer.

The existence of genetic variability is a prerequisite for
obtaining genetic responses through selection but very
few studies have been designed to estimate the genetic
basis of both resistance and endurance. In fact, most
studies investigating host genetics for infectious diseases
have focused on host resistance (Bishop and Woolliams,
2014), as endurance is difficult to quantify or analyse
from available animal disease data (Ødegård et al., 2011b;
Kause and Ødegård, 2012).

The consequences of infectious diseases on animal production
seems to be most problematic in the conditions of aquaculture
settings. The confinement in tanks or cages, where many
individuals share a common environment, highly facilitates
the transmission of infections. Indeed, the economic impact

of diseases on aquaculture, entails losses of more than six
billion US $ per year (World Bank, 2014). In selection
programmes designed for improving resistance to disease,
phenotypes are commonly obtained from challenge tests
for specific pathogens. Given that challenged fish cannot
be used as breeding candidates, selection is based on sib’s
performance and thus, only the between-family component
of the genetic variance can be exploited when using only
pedigree information (Nielsen et al., 2009). A potential way to
exploit the within-family component would be to apply genomic
selection (Meuwissen et al., 2001) for which important benefits
have been showed from computer simulations (Nielsen et al.,
2009; Sonesson and Meuwissen, 2009; Villanueva et al., 2011;
Lillehammer et al., 2013) and analyses of data of different
aquaculture species (Ødegård et al., 2014; Palaiokostas et al.,
2016, 2018a,b; Tsai et al., 2016). An alternative would be
to apply marker assisted selection (MAS) if major QTLs
have been identified (e.g., Houston et al., 2008; Moen et al.,
2009). Given the recent history of selective breeding for most
aquaculture species (Gjedrem et al., 2012), it could be expected
that major genes for disease traits are still segregating in
commercial populations.

Within aquaculture species, turbot (Scophthalmusmaximus) is
the main flatfish produced worldwide due to its high commercial
value. This has prompted its intensive farming during the
last decades and a fast development of genomic resources
for the species (Martínez et al., 2016). World production
of farmed turbot reached over 65,000 t in 2015 while total
catches were only about 6,000 t (EUMOFA, 2018). One of the
main threats for the growing turbot aquaculture sector are the
pathologies caused by bacteria, viruses, and parasites (Pereiro
et al., 2016). Specifically, scuticociliatosis, a disease caused by
the histophagus ciliate Philasterides dicentrarchi, is responsible
for very important economic losses not only for the turbot
industry, but also for other aquaculture species such as the
olive flounder (Paralichthys olivaceus), fine flounder (Paralichthys
adspersus), European sea bass (Dicentrarchus labrax) and kelp
grouper (Epinephelus bruneus) among others (Harikrishan
et al., 2012; Folgueira et al., 2018). Although the immune
mechanisms against scuticociliates are unclear (Piazzon et al.,
2013), a relevant characteristic of P. dicentrarchi is that it
causes visual conspicuous signs that can be used as proxy of
the time of onset of disease, therefore allowing disentangling
resistance and endurance.

In this study, we analysed data from an experiment carried
out in turbot infected with P. dicentrarchi in order to estimate
genetic parameters and identify potential QTLs for resistance,
endurance and the composite trait resilience, using pedigree and
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high-throughput SNP data. The accuracy of genomic selection
was also estimated to determine its potential.

MATERIALS AND METHODS

Data and Trait Definitions and
Measurements
Data used in this study came from an innovative transmission
experiment specifically designed for disentangling the
different components of the host response to infection, using
scuticociliatosis in turbot as a model. The different components
include not only resistance and endurance but also infectivity
(i.e., the propensity of an infected individual to transmit the
disease). Given that the statistical models for genomic analyses
of infectivity are not fully developed yet, here we focus on the
two first components (i.e., resistance and endurance). We also
considered the composite of both traits; i.e., resilience. This is the
trait most commonly recorded in aquaculture species to address
disease resistance in fish.

Philasterides dicentrarchi causes systemic infection in turbot,
invading internal organs such as brain, gills, liver, and intestine
that generally results in the death of the host (Paramá
et al., 2003). This parasite has been associated with various
pathological changes including exophthalmia, colour change or
depigmentation, visible lesions or abnormal swimming behaviour
(Piazzon et al., 2013). Here, the appearance of visual infection
signs was used as a proxy for time of onset of disease. Accordingly,
the resistance phenotype was the number of days to the onset of
visual signs, whereas the endurance phenotype was the number
of days from the onset of visual signs to death; the resilience
phenotype was then the number of days from the start of the
experiment until death.

