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' Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD,
United States, 2 Oncolmmune, Inc., Rockville, MD, United States

CD24 is a glycosyl-phosphatidyl-inositol linked glycoprotein expressed in a broad range
of cell types including cancer cells. Although it is overexpressed in nearly 70% of human
cancers, copy number variation of the CD24 locus has not been reported for any cancer.
Here, we analyzed the genomics, transcriptomics, and clinical data of 1082 breast
cancer (BRCA) samples and other cancer samples from the clinically annotated genomic
database, The Cancer Genome Atlas (TCGA). The GISTIC2 method was applied
to stratify the CD24 copy number, and Cox regression was performed to compare
hazard ratio (HR) of CD24 overexpression, amplification and other traditional prognosis
features for overall survival (OS). Our data demonstrated that CD24 amplification strongly
correlated with its mRNA overexpression as well as TP53 mutant, cancer proliferation
and metastasis features. In particular, CD24 amplification was enriched in basal-like
subtype samples and associated with poor clinical outcome. Surprisingly, based on
the univariate Cox regression analysis, CD24 overexpression (HR = 1.62, P = 0.010)
and copy number amplification (HR = 1.79, P = 0.022) was more relevant to OS
than TP53 mutant, mutation counts, diagnosis age, and BRCA subtypes. And based
on multivariate survival analysis, CD24 amplification remained the most significant and
independent predictor for worse OS (HR = 1.88, P = 0.015).

Keywords: breast cancer, biomarker, copy number variation, CD24, TP53, basal-like

INTRODUCTION

CD24 is located on chromosome 6q21 and encodes a glycosylphosphatidylinositol-linked
cell surface glycoprotein (Hough et al, 1994). It is expressed on hematopoietic cells (Li
et al, 2004; Israel et al, 2005), neural cells (Nielsen and Cohen, 1996), epithelial cells
(Sleeman et al., 2006), muscle cells (Higuchi et al, 1999), stem cells (Lawson et al., 2006;
Shackleton et al., 2006), and many other cell types including cancer cells (Kristiansen
et al, 2002; Fillmore and Kuperwasser, 2007; Sagiv et al., 2008). In addition to the
immunological functions (Li et al., 2004, 2006; Liu and Zheng, 2007), recent studies
have implicated CD24 function in tumorigenesis and progression of multiple cancer types,
including carcinomas in lung, prostate, ovarian, breast, and brain (Kristiansen et al., 2002, 2003;
Fillmore and Kuperwasser, 2007; Sagiv et al., 2008). Cell surface CD24 has been shown to

Abbreviations: BRCA, breast cancer; ER, estrogen receptor; GSEA, gene-set enrichment analysis; HR, hazard ratio;
IHC, immunohistochemistry; OS, overall survival; PR, progesterone receptor; TCGA, the cancer genome atlas; TNBC,
triple-negative breast cancers.
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contribute to tumor metastasis and Src oncogene activation.
More recently, we and others have reported that CD24 is
translocated to nuclei, where it affects the stability of tumor
suppressor gene PI4ARF and TP53 (Wang et al, 2015). In
particular, we have found that CD24 silencing could prevent
functional inactivation of p53 by both somatic mutation and viral
oncogenes, and that TP53 mutated at a higher rate among glioma
and prostate cancer samples with higher CD24 mRNA levels
(Wang et al., 2015). As a result, several tumor cell lines have been
shown to be oncogenic addicted to CD24 overexpression as their
growth and metastasis are diminished upon inactivation of CD24
expression. However, despite the well-documented function of
CD24 overexpression in tumorigenesis, the driving force of CD24
overexpression in cancer has not been systematically investigated.

