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The early control and prevention of cancer contributes effectively interventions and
cancer therapies. Secretory protein, one of the richest biomarkers, is proved important
as molecular signposts of the physiological state of a cell. In this work, we aim
to propose a proteomic high-throughput technology platform to facilitate detection
of early cancer by means of biomarkers that secreted into the bloodstream. We
compile a new benchmark dataset of human secretory proteins in plasma. A series
of sequence-derived features, which have been proved involved in the structure and
function of the secretory proteins, are collected to mathematically encode these
proteins. Considering the influence of potential irrelevant or redundant features, we
introduce discrete firefly optimization algorithm to perform feature selection. We
evaluate and compare the proposed method SCRIP (Secretory proteins in plasma)
with state-of-the-art approaches on benchmark datasets and independent testing
datasets. SCRIP achieves the average AUC values of 0.876 and 0.844 in five-fold the
cross-validation and independent test, respectively. Besides that, we also test SCRIP
on proteins in four types of cancer tissues and successfully detect 66~77% potential
cancer biomarkers.

Keywords: secretory proteins, human plasma, human proteome, cancer biomarker, discrete firefly algorithm

INTRODUCTION

Cancer is a major public health problem in the world, a recent survey reports that more than 1.7
million new cancer cases were diagnosed in the United States in 2018 (Siegel et al., 2019). The
number is even three times higher than that in China. Early detection of cancer facilitates timely
diagnosis and therapy in its pre-invasive state prior to metastasis, which increases the chances of
successful treatment (Kessler, 2017). For instance, the cancers of the breast, larynx, colon and skin
can be effectively controlled in their early state. As a result, they can benefit from early prevision
and diagnosis (Medicine et al., 2003). Recently, increasing efforts and financial resources are
invested in early cancer detection research. Among these efforts, blood assays detecting promises
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high probabilities on patients’ survival for early cancers (Kim
et al,, 2013). Additionally, blood assays detecting is non-invasive
and financially reasonable (El-Zein et al., 2017), which makes it
widely available.

As one of the rich source of biomarkers, secretory proteins are
favored by biologists because they show various states of the cells
at real time under given conditions (Tonry et al., 2016). Featured
by the capability of reflecting various stages of diseases, secretory
proteins are desirable for diagnosis, prognosis, etc., Particularly,
in clinical diagnosis, direct analysis of blood/plasma is widely
used as one of the non-invasive patient screenings (Lin et al.,
2011). By coincidence, the proteins secreted by cells as responses
to various stimuli are most likely secreted into blood/plasma. As a
result, the accurate recognition of secretory proteins as potential
cancer biomarkers is becoming a promising approach.

Compared with time-consuming and labor-intensive
biochemical or biophysical approaches, computation-based
methods are becoming more and more popular in high-
throughput in-vivo research. Benefit from their convenience
and effectiveness, biologists focus on the in silico research to
handle the explosive growth of unknown protein sequences.
Hung et al. used informative physicochemical properties
together with inheritable bi-objective genetic algorithm to
predict secretory proteins (Hung et al., 2010). Liu et al. adopted
manifold ranking algorithm and regarded this problem as a
semi-supervised problem (Liu et al., 2010). SecretP was designed
for distinguishing three types of proteins (classically secreted
proteins, non-secreted proteins, and non-classically secreted
proteins) in mammals. It also fusing several new features into
Chou’s pseudo-amino acid composition (Yu et al., 2010). Hong
et al. collected features between proteins found in the normal
urine and that deemed not to be urine excretory. They trained
the model and used it for the identification of gastric cancer
markers in urine (Hong et al., 2011). NClassG+ was a classifier
that designed for non-classically secreted gram-positive bacterial
proteins (Restrepo-Montoya, 2011). Luo et al. (2012) used PSSM
together with auto covariance scheme. The former represented
the multiple sequence alignment profiles, and the latter was
applied to take the neighboring effects of the sequences into
account. Wang et al. proposed a sequence-based method for
identification of human salivary proteins from blood circulation.
They also used the model and predicted 31 candidate biomarker
proteins in saliva for breast cancer (Wang et al., 2013). Sun et al.
proposed a mathematical method to predict saliva-secretory
proteins. Using the predictor, they predicted potential salivary
biomarkers for head and neck squamous cell carcinoma
(Sun et al., 2015). iMSP was a sequence-based predictor for
identification of mammalian secreted proteins (Zhang et al,
2018). It also predicted 272 potential secreted proteins with
high confidence.