One thousand and eight hundred individuals from 44 full-sib
families (29 sires and 25 dams) were challenged (either by
injection or cohabitation with infected individuals, as described
below) with P. dicentrarchi at the Cluster de Acuicultura de
Galicia (CETGA, NW Spain) facilities. The CETGA’s broodstock
represent a population of Atlantic origin (Maroso et al., 2018) that
was founded with individuals sampled just before or at the start
of the main selection programmes established in Europe (Janssen
et al., 2017). Due to space limitations, the experiment was carried
out in two consecutive trials although families for both trials were
created at the same time. There were 900 fish and 22 families for
each trial. The trials were run until no new infections or deaths
were observed in most of the tanks after 1 week and lasted for
104 (trial 1) and 160 (trial 2) days. Overall mortality rate was
69% in trial 1 and 64% in trial 2. Both fish that died during the
experiment and fish that survived at the end of the experiment
were examined for the presence of parasites.

The detailed experimental design is given in Anacleto et al.
(2019). Briefly, fish were distributed in 72 tanks (36 in each
trial). Each tank contained five shedder fish from the same
family previously infected with the parasite by intraperitoneal
injection. Shedder fish were inoculated with 200 µl of sterile
physiological saline containing 50,000 and 56,000 ciliates for
trials 1 and 2, respectively, given the lower weight of fish and the

higher virulence of the isolate of P. dicentrarchi used in trial 1
(see below). In addition, each tank contained 20 recipient fish
(originally non-infected) from four different families (five fish
per family). These four families constituted a recipient family
combination. In each trial, the total number of shedder families
and family combinations were four and nine, respectively. Each
of the four shedder families infected all nine family combinations
(4 × 9 = 36 tanks) by cohabitation. Each recipient family
was represented in eight tanks and in two different family
combinations. A summary of numbers of fish and families used
in each trial is given in Table 1.

Fish were inspected twice a day for visual signs and mortality,
and dates of first detection of visual signs or death were collected.
Weight of fish was recorded at the start and at the end of the
challenge (or at the time of death). The average weight (g) of
fish was 32.9 (SD = 9.5) and 88.5 (SD = 27.3) in trials 1 and
2, respectively. Individual fish were identified using elastomers
(families) and fin clipping (individuals within a family). Fin tissue
samples were collected for DNA extraction and genotyping at
GeneAqua facilities.

The data analysed corresponded to the 1,440 recipient fish
challenged by cohabitation. These fish belonged to 36 full-sib
families (i.e., 40 fish per family) created from 23 sires and 23 dams
that were unrelated. These families included 12 paternal half-sib
families (11 males were mated with 1 female, 11 males with 2
females, and 1 male with 3 females) and 11 maternal half-sib
families (12 females were mated with 1 male, 9 female with 2
males and 2 females with 3 males). Both trials were connected
through two male and three female parents.

Genome-wide SNP data were available for 1,394 offspring
(46 fish failed quality control) from the 36 full-sib families
and their 46 parents. Genotypes were obtained using a 2b-
RAD sequencing approach as described in Maroso et al. (2018).
Briefly, after mapping to the turbot reference genome (Figueras
et al., 2016) and applying quality filters (Maroso et al., 2018) an
initial set of 25,511 SNPs was obtained. From them, only those
present in 80% of parents and with a minimum coverage of
10× were retained. This set of SNPs was used as a reference to
obtain the SNPs in the offspring. Markers showing Mendelian
errors (offspring genotype being inconsistent with Mendelian
transmission, given the parental genotypes), unmapped SNPs

TABLE 1 | Duration of each trial (days), number of tanks, sires and dams, shedder
and recipient families and fish used in the challenge experiment.

Trial 1 Trial 2 Total

Days 104 160 264

No. of tanks 36 36 72

No. of sires 10 13 23

No. of dams 13 13 26

No. of families 22 22 44

Shedder 4 4 8

Recipient 18 18 36

No. of individuals 900 900 1,800

Shedder 180 180 360

Recipient 720 720 1,440
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and those with MAF < 0.015 in the parent population and with
extreme departures of Hardy–Weinberg equilibrium (p < 0.001)
were removed. Also, for tags containing multiple polymorphisms
only one SNP was retained. After quality control, a total of
18,125 SNPs were retained. The assembly of the turbot genome
(Figueras et al., 2016) has been recently improved through a
high-density genetic map (Maroso et al., 2018) and 97% of
the genome has been anchored constituting 22 megascaffolds
in accordance with its karyotype constitution. We followed
the linkage group (LG) nomenclature of Maroso et al. (2018),
where LG18 has been merged with LG8 (i.e., LG8+LG18 is
now LG8) when compared to the previous version of the map
(Figueras et al., 2016).

Estimation of Genetic Parameters for
Traits Associated With Host Response to
Infection
Environmental Effects and Heritabilities
The analysis of the genetic and environmental components
of resistance, endurance, and resilience was carried out using
survival analysis methodology. Survival analysis is optimal to
analyse time-to-event variables because it allows the use of
information from incomplete records (censored data), it takes
into account factors that determine the risk of the event of
interest over time and relies on functions that adequately
represent survival processes. Those individuals that survived to
the end of the experiment were considered as censored data for
resilience; those that survived without showing any visual sign
were considered as censored for resistance, and those that had
shown signs but survived to the end of the experiment were
considered as censored for endurance.