Tumorigenesis is driven by a combination of inherited and
acquired genetic alterations. Many studies, including reports
from TCGA project, have made use of multiplatform genomic
analysis to identify known and new genetic drivers of tumor
phenotypes (Hodis et al., 2012; Chen et al., 2016). Copy number
variation refers to either extra or missing copies of a gene. Gene
copy number amplification is a major genetic mechanism to
increase the expression of oncogenes. For example, amplification
of ERBB2, the gene encoding human epidermal growth factor
receptor two, has been reported in approximately 20% of
BRCAs and used for therapeutic decision (Bartlett et al., 2001).
Likewise, the MYC oncogene amplification has been established
in numerous cancer types and has emerged as a defining feature
for the classification of medulloblastoma (Ramaswamy et al.,
2016). Therefore, it is of considerable interest to determine
whether CD24 is amplified in human cancers, and if so whether
such amplification corresponds to CD24 overexpression and
clinical outcome. Here, we investigated the copy number status
and expression level of CD24 in BRCA, ovarian cancer, lung
cancer, and prostate cancer. We reported CD24 amplification in
carcinoma of breast, ovarian, lung but not in the prostate, and the
copy number amplification was strongly correlated with CD24
mRNA overexpression, which in turn correlated with signature
genes of tumor growth and metastasis. Most importantly, CD24
gene amplification seemed to be the most impactful genetic
alteration for the prognosis of BRCA.

MATERIALS AND METHODS

Datasets

We collected the largest publicly available cancer genomics
database namely TCGA with genomic, transcriptomic, and
clinical data (Figure 1). We accessed the TCGA data portal' and
downloaded mRNA expression quantification profiles (HTSeq-
FPKM) and masked copy number segment profiles for BRCA
(N = 1082), prostate cancer (N = 496), lung squamous cell
carcinoma (N = 500), and ovarian cancer (N = 365). Clinical
data files and annotated mutation files of cancer samples were
downloaded from cBioPortal for Cancer Genomics.

Thttps://portal.gdc.cancer.gov/, Accessed on February 2018
Zhttp://www.cbioportal.org/index.do, Accessed on February 2018

Copy Number Analysis

GISTIC2 (Mermel et al., 2011) method was applied to the
transformed copy number segment data, with a noise threshold
used to determine copy gain or loss. We performed GISTIC
version 2.0.22 by using the Homo sapiens (hg38) RefSeq
gene annotations’. The copy number values were obtained by
examining the distribution of log2 ratios to identify peaks
associated with copy number states. The default GISTIC
threshold for identifying gains and losses (0.1 and —0.1,
respectively) were used. Other GISTIC parameters were the
following: genegistic = 1, maxseg = 2,000, js = 2, cap = L.5,
broad = 1, brlen = 0.7, conf = 0.98, armpeel = 1, rx = 0
and gem = extreme. The GISTIC algorithm takes into account
both high and low thresholds for copy number determination
across all the input samples to assign significance to copy
number variation. The copy number status of low-level gene
amplification, high-level gene amplification, low-level gene
deletion, and high-level gene deletion was inferred using the
“thresholded” calls.

Gene-Set Enrichment Analysis

Gene-set enrichment analysis was performed with the GSEA
program (v. 3.0) (Subramanian et al., 2005). The Broad Molecular
Signatures Database (MSigDB v6.0) set H (hallmark gene sets)
was used, which summarize and represent specific well-defined
biological states or processes. The GSEA program was run with
1,000 permutations for statistical significance estimation, and the
default signal-to-noise metric between the two phenotypes was
used to rank all genes.

Survival Analysis

Univariate and multivariate survival analysis was performed
by using the Cox proportional hazard regression model with
OS time (5-year) to assess the prognostic value of gene
expression, copy number variation, and clinical characteristics
(Figure 1). The prognostic value of discrete variables was
estimated by Kaplan-Meier survival curves, and the log-rank
test was employed to estimate the significance among different
survival curves.

Biostatistical Analysis

Data were analyzed by using an unpaired Mann-Whitney
test to compare between two groups and one-way analysis
of variance (ANOVA) for multiple comparisons. Fisher’s
exact test was used for enrichment analysis. The Spearman
correlation coeflicient was performed to estimate the strength
and significance of the association between two continuous
variables, such as putative copy number values and mRNA
expression (Figure 1). For the differential expression analysis,
the Mann-Whitney test with multiple testing adjustment (False
Discovery Rate, FDR) determined the significant difference.
In the graphs, y-axis error bars represent median with 95%
CI as indicated. Statistical calculations were performed using

3ftp://ftp.broadinstitute.org/pub/GISTIC2.0/refgenes/
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FIGURE 1 | lllustration of study workflow. The flowchart of data collection and method implementation in this work.