The above-mentioned research contributes to the knowledge
of secretory proteins. However, as far as we know, there exists
several shortcomings, which should be further considered. First,
few research investigates the intrinsic attributes of secretory
proteins. Some significant properties of secretory proteins have
remained unknown; second, for a typical machine learning
approach, feature selection is not only necessary but also crucial

for constructing a robust model (Zeng et al., 2017). The existences
of potential redundant or noisy features will somewhat influence
the feature space as well as ruin the constructed model; third,
secretory proteins find wide application in early cancer detection
research. Up to now, no specific predictor is proposed for the
in silico identification these special secretory proteins that serve
as cancer biomarkers.

To successfully address the above-mentioned issues, we focus
on the challenge of proposing an accurate predictor for the
identification of human secretory proteins in plasma/blood.
A number of sequence-based features that related to secretory
proteins are used to encode the proteins. We perform
comprehensive computation-based analysis and statistics for
these proteins. Considering the fact that machine learning
strategy is sensitive to the choice of feature space, we introduce
discrete firefly optimization algorithm to perform feature
selection. To further test the generalization of the proposed
method, we perform both benchmark and independent test and
compare SCRIP with current predictors. Besides that, we also
use SCRIP to recognize potential secretory proteins that serve as
biomarkers on four different types of cancers. SCRIP is expected
to become a promising tool for predicting and analyzing human
secretory proteins in plasma/blood.

MATERIALS AND METHODS

Framework of the Proposed Method

Figure 1 illustrates the framework of the proposed SCRIP.
The overall framework is consists of two parts, namely model
construction and query prediction. For the model construction
part, the training dataset is first quantified into various type of
features. Then, the feature space is filtered for optimal feature
subset by adopting discrete firefly optimization algorithm. Next,
the optimal feature subset is fed into the logistic regression to
generate the training model. For the query prediction part, the
query protein is encoded as a feature vector, and then filtered
by the optimal feature subset. After predicting by the pre-trained
model, it outputs the probability of being a secretory protein.

Benchmark Datasets
We collect a total number of 20,325 human proteins from
Swiss-Prot (December 16, 2018). From these human proteins,
we further collect 505 secretory proteins. To evaluate whether
these secretory protein has been detected experimentally in
blood/plasma, we check these proteins against Human Plasma
Proteome Project (Schwenk et al., 2017). We remove the proteins
that have less than 50 residues because these proteins are tend
to be segments. Then, blastclust (Altschul et al., 1997) is used to
cluster these proteins with the threshold of 30%. For each cluster,
we randomly pick one protein as the representative. Finally,
we obtain 332 secretory proteins in plasma/blood as positive
samples. To compile negative samples, we collect the rest 14,368
human proteins which are not annotated as secretory proteins.
We randomly pick 250 secretory proteins from positive
dataset and 250 non-secretory proteins from negative dataset
as the training dataset. The rest 82 secretory proteins and
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FIGURE 1 | Overall framework of the proposed SCRIP method.
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randomly picked 82 non-secretory proteins are used as the
testing dataset. To avoid potential bias on the sampling, we
repeat this procedure for ten times. The reported results are
the average and standard deviation of the ten experiments. For
comparison with previous studies, we also adopt the independent
testing datasets from iMSP (Zhang et al., 2018). The datasets
that used to generate and evaluate SCRIP are free available at
http://www.inforstation.com/webservers/SCRIP/.

Feature Construction

The Features of Relative Amino Acid Composition

As the basic element of proteins, amino acids play vital roles
in determining the protein folding into a specific structure.
However, all residues in a protein are not equally important.
Some are essential for constructing stable structure and function
of the proteins, while others can be readily replaced. The sequence
of amino acids determines protein’s activity and function. Given
the importance of the amino acids, the features of amino
acid composition has been widely used in mathematically
describing protein structures and functions (Wei et al.,, 2017;
Zhang et al., 2017a).

The features of amino acid composition is quantified
as relative differences between secretory proteins and non-
secretory proteins. We compute relative amino acid composition
(RAAC) using Composition Profiler (Vacic et al., 2007).
Specifically, we calculate RAAC for secretory proteins
against Swiss-Prot database and secretory proteins against
non-secretory proteins.