A non-parametric Kaplan–Meier (KM) estimator of the
survival function was obtained for each recipient family and for
each trial in order to assess the existence of variation between
family and trial groups for the three traits analysed.

Significance of systematic effects on survival was determined
by likelihood ratio tests using the Cox partial likelihood of
the data under the complete (with all systematic effects) and
reduced models (i.e., evaluating each effect at a time) using the
following model

h (t) = h0 (t) × exp (Xb), (1)

where h(t) is the risk of onset of visual signs (resistance) or
death (resilience and endurance) at time t; h0(t) is the baseline
function at time t (Cox model) stratified by trial, b is the vector
of systematic effects including the weight at the start of the
experiment (that ranged from 10.1 to 196.3 g, and for which ten
levels were considered) and the tank (71 levels as one tank in trial
1 was discarded due to a problem with oxygen supply), and X is
the incidence matrix relating risk at time t to the corresponding
level of systematic effects. Note that sources of variation within
tanks come from a combination of the environmental conditions
of each tank, shedder family, recipient family combination and
trial. Overall goodness of fit was assessed by the statistic R2

M of
Maddala (1983) which is a measure of the proportion of the
overall variation explained by the model.

The general model fitted to estimate the variance components
of the disease traits was a proportional hazards mixed model of
the form

h (t) = h0 (t) × exp (Xb+ Zu),

where h(t), h0(t), X and b are as in (1), u is a vector of animal
genetic effects, and Z is the design matrix for u. Animal genetic
effects were assumed to be distributed as a N (0, Aσ2

u), where
A is the numerator relationship matrix for all fish included in
the pedigree and σ2

u is the additive genetic variance. Heritability
estimates were obtained both in logarithmic and original scales.
The estimate in the logarithmic scale was obtained following
Ducrocq and Casella (1996) as h2

log = σ2
u/(σ2

u + π2/6). The
heritability in the original scale was estimated following Yazdi
et al. (2002) as h2 = σ2

u/(σ2
u+ (1/p)), where p is the proportion

of uncensored data.
The previous mixed model was solved both with

semi-parametric Cox and with parametric Weibull approaches.
The use of the Cox model does not require specification of
the distribution of the independent variable, but it has a larger
computational burden and it is more affected by the data
structure than Weibull models. The hypothesis of a Weibull
distribution was graphically tested by regressing log (-log S(t))
against log t, where S(t) is the survival function. A straight line is
expected if the Weibull model fits well.

The Survival Kit V.6.1 software (Mészáros et al., 2013),
which follows a Bayesian approach to solve for the unknowns
in the model, was used. The posterior density of the genetic
variance was estimated using the Gram–Charlier approximation
(Mészáros et al., 2013) and the probability of the additive genetic
variance being larger than 0 was computed.

Genetic Correlations
Estimation of genetic correlations between the disease traits and
also between these traits and growth was carried out under
a standard linear model framework given the complexity and
the lack of software available to estimate genetic correlations
using survival analysis techniques. Standard linear models
cannot handle censored data but they can easily accommodate
multi-trait models and the use of genomic relationship matrices,
which provide more precise information about the genetic
relationships between individuals. Growth rate was measured
as the difference in weight between the end (or the time of
death) and the start of the experiment divided by the number
of days. Pairwise correlations between resilience, resistance and
endurance and between these traits and growth rate were
estimated fitting bivariate animal models for each pair of traits
of the following form

y = Xb+ Zu+ e, (2)

where y is the vector of phenotypic records for a pair of traits,
b is the vector of fixed effects (weight and tank effects for
both traits), u and e are vectors of random animal genetic and
residual effects, respectively, and X, Z are the design matrices
for the corresponding effects. Here, var(u) = Go ⊗ G, where
⊗ denotes the Kronecker product, Go is the 2 × 2 additive
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genetic (co)variance matrix between the two traits and G is
the genomic relationship matrix computed as in VanRaden
(2008), and var(e) = Ro⊗I, where Ro is the (co)variance matrix
between residual terms for each trait and I is the identity matrix.
Bayesian estimates for (co)variance components in Go and Ro
were obtained via Gibbs sampling using the software GIBBS1F90
(Misztal et al., 2002). The number of Gibbs samples was 110,000.
The first 10,000 were discarded and then one sample every
20 was considered.

Accuracy of Genomic Selection and
Detection of QTL Regions Associated
With the Traits Defining the Host
Response to Infection
In order to evaluate gains in accuracy from using genomic
information, estimates of genetic and genomic breeding
values were obtained from standard BLUP and from GBLUP
(VanRaden, 2008), respectively. Both BLUP and GBLUP were
carried out with the BLUPF90 family of programmes (Misztal
et al., 2002). The model assumed was as in (2) but in a univariate
setting and thus, var(u) was Aσ2

u and Gσ2
u for BLUP and GBLUP,

respectively. The accuracy of pedigree-based and genomic
evaluations was estimated using a 10-fold cross-validation test.
Families were randomly split into ten groups. Within each
group, 90% of the fish were chosen to be part of the training
set and the rest was part of the validation set. The accuracy was
estimated as r

(
y, ŷ

)
/h, where r

(
y, ŷ

)
is the correlation between

the observed and predicted phenotype, and h is the square root
of the heritability (Legarra et al., 2008).

Mixed linear models were also fitted to perform genome wide
association analyses (GWAS) with the aim of detecting QTL
affecting the disease traits, testing one SNP at a time. The assumed
model was

y = Xb+ Zu+ wα+ e,

where y, X, b, Z, and u are the same as in GBLUP, w is the vector
containing the SNP allelic dosage for each fish in y and α is the
SNP substitution effect that was included as a fixed effect.

In order to estimate the proportion of the total genetic
variance explained by putative candidate regions identified
through the GWAS, a regional heritability analysis (RHA)
assuming the same mixed linear model was performed. For
that, a reduced genomic relationship matrix constructed from
the SNPs covering a specific putative QTL region previously
identified by GWAS was used instead of the G matrix computed
with all SNPs. Both GWAS and RHA were performed using
the software DISSECT (Canela-Xandri et al., 2015). Significance
of association in GWAS was assessed using a false discovery
rate (FDR) multi-test correction threshold at the 5% level
following the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995). Adjusted p-values were obtained with the
software Myriads (Carvajal-Rodríguez, 2018).

Regions flanking SNPs significantly associated with the traits
in the GWAS were explored for gene content using the turbot
genome browser1 (Figueras et al., 2016). These regions comprised

1http://denovo.cnag.cat/genomes/turbot/

±500 kb up and downstream from a particular candidate SNP.
The genes identified were further analysed using BLAST2GO
(Conesa et al., 2005) to determine whether their specific functions
were significantly enriched when compared to those of all genes
mapped in the turbot transcriptome.

Data Availability
The data that support the findings of this study are available
from CETGA (Cluster de Acuicultura de Galicia), but restrictions
apply to the availability of these data, which were used under
licence for the current study, and so are not publicly available.
Data are however available from the corresponding author upon
reasonable request and with permission of CETGA.

RESULTS

Table 2 gives a description of the data available for the three
traits in both trials. For instance in trial 1, 470 fish died during
the experiment (uncensored data for resilience) and 209 survived
(censored for resilience). From these 679 initial fish, 412 showed
visual signs (uncensored for resistance) and 171 survived without
showing any visual sign (censored for resistance). Fish that died
without showing visual signs are not considered for resistance but
they are included in the uncensored group for resilience. From
the 412 fish that showed visual signs, 375 died (uncensored for
endurance), and 37 survived (censored for endurance).

Phenotypic (Co)variation
Phenotypic distributions for resilience, resistance and endurance
for the two trials are presented in Figure 1. Within trial,
distributions of time to death (resilience) and time to onset
of visual signs (resistance) were very similar, while time from
the onset of visual signs to death (endurance) showed a
different distribution pattern. Endurance showed similar average
survival times in trials 1 and 2, while resilience and resistance
showed values about double in trial 2 than in trial 1 for
uncensored data (Table 2). This large variation observed between
trials could be due to a lower virulence of the pathogen
isolate used in trial 2 given that a later onset of visual
signs in recipient fish were found in this trial (Figure 2).

TABLE 2 | Number of data (N) and average number of days (standard deviation)
for the different traits.

Uncensored data Censored data

Trait Trial N Average (SD) N Average (SD)

Resilience 1 470 52.10 (18.46) 209 104.00 (0.00)

2 457 110.33 (27.55) 250 160.00 (0.00)

Resistance 1 412 42.74 (17.86) 171 94.95 (22.76)

2 344 101.45 (28.51) 238 158.76 (12.24)

Endurance 1 375 9.54 (8.75) 37 50.89 (28.12)

2 339 9.81 (9.64) 5 60.40 (67.83)

Resilience was measured as the number of days until death; resistance, as the
number of days to the onset of visual signs, and endurance, as the number of days
from the onset of visual signs to death.
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FIGURE 1 | Number of uncensored (light) and censored (dark) data in successive 10-day periods for resilience, resistance, and endurance, and both trials.

FIGURE 2 | Kaplan–Meier survival curves for trials 1 and 2 when fish are grouped by recipient families for resilience, resistance, and endurance.

In fact, trial 2 lasted 56 days more than trial 1. However,
Anacleto et al. (2019) showed that variation in time to the
appearance of visual signs and in time from signs to death
was similar in both trials. This suggests that despite the
different virulence of the pathogen strain, the same traits were
recorded in both trials.