The Features of Secondary Structure

The secondary structure involves protein tertiary structure and
function sites. The proteins, which are enriched with folds, are
usually in a stable arrangement. Although molecular evolution in
families of related proteins tend to form similar structures, it may
eliminate some similarities on sequence or peptide motifs (Wink,
2018). This gives rise to the proteins belong to the same families
with similar secondary structures because they all diverge from a
common ancestor.

Besides secondary structure elements, some proteins
show propensities on certain super-secondary structure
motifs (Koch and Schaefer, 2018). For instance, “B-a-f” is
a typical common super-secondary structure. The central
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TABLE 1 | The RAAC values for secretory proteins against Swiss-Prot database and secretory proteins against non-secretory proteins.

AA type Secretory proteins Secretory proteins AA type Secretory proteins Secretory proteins

vs. Swiss-Prot vs. non-secretory vs. Swiss-Prot vs. non-secretory
proteins proteins

A —0.138 (0.000) —0.042 (0.000) M —0.125 (0.000) 0.003 (0.766)

C 0.578 (0.000) 0.098 (0.000) N —0.088 (0.000) 0.067 (0.000)

D —0.085 (0.000) 0.020 (0.051) P 0.274 (0.000) —0.057 (0.000)

E —0.012 (0.073) —0.098 (0.000) Q 0.088 (0.000) —0.118 (0.000)

F —0.072 (0.000) 0.056 (0.000) R —0.086 (0.000) —0.136 (0.000)

G —0.063 (0.000) 0.002 (0.883) S 0.243 (0.000) —0.002 (0.537)

H 0.051 (0.000) —0.068 (0.000) T 0.355 (0.000) 0.383 (0.000)

| —0.225 (0.000) 0.096 (0.000) \ —0.045 (0.000) 0.090 (0.000)

K —0.128 (0.000) —0.102 (0.000) W 0.133 (0.000) 0.068 (0.001)

L —0.004 (0.319) —0.038 (0.000) Y —0.129 (0.000) 0.042 (0.003)

The values in brackets are the p-values. The bold indicates the significantly enriched (>0.1, p-value < 0.05) or depleted (<—0.1, p-value < 0.05) amino acid.

A Fraction of residues that locate on
corresponding super-secondary structure motif
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motif. (B) Fraction of corresponding super-secondary structure motif.

FIGURE 2 | Statistics of super-secondary structure motifs in secretory proteins. (A) Fraction of residues that locate on corresponding super-secondary structure

B Fraction of corresponding super-secondary
structure motif
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o helix connects the C-termini of the first B strand, and
the N-termini of the second P strand. This results packing
its side chains against the B strand and therefore shielding
the hydrophobic residues of the f strands from the surface
(MacCarthy and Perry, 2019). Here, we introduce the features
of secondary structure (SS), which contains both putative
secondary structure probabilities as well as local super-secondary
structure motifs.

The Features of Evolutionary Conservation

With the evolution of generations, mutation occurs and
randomly changes residues in any positions of proteins (Zou
et al., 2015). Evolutionary conservation indicates that a set of
residues or peptide has been maintained by natural selection.
The conserved parts of a sequence are always related to its
space skeleton or biological function (Zou et al., 2018). In
this study, evolutionary conservation is calculated by aligning

the protein primary sequence against Swiss-Prot database. We
use psi-blast (Altschul et al., 1997) to perform the sequence
alignment and obtain the position-specific scoring matrix
(PSSM) as follows:

Sl—)A SZ—)R Sl—)V
S254 S25R Sy

PSSM= . . . (1)
SL—A SLsR SLv

Si>aa quantifies the probability of the i-th amino acids
(AA) being substituted by AA during the evolutionary
process. A higher score indicates this substitution is
favored, while the lower value represents the opposite.
The preferences of 20 amino acids being substituted
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FIGURE 3 | Relative difference of evolutionary conservation matrix between secretory and non-secretory proteins. The 20 amino acids residues are shown at the top
and right. Values higher than 5% indicate the corresponding substitution is favored by secretory proteins compared with that of non-secretory proteins, and are
colored blue. The red grids are the values lower than 5% and stand for the opposite. The amino acids are grouped using agglomerative clustering with complete
linkage.

TABLE 2 | The predictive performance of different types of features on training dataset using 5-fold cross-validation.