The differences between trials justified the stratification
of the baseline hazard by trial for the three traits in the
survival analysis, particularly for resilience and resistance.
Kaplan–Meier survival curves (Figure 2) provided evidence
of phenotypic variation across recipient families for the
three traits, suggesting an underlying genetic component
for these traits.

The hypothesis of a Weibull distribution was graphically
tested (Supplementary Figure 1). Although R2 from the
linear regression analysis was high (>0.84), the graphs showed
deviations from linearity. This result justifies the use of
both Cox and Weibull models for the estimation of genetic
parameters. The estimates of the Weibull parameters (i.e.,
the slope or shape parameter ρ and the intercept or ρ log
λ, where λ is the scale parameter) for resilience, resistance
and endurance for trial 1 (trial 2) were, respectively, 2.23
(4.77) and -9.12 (-23.37), 1.95 (2.90) and -7.65 (-14.28),
and 1.23 (1.61) and -3.04 (-3.46). The fact that slopes
were >1 implies that the hazards increased overtime, as

expected. The different estimates of ρ and λ obtained
for both trials again justified the fit of different baseline
hazards for each trial.

Environmental Effects
The values of Maddala’s R2

M indicated that the proportion of
variation explained by the model for the three traits decreased
by about 5% when the initial weight was excluded from the
model. This proportion decreased up to 15% for endurance
and to 35% for both resilience and resistance when tank was
the effect excluded. Differences in the relative risk of death
or of showing visual signs across weight categories were not
significantly different, although a general trend was observed. The
larger the initial weight the lower was the risk (Supplementary
Figure 2). In particular, the category of fish with the lowest
weight (<25.0 g) had a 1.5-fold higher risk of death (resilience
and endurance) than the category with the highest weight
(>115.3 g). No apparent association between the initial weight
and the onset of visual signs (resistance) was detected. Different
risks of death and risks of showing visual signs were also
observed for fish maintained in the different tanks. A maximum
difference of ∼36-fold higher risk of death or showing signs
was observed between tanks. In particular, 27 tanks showed
significant risks of death and 14 tanks showed significant risk
of showing signs. Only one tank presented a significantly higher
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TABLE 3 | Estimates of additive genetic variance (σ2
u ) and heritability in the

logarithmic (h2
log), and original scale (h2) derived from survival analyses under Cox

and Weibull models

Trait Model N σ2
u h2

log h2

Resilience Cox 1,386 0.258 0.135 0.147

Weibull 0.399 0.195 0.211

Resistance Cox 1,165 0.561 0.254 0.255

Weibull 0.618 0.273 0.274

Endurance Cox 756 0.142 0.079 0.118

Weibull 1.927 0.742 0.644

Corresponding number of data (N) available for each analysis is also indicated.

FIGURE 3 | Gram–Charlier approximations of the posterior density
distributions for the additive genetic variance under Cox models for resilience,
resistance, and endurance.

risk of death due to infection (∼ninefold) than other tanks
(Supplementary Figure 2).

Genetic Co-variation
Estimates of additive genetic variances and heritabilities derived
from survival analyses are given in Table 3. Estimates of
heritability when assuming the Cox model were slightly lower
than those obtained when assuming the Weibull model for
resilience (0.15 vs. 0.21) and resistance (0.26 vs. 0.27). For
endurance, however, the heritability estimated when assuming
the Weibull model was unexpectedly much higher (0.64)
than that obtained when assuming the Cox model (0.12).
Gram–Charlier approximations (Figure 3) showed that the
posterior distributions for the additive genetic variance were
significantly different from zero (probability > 0.95) when
assuming the Cox model.

The genetic correlation between resilience and resistance
was very high (0.90) indicating that both are, at a large
extent, the same trait. The genetic correlation between resilience
and endurance, although lower, was also high (0.77) and
much higher than the phenotypic correlation (Table 4). It is
worth mentioning that although the phenotypic correlation
between resistance and endurance was negative, the genetic
correlation between both traits was not significantly different
from zero. These results were in accordance with those obtained
from Pearson correlations between estimated breeding values
obtained from survival analysis assuming Cox animal models

(Supplementary Figure 3). The genetic correlation between
growth and endurance was not significantly different from
zero (Table 4) but those between growth and resilience,
and growth and resistance were high and positive (0.67 and
0.70, respectively).

Accuracy of Genomic Selection and
Detection of QTL Regions Associated
With the Traits Defining the Host
Response to Infection
The accuracy of genomic breeding values for resilience, based
on the 10-fold cross-validation results, was 12% higher than that
of pedigree-based breeding values (0.46 vs. 0.41, respectively).
GWAS revealed 16 significant SNPs associated with resilience
(FDR < 0.05). Thirteen of them were located on LG19 and
the remaining three were located on LG7, LG16, and LG23
(Figure 4A). Twelve of the SNPs on LG19 were part of the
same linkage block (Figure 4B) that presented an average linkage
disequilibrium, measured as the squared correlation between
pairs of loci (r2) of 0.51, and showed an average effect on
resilience of 4.66 (SD = 0.42) days. Their minor allele frequencies
ranged from 0.15 to 0.39 (Table 5). The region delimited by the
13 SNPs spanned 9.3 Mb (from 142,812 to 9,406,791 bp), included
98 SNPs and explained 33% of the total genetic variance for the
trait according to the RHA analysis. No significant associations
were found for resistance, although the pattern of−log(p) values
was very similar to that obtained for resilience. For endurance,
one significant association was detected on LG2 (Figure 4A).

Functional enrichment of the candidate region at LG19
using the turbot transcriptome as a reference revealed 32
genes with functions related to the immune or defence system.
These functions were associated with (i) tissue regeneration;
(ii) response to wounding; (iii) leukotriene production involved
in inflammatory response (Funk, 2001); (iv) activation of
NF-kappaB-inducing kinase activity involved in the regulation
of the immune system (Thu and Richmond, 2010); (v) toll-like
receptor 21 signalling pathway involved in the innate immune
response (Akira and Takeda, 2004); (vi) activation of MAPK
activity involved in innate immune response (Vidal et al., 2001);
and (vii) cellular defence response. Seven of these genes had been
previously suggested to be involved in the response to infectious
diseases in turbot (Supplementary Table 1).

DISCUSSION

Quantifying the host genetic contribution to epidemic risk and
severity remains a long-standing challenge in infectious disease
research. In this study, survival analysis and linear models were
used to disentangle the genetic basis of resistance and endurance
to disease, using scuticociliatosis in turbot as a model and taking
benefit from both pedigree and genomic information. The results
showed the existence of genetic variation for both traits and also
for resilience, the composite trait that includes both resistance
and endurance. Estimates of heritability were 0.26, 0.12, and
0.15 for resistance, endurance and resilience, respectively. The
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TABLE 4 | Genetic (above diagonal) and phenotypic (below diagonal) correlations between disease resistance traits and between disease resistance traits and growth
derived from linear model analyses.

Resilience Resistance Endurance Growth

Resilience 0.904 (0.845, 0.941) 0.765 (0.429, 0.915) 0.669 (0.362, 0.845)

Resistance 0.967 (0.962, 0.971) 0.358 (− 0.566, 0.884) 0.697 (0.277, 0.893)

Endurance 0.084 (0.010, 0.156) −0.152 (− 0.223,−0.080) 0.179 (− 0.554, 0.756)

Growth 0.228 (0.166, 0.288) 0.231 (0.161, 0.300) 0.007 (− 0.067, 0.080)

Ninety-five percent confidence intervals are indicated in brackets.

genetic correlation between resilience and resistance and that
between resilience and endurance were high. However, there was
no evidence of the existence of a genetic correlation between
resistance and endurance.

To the best of our knowledge, only few studies have
attempted to formally decompose genetic variation in survival
in fish populations (Ødegård et al., 2011b; Mazé-Guilmo et al.,
2014). Using a cure survival model, Ødegård et al. (2011b)
decomposed the observed time to death after an infection
challenge into two components, susceptibility (ability to avoid
infection) and endurance, from records on daily survival in
Pacific white shrimp challenged with the Taura syndrome virus.
This type of approach attempts to distinguish susceptible from
non-susceptible (“cured”) survivors. In contrast, in our study,
we used the appearance of visual signs as a proxy for time of
onset of disease and thus individual phenotypes for resistance
and endurance were obtained in an easy and non-invasive way
(Anacleto et al., 2019). In line with our findings, Ødegård et al.
(2011b) found that the heritability for the ability of fish to avoid
developing infection was larger than for endurance (0.41 and
0.07, respectively).

In this study, we distinguish resistance and endurance as
the two different genetic host traits affecting host survival
to infectious challenge. A much more common approach
is to distinguish between host resistance and tolerance as
the two alternative host defence mechanisms to infection,
where resistance refers to the propensity of a host to prevent
infection or limit its extent, and tolerance refers to the
propensity of the host to reduce fitness loss (e.g., death) under
infection (Simms and Triplett, 1994; Roy and Kirchner, 2000;
Restif and Koella, 2004; Detilleux, 2012). Based on these
definitions, endurance and tolerance are clearly closely related.
However, operationally, tolerance is typically defined as the
slope of a regression of host fitness against pathogen burden
(Simms, 2000; Råberg et al., 2007; Kause, 2011; Medzhitov et al.,
2012). Estimating tolerance slopes, thus requires measures of
pathogen burden. However, obtaining informative measures
of pathogen burden is a costly and often difficult task because
animals are infected at different time points and the pathogen
burden changes during the course of infection (Ayres and
Schneider, 2012; Doeschl-Wilson et al., 2012). The benefit
of using endurance over tolerance is that it does not require
measures of pathogen burden and that endurance estimates are
not hampered by the statistical constraints of reaction norms
(Kause and Ødegård, 2012; Lough et al., 2017). However, it also
prevents direct comparison between our endurance estimates

with tolerance estimates reported in the literature, despite the
fact both traits are closely related.