Type of features Sensitivity Specificity Precision Accuracy MCC F1 AUC
RAAC Average Stdev ~ 0.623 +£0.019 0573 +£0.015  0.593 +£0.009 0.598 +£0.010  0.196 £ 0.020  0.608 +£ 0.012  0.645 £+ 0.010
SS Average Stdev  0.614 £0.013  0.573 £0.015  0.590 + 0.011 0.593 +£0.012 0.187 £0.023 0.601 +£0.012  0.647 £ 0.019
EC Average Stdev  0.684 + 0.021 0.691 £0.018 0.689 +£0.016  0.687 +£0.016  0.375 £ 0.031 0.686 + 0.017  0.749 £ 0.011
PP Average Stdev  0.562 +0.018  0.660 +£ 0.027  0.624 +0.023  0.611 £0.019  0.224 +£0.039  0.591 +£0.019  0.652 + 0.011
The threshold is set where the MCC achieve the maximum value.

TABLE 3 | The predictive performance the combination of different types of features on training dataset using 5-fold cross-validation.

Type of features Sensitivity Specificity Precision Accuracy MCC Fl AUC
RAAC+SS Average stdev  0.630 +£0.016  0.581 £0.015  0.601 £0.009 0.606 £ 0.009 0.212+0.018 0.615+0.010 0.647 = 0.011
RAAC+EC Average stdev  0.690 + 0.020 0.698 +£0.016  0.695 + 0.014  0.694 +£0.014 0.387 £0.027 0.692 +0.015 0.752 + 0.009
RAAC+PP Average stdev  0.625 + 0.010  0.663 +£0.019  0.650 £ 0.013 0.644 £0.010 0.289 +£0.021  0.637 +£0.009  0.656 + 0.008
RAAC+SS+EC Average stdev  0.692 £ 0.019  0.702 £0.018 0.699 £ 0.017 0.697 £ 0.017 0.394 £0.034 0.696 +0.017  0.652 £ 0.013
RAAC+SS+PP Average stdev  0.645 +0.018 0.653 £ 0.009 0.650 £ 0.007 0.649 £ 0.009 0.298 +£0.017 0.647 £0.012 0.651 £ 0.013
RAAC+EC+PP Average stdev  0.698 +£ 0.014  0.706 +£0.012 0.703+£0.010  0.702 £0.010  0.404 £ 0.020 0.701 £0.011  0.757 &+ 0.006
RAAC+SS+EC+PP  Average stdev ~ 0.707 £0.017 0.716 £0.010 0.713+0.008 0.711 £0.009 0.423 +0.018 0.710 + 0.011 0.765 £ 0.010
The threshold is set where the MCC achieve the maximum value.

are statistically classified and analyzed by wusing the (Avrahami et al., 2001), sulfur (Suliman et al., 2002), aromatic

following formula:

L §=1, R = AA;
Sij = ;Si—ﬁ ) [ 5 =0, R; + AA; (2)
where R; indicates the i-th residues in the protein sequence. The
Sij is further normalized by using logistic function to eliminate
the influences of the length of the proteins. The features of
evolutionary conservation (EC) for each sequence is encoded as a
vector with 400 dimensions.

The Features of Physicochemical Properties
We collect eleven common used physicochemical properties (PP)
to encode secretory proteins. These properties include aliphatic

(Scheiner et al., 2002), hydrophobic (Strub et al., 2004), charge
(Heard and Weiner, 1998), polar (Kamtekar et al., 2010), positive
(Heard and Weiner, 1998), acidic (Goodwin et al., 2010), small
(Sghaier et al., 2013), tiny (Sghaier et al., 2013), and hydroxylic
(Chai and Zhang, 2018). For each properties, we first sum up the
values for each of the residues in the whole sequence, and then
calculate the average values for each properties.

Logistic Regression

In this work, we utilize logistic regression to build the models.
Logistic regression is a simple non-linear regression. Consider its
simplicity and effectiveness, logistic regression has been recently
widely used in predicting protein structures and functions
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FIGURE 4 | Comparison of predictive accuracy and fitness of three swarm optimization algorithms. (A) Discrete firefly algorithm, (B) discrete particle swam
optimization, and (C) genetic algorithm.

(Zhang et al., 2017b). Logistic regression assigns various weights
to each features in the optimal feature subsets. It is easy
to identify the valuable features and further investigate the
reasons. This leaves informative clues for future researchers.
Moreover, the outputs of logistic regression is between zero
and one, which indicates the probability of a query protein
to be non-secretory protein (0%) or secretory protein (100%).
Since logistic regression is a simple non-linear regression, it
has less chance to lead to overfitting. This attribute endows it
a good generalization. Particularly, the effectiveness of logistic
regression also promises the large scale of application, such
as human proteome.

Discrete Firefly Optimization Algorithm

Discrete firefly optimization algorithm is proved to be a powerful
nature-inspired algorithm for solving complex discrete problems,
such as flow shop scheduling (Marichelvam et al., 2014), fault
diagnosis (Fister et al., 2013), and feature selection (Long et al,,
2017). Discrete firefly optimization algorithm follows three basic
rules (Fister et al., 2013). First, a firefly will be attracted by other
fireflies regardless their sex; second, attractiveness is proportional

to their brightness and decreases with the distance among
them increases; third, the landscape of the objective function
determines the brightness of a firefly.

In the standard firefly algorithm, the light intensity I of a firefly
is defined as follows:

1(r)=Ipe™"" 3)

where I, denotes the light intensity of the source. Light
absorption is approximated using the fixed light absorption
coefficient y. The distance between any two fireflies
is expressed as:

rij=llsi —

(4)

sill=

where 7 is the dimensionality of the problem. The movement of
the i-th firefly is attracted by another more attractive firefly j, and
is applied as:

i
si=si + Boe "V (s; — 5) + o€

(5)
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AUC
0.709
+0.011
9.6e-20
0.714
+0.018
1.0e-14
0.795
+0.009
4.4e-13

Fi1
0.709
£0.020
2.5e-09
0.714
£0.012
9.1e-08
0.723
£0.027
4.36-07

McCC
0.426
+0.042
4.4e-09
0.431
+0.024
2.2e-07
0.449
+0.052
1.2e-06

Accuracy
0.718
+0.021
4.4e-09
0.715
+0.012
2.1e-07
0.724
+0.026
1.2e-06

Precision
0.719
+0.025
4.5e-08
0.718
+0.017
2.0e-06
0.727
+0.026
8.3e-06

Specificity
0.726
+0.0383
1.0e-06
0.721
+0.026

2.8e-05
0.730

Sensitivity
0.700
+0.025
l.1e-08
0.710
+0.021
1.0e-07
0.718

Average
stdev
p-value
Average
stdev
p-value
Average
stdev

TABLE 5 | Comparison of SCRIP with other state-of-the-art predictors on benchmark testing datasets.

Predictor
SecretomeP
SRTpred
iIMSP-U

+0.026

6.6e-05
0.735

+0.031

1.2e-07
0.733

p-value

0.817
+0.012

1.4e-10

0.734
+0.019
5.1e-06

0.469
+0.036
9.2e-06

0.734
+0.018
8.9e-06

0.735
+0.019
3.5e-05

Average
stdev

iMSP-H

+0.025

1.4e-04
0.765

+0.027

3.9e-06
0.754

p-value

0.844
+0.010

0.759 0.519 0.758
+0.047 +0.023

+0.024

0.763
+0.029

Average
stdev

SCRIP

+0.036

+0.027

N/A

N/A

N/A

N/A

N/A

N/A

N/A

p-value

The threshold is set where the MCC achieve the maximum value.

RESULTS AND DISCUSSION

The Characteristics of the Considered

Features

In this work, we encode the proteins by calculating the two types
of RAAC values. That is, the RAAC of secretory proteins against
Swiss-Prot, and the secretory proteins against non-secretory
proteins. As listed in Table 1, compared with the amino acid
distribution in Swiss-Prot, secretory proteins prefer cysteine,
threonine, serine, proline. When compared with non-secretory
proteins, secretory proteins are significantly enriched in
threonine, while depleted in lysine, glutamine and arginine.

Figure 2A illustrates the fraction of residues that locate on
various super-secondary structure motifs. “CHC” occupies the
biggest 27%, which means that most of the residues tend to locate
on this type of motif. However, if we consider the fraction of
super-secondary structure motifs, “CHC” is not the biggest. By
contrast, “CEC” occupies the largest part (Figure 2B), although
only 13% of residues locate on it. This indicates that the length of
“CEC” is about half of “CHC” in secretory proteins. Generally,
six prevalent super-secondary motifs occupy the majority of
all considered motifs. They are “CHC;” “HCH,” “ECH,” “HCE,
“ECE,” and “CEC;” respectively.