Estimates of heritability tended to be higher under the Weibull
than under the Cox model, especially for endurance (0.64 vs.
0.12, respectively). The fact that the graphical test of the Weibull
assumption (Supplementary Figure 1) showed deviations from
the linear pattern of response expected under this model might
partially explain the differences in the estimates. Estimates
of genetic variance under sire models were also obtained to
substantiate those obtained under animal models. Conceptually,
animal models are preferred over sire models because they take
into account both male and female paths of gene transmission
and because genetic variability is better assessed from the
variability in genetic values of individuals than from variability
among a reduced number of sires. This is especially critical when
sample size is not large, as in our case. However, sire models could
have some advantage to control bias associated with confounding
between genetic and contemporary group effects, especially when
the amount of uncensored data in contemporary group is small
(Jenko et al., 2013). In aquaculture settings, the contemporary
group is represented by the tank effect, which includes the effect
of the environmental conditions of the tank (temperature, water
quality, etc.) as well as the level of infectious challenge produced
by the infected tank members. Estimated heritabilities from sire
models for endurance under Cox and Weibull models were
closer to each other (0.07 and 0.13, respectively) than under
animal models, supporting the heritability estimates obtained
assuming Cox in the animal model. In addition, linear animal
models were also explored for the three disease traits (data not
shown). Heritability estimates under linear animal models were
substantially lower than the estimates obtained using survival
analysis for the three traits, which also questions the high
genetic variation estimated with the Weibull animal model for
endurance. However, linear models cannot accommodate the
use of censored information or the change of the effect of
factors over time, which implies a suboptimal use of the available
information. Overall, in our case, survival analysis under a Cox
animal model seems to be the method of choice, since it avoids the
assumption of the data following a Weibull distribution, enables
the use of all available information (censored and uncensored
data) and provides a flexible modelling framework, allowing
to accommodate differences in the two trials in the baseline
behaviour of the traits along the time of the experiment.

Our estimates of both phenotypic and genetic variances were
larger for resistance than for endurance, in agreement with
previous studies in fish (Ødegård et al., 2011b). This may indicate

Frontiers in Genetics | www.frontiersin.org 8 June 2019 | Volume 10 | Article 539

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00539 June 6, 2019 Time: 18:18 # 9

Saura et al. Genetic Variation for Resistance and Endurance

FIGURE 4 | Manhattan plots resulting from the GWAS for resilience, resistance, and endurance at two different false discovery rate thresholds (FDR = 1 or 5%) (A),
and linkage disequilibrium (r2) plot for the 13 significant SNPs identified in the 9.3 Mb candidate QTL region for resilience (B). Colour intensity of diamonds is
proportional to r2 values, which are given in percentage.
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TABLE 5 | Physical position (Pos), minimum allele frequency (MAF), estimated
allele substitution effect (in days of survival), standard error (SE), and p-value for
the significant SNPs identified in LG19.

Pos (bp) MAF Effect SE p-value

142,812 0.18 4.81 0.583 1.01E-05

166,008 0.16 4.78 0.591 3.29E-05

1,172,789 0.22 −4.20 0.603 4.43E-05

2,507,037 0.15 5.12 0.595 1.23E-05

3,038,920 0.16 5.07 0.593 1.03E-05

4,776,566 0.16 4.99 0.592 1.73E-05

6,112,359 0.18 4.85 0.621 2.15E-05

7,551,682 0.28 4.45 0.619 5.62E-06

8,127,848 0.26 4.45 0.619 8.14E-06

8,874,869 0.20 5.10 0.598 1.25E-06

9,054,353 0.25 4.33 0.640 3.61E-05

9,398,212 0.39 4.16 0.638 6.91E-06

9,406,791 0.38 3.82 0.631 3.27E-05

that fish vary genetically more in whether and when they develop
disease than in how they cope with the infection. This is useful
from an epidemiological point of view as fish that are less likely
to become infected or diseased are less likely to infect others.
However, the estimated heritability for endurance in our study
may be biased. This could be, at least in part, a consequence
of how traits were measured. In particular, visual signs may
indicate a progressed disease state rather than time of onset of
infection, and this may explain why there is more genetic and
phenotypic variance in resistance than in endurance. Also, there
may be additional variation between time of onset of infection
and time when visual signs develop. That is now attributed to
resistance but may refer to a coping mechanism and hence could
be arguably attributed to endurance. An indication of this may be
that some infected individuals after post mortem examination did
not develop visual signs in trial 2 (Anacleto et al., 2019). This may
partly explain why there is more genetic and phenotypic variance
in resistance than in endurance.