Figure 3 shows statistical frequencies of residues in public
available super-secondary structure motifs. Compared with non-
secretory proteins, secretory proteins tend to favor R-X, P-X,
Q-X, E-X, H-X, and W-X related substitutions. Particularly,
R-X, P-X and S-X related substitutions are most favored. By
contrast, V-X, I-X, and L-X related substitutions are not enriched.
C-X, i.e., cysteine-rich secretory proteins predominantly found
in the mammalian male reproductive tract and in the venom
of reptiles (Sevier and Kaiser, 2002). The formation of disulfide
bonds contribute to the protein folding and stabilization of
space structure (Sevier and Kaiser, 2002). This procedure
will make proteins easily been secreted into the extracellular
medium. Zhang et al. (2017¢) pointed out that branched
chain amino acids (isoleucine, leucine and valine) enhance
protein synthesis and secretion. As a result, the substitutions
for I-X, L-X, and V-X are relatively lower that the non-
secretory proteins.

The Performance of the Considered

Features

In this section, we evaluate each type of features on the training
dataset by using 5-fold cross-validation. We randomly pick
250 proteins secretory proteins and the equal number of non-
secretory proteins. We repeat the under-sampling for ten times to
avoid potential bias. Table 2 lists the average and stand deviation
of the ten experiments. Generally, the considered four types of
features all produce decent predictive results. RAAC gives out the
average MCC of 0.196 and AUC of 0.645. SS produce the average
MCC of 0.187 and the AUC of 0.647. Although we use eleven
physicochemical properties, the constructed model still produce
a decentaverage MCC of 0.224 and the AUC of 0.652. By contrast,
EC yields the highest prediction performance with the average
MCC of 0.375 and the AUC of 0.749.
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TABLE 6 | Comparison of stat-of-the-art predictors with the proposed method on
IMSP’s testing dataset.

Predictor Sensitivity Specificity Accuracy MCC AUC
SecretomeP 0.632 0.787 0.762 0.340 0.764
SRTpred 0.678 0.802 0.782 0.392 0.770
IMSP-U 0.631 0.866 0.829 0.443 0.821
IMSP-H 0.538 0.908 0.850 0.441 0.817
SCRIP 0.716 0.884 0.858 0.537 0.865

Next, we investigate that whether the combination of different
types of features contributes the recognition of secretory
proteins. The models that built on two types of features
slightly increase the average AUC values when compared with
that built on one type. This is also true for three types
of features than that on two types of features (shown in
Table 3). This indicates that each type of features contribute
to the identification of secretory proteins. When using the
considered four types of features, the model gives out the average
AUC of 0.765, and the average MCC and F1 of 0.423 and
0.710, respectively.

Comparison of Different Feature
Selection Approaches

We compare discrete firefly algorithm with other feature
selection approaches. These approaches include LASSO
(Least Absolute Selection and Shrinkage Operator) (Yamada
et al., 2014) and two swarm optimization algorithms, namely
particle swarm optimization and genetic algorithm. The initial
parameters are set as follows: for LASSO algorithm, the lambda
is set between 1 and 100, the predicted performance of the
model with the highest AUC is kept. The corresponding
feature subset is regarded as the optimal feature subset;
for genetic algorithm, we set the crossover equals 0.6 and
the mutation is 0.033; for discrete swam optimization
algorithm, we set the C1 and C2 as 1 and 2, respectively;
for discrete firefly algorithm, we set the randomness as
0.9 and the absorption coefficient as 0.5. Besides that,
the populations/particles/fireflies for three algorithms are
set as 50, and the max generation as 3000. We use the
same fitness function to optimize the swarm optimization
algorithms as well as the models. For Eq.7, we set w,
and wp as 0.55 and 0.45, respectively. That is, we aim to
select less number of features with the capability of produce
high accuracy model.

We compare the performance of three optimization
algorithms in feature selection as well as model construction

(shown in Figure 4). With the increase of the iterations,
the average fitness values of three considered algorithms all
obviously rise. Table 4 lists the predictive performance of
the considered four different algorithms. LASSO performs
feature selection by quantifies the linear dependency between
input features and output values (Fonti and Belitser, 2017).
As listed in Table 4, LASSO gives out the average AUC
of 0.784, and the MCC of 0.484, which is about 2.5% and
14.4% improvement than that of the direct combination of all
features. The improvement is relative slight when compared
with three swarm optimization algorithms. Concisely, the
average MCC value for discrete firefly algorithm increases from
about 0.28 to about 0.57. By contrast, discrete particle swam
optimization and genetic algorithm produce the average MCC
values from 0.28 to about 0.55, and 0.25 to 0.55, respectively.
Moreover, we notice that, discrete firefly algorithm select
254 features. It is much less than that of discrete particle
swam optimization (280 features) while slightly higher than
genetic algorithm (233 features). Although LASSO selects
the least number of features (74 for LASSO vs. 254 for
DFA), its prediction performance is unsatisfactory. That
is, LASSO incorrectly ignores many informative features.
To further evaluate whether the improvement of DFA is
significant or not, we further calculate the p-values between
DFA and other strategies. We first check the considered data
is normal or not. If it is normal, we use t-test. Otherwise,
we use wilcoxon rank test (Taheri and Hesamian, 2013). The
p-values indicate that, the performance of DFA is statistically
outperform other methods.