The availability of genomic information obtained from
RAD-sequencing for 36 families allowed us to identify a
candidate QTL region for resilience on LG19 that explains 33%
of the additive genetic variance. A preliminary study to identify
QTLs for survival to P. dicentrarchi was addressed by Rodríguez-
Ramilo et al. (2013). Using a linkage mapping approach with four
families and 98 microsatellite markers, they detected a significant
QTL for resilience that explained up to 22% of the phenotypic
variance and that was located on LG3. The discrepancy with
our results may be due to different reasons. Here, we have
carried out a more in depth analysis of the turbot response to
P. dicentrarchi by using high-throughput SNP genotyping and
a more refined map, and have analysed a larger amount of
families. Also, both studies differ in the via of infection used in
the challenge tests (injection vs. cohabitation) and thus the traits
analysed may not be necessarily the same. Although the GWAS
for resistance had not enough power to detect SNPs significantly
associated to this trait (the number of data available was lower for
resistance than for resilience), the pattern of−log(p) values in the
Manhattan plot was very similar to that for resilience, supporting

the hypothesis that both traits are, to a large extent, the same. The
pattern found for endurance was however different, which may
suggest that this trait is controlled by different genes.

Mining on the QTL region revealed several genes related
with immune response and defence mechanisms, some of
them previously identified for turbot infectious diseases,
including infections with P. dicentrarchi (Pardo et al., 2012),
viral hemorrhagic septicemia virus (Pereiro et al., 2016)
and Aeromonas salmonicida (Millán et al., 2011). Interesting
genes include the DMBT1 and MARCH8 genes (involved in
the activation of innate immune and defence response, and
the adaptive immune response), the PLEK gene (involved
in the regulation of response to stress) and the TRIM16
gene (involved in the regulation of host antiviral activities
mediated by cytokines). Validation of the candidate region
identified here in other genetic backgrounds is required,
but it may be an appropriate target for MAS, and for
functional studies designed to investigate the underlying
causative genes. An alternative approach for improving disease
traits would be to perform genomic selection (Meuwissen
et al., 2001). Here, the accuracy of genomic prediction
of breeding values outperformed by 12% the accuracy of
pedigree-based prediction. This is in line with the comparative
performance observed in gilthead seabream (Palaiokostas et al.,
2016), European seabass (Palaiokostas et al., 2018a), and
common carp (Palaiokostas et al., 2018b). Improvement in
prediction accuracy for these species was 27–53, 13, and
18%, respectively.

In contrast with other aquaculture species such as white
shrimp (Argue et al., 2002), rainbow trout (Henryon et al.,
2003), and coho salmon (Yáñez et al., 2016) where negative
genetic correlations between growth and resistance to
disease have been reported (Taura syndrome virus, viral
haemorrhagic septicaemia and salmon rickettsial syndrome,
respectively), we found that resilience and resistance
were favourably genetically associated with growth. This
might have important implications in selective breeding
programmes, since no detrimental effects on resistance to
scuticociliatosis are expected from current selection on growth,
which is the main breeding objective in turbot breeding
programmes. However, this result should be interpreted
with caution given that here we considered growth in
experimental challenged fish, which may not represent growth in
commercial settings.

In the context of animal breeding, understanding
whether resistance and endurance vary independently or
are antagonistically related (i.e., they represent alternative,
mutually exclusive defence mechanisms) is fundamental in
order to determine optimal disease control strategies. Here,
genetic correlations between resilience and its two components
(resistance and endurance) were positive and high, indicating
that selection on resilience will lead to improvement in both
defence mechanisms. However, when dealing with infectious
diseases, ignoring the impact of selection on disease transmission
(i.e., ignoring infectivity) can lead to undesired outcomes.
Individuals with greater endurance to infection will live longer
when infected and therefore may have more chances of infecting
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others. The negative side-effects are exacerbated if the hypothesis
that tolerance and hence also endurance mechanisms play a
role in the maintenance of the asymptomatic superspreader state
is true (Gopinath et al., 2014), as selection for resilience or
tolerance (and hence endurance) would maintain infection in
the population. From an epidemiological viewpoint, selection
for resistance would therefore be a better option (Doeschl-
Wilson et al., 2011). In agreement with the results from previous
fish studies disentangling resistance and endurance (Ødegård
et al., 2011b), the genetic correlation between both traits was
not significantly different from zero. However, selecting for
resistance against developing disease would require a measure
of the time of onset of visual signs (which may not be feasible
in large scale practical aquaculture breeding programmes) or
using non-standard statistical models such as cured models
(Kause and Ødegård, 2012). In any case, genomic selection would
be an alternative strategy as recording phenotypes could be
substantially reduced since estimates of SNP effects can be used
across generations. Anyhow, there is a need to understand to
what extent these conclusions apply to other diseases, and how
they are affected by the trait definition and measures.
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