Comparison With Other Predictors on

Benchmark Testing Datasets

We compare our method with SecretomeP, SREpred, iMSP
on benchmark testing dataset. Table 5 reports the average
prediction performance of the considered predictors.
SecretomeP and SRTpred output the average AUC values
of 0.709 and 0.714, and achieve the average MCC values
of 0.426 and 0.431. General and species-specific models
of iMSP produce slightly different results (0.449 vs. 0.469
for MCC values, and 0.795 vs. 0.817 for AUC values). Our
method yields decent performance with the average MCC
of 0.519 (~11% higher than the second best iMSP-H) and
the average AUC of 0.844 (~4% higher than the second
best iMSP-H). It also gives out the best sensitivity and
specificity among all considered methods. Particularly, the
calculated p-values indicates the improvements of SCRIP
compared with other predictors are statistically significant.

TABLE 7 | Application of SCRIP to cancer biomarkers identification.

Types of Cancer Sensitivity Specificity Precision Accuracy MCC F1 AUC
Breast Cancer 0.769 0.718 0.057 0.719 0.156 0.107 0.776
Gastric Cancer 0.733 0.820 0.193 0.815 0.311 0.306 0.804
Lung Cancer 0.733 0.666 0.045 0.667 0.120 0.085 0.792
Pancreatic Cancer 0.667 0.691 0.135 0.689 0.190 0.224 0.811
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Comparison With Other Predictors on
iMSP’s Testing Dataset

We test the predictive performance of the proposed method
on iMSP’s testing dataset. It contains 398 secretory proteins
and 2126 non-secretory proteins. We compare our method with
SecretomeP, SREpred, and iMSP. We use the general model
(iMSP-U) and species-specific model (iMSP-H) of iMSP. The
results are listed in Table 6. Comparatively, the proposed method
produces a good result with the sensitivity of 0.716 and the
specificity of 0.884. Although our specificity is not the highest, it
is slightly lower than the highest specificity of iMSP-H. The latter
gives out the specificity of 0.908. However, we yield much higher
sensitivity at 0.716 than that of 0.538 for iMSP-H. We achieve the
highest MCC and AUC values of 0.537 and 0.845, respectively.
They are about 22% (0.537/0.443~1.22) and 5% (0.865/0.821~
1.05) higher than the second best iMSP-U. It proves our predictor
has a good performance of generalization.

Application to Cancer Biomarkers

Identification

In this research, we adopt the proposed method to recognize
cancer biomarkers. To do this, we collect four sets of cancer
proteins from the Human Protein Atlas (Uhlen et al., 2010). We
collect 2,451 breast cancer proteins, 257 gastric cancer proteins,
2,838 lung cancer proteins, and 317 pancreatic cancer proteins.
Then we remove the proteins with less than 50 residues. Next, we
map these proteins into Swiss-Prot to extract secretory proteins.
After that, we map the secretory proteins into the Human Plasma
Proteome Project to obtain related secretory plasma proteins.
We finally obtain 52, 15, 60, and 21 secretory proteins in
breast cancer, gastric cancer, lung cancer and pancreatic cancer,
respectively. We use these proteins as positive samples and the
rest proteins as negative samples. Table 7 lists the predictive
performance on the considered cancer proteins. Generally,
SCRIP produces a decent prediction of cancer biomarkers with
the AUC values range from 0.77 to 0.81. However, we notice the
relative low values of the MCC and F1 when compared with that
on the benchmark training dataset. It is because these datasets are
class-imbalanced, which will somewhat influence the threshold-
dependent criteria. Actually, SCRIP produces higher than 0.77 of
the AUC values on four types of considered cancer proteins.

CONCLUSION

This work proposed a novel computation-based method
named SCRIP for the identification of human secretory
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