GraphPad Prism software (GraphPad Software, San Diego, CA)
or R Software®.

RESULTS

CD24 Overexpression Predicts Adverse

Prognosis in BRCA Patients

We first determined the mRNA expression of CD24 in
BRCA samples from TCGA, which revealed the transcripts of
CD24 were dramatically enhanced in paired BRCA samples
(N = 112) compared with adjacent breast normal tissues
(P° < ©0.0001) (Figure 2A). The upregulation was also observed
when unpaired tumors were compared with normal samples
(P° < °0.0001) (Supplementary Figure S1A). Since CD24
is abundantly expressed in hematopoietic cells, we evaluated
whether CD24 transcripts were affected by the extent of leukocyte
infiltration using the common leukocyte antigen CD45 as a
reference. We observed no difference in CD45 transcripts
between CD24M¢" and CD24'°" BRCA samples (Supplementary
Figure S1B). Therefore, the difference in CD24 transcript
levels among BRCA samples was not due to a difference
in leukocyte infiltration. Then, we investigated the clinical
implication of CD24 overexpression in BRCA patients. Kaplan-
Meier survival analysis revealed that higher CD24 mRNA
expression significantly associated with worse OS in patients with
BRCA (N = 1079, P = 0.0102; Figure 2B). And our in silico

“https://www.r-project.org/

analysis of the other two independent BRCA cohorts (Chanrion
et al., 2008; Clarke et al., 2013) confirmed this correlation
(Supplementary Figure S1C). Besides, higher CD24 expression
also predicted poor metastasis-free survival for patients in
BRCA metastasis patient cohorts (Desmedt et al., 2007; Minn
et al., 2007), as evidenced by Kaplan-Meier curves shown in
Supplementary Figure S1D. In summary, CD24 is significantly
upregulated in BRCA, and its overexpression is an adverse
prognostic factor for BRCA patients.

Copy Number Amplification Correlates
to CD24 Up-Regulation in BRCA

We interrogated the chromosomal segment value of TCGA
BRCA dataset for significant copy number alterations. As
expected, our analysis confirmed many known copy number
amplifications, including those observed in 3q26.1 (PIK3CA)
(Wu etal., 2005), 8q24.21 (MYC) (Rodriguez-Pinilla et al., 2007),
and 11q13 (CNCDI1, EMSI) (Ormandy et al, 2003). We also
observed the chromosomal region of 6q21 (encompassing CD24)
harbored a major amplification (Figure 2C). And a significant
correlation between CD24 copy number values and mRNA
expression was found among all BRCA samples (Figure 2D,
R = 0.5388, P-value <0.0001). Moreover, we stratified BRCA
patients into five groups (High-level Deletion, N = 9; Low-level
Deletion, N = 326; Diploid, N = 548; Low-level Amplification,
N = 156; High-level Amplification, N = 43) based on CD24
copy number values by using GISTIC2 framework. As shown
in Figure 2D, approximately one-fifth of all BRCA samples
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FIGURE 2 | Correlation between CD24 copy number alterations and mRNA expression. (A) Change of CD24 mRNA expression between tumor samples and
matched normal samples from TCGA BRCA studies (N = 112). (B) Kaplan-Meier survival curve comparing the high (N = 533) and low (N = 532) expression value of
CD24 (determined by the median value) for the TCGA BRCA patient cohort. (C) GISTIC heat map showing genomic copy-number profiles from TCGA BRCA
studies. Gain (red) and loss (blue) of each peak are shown. Regions of copy-number gain (6g21) were highlighted. (D) Scatter plot (top) and dot plot (bottom)
showing the strong positive correlation between CD24 copy number values defined by GISTIC2 approach and mRNA expression values quantified by FPKM

(N =1082). GISTIC2 method stratified the CD24 copy number values into five categories: high-level copy number deletion (N = 9), low-level copy number deletion
(N = 326), diploid normal copy (N = 548), low-level copy number amplification (N = 156), and high-level copy number ampilification (N = 43). Statistical significance
was determined by the Paired t-test in panel (A), log-rank test in panel (B) and the One-way ANOVA in panel (D) (bottom). The Spearman coefficient of correlation

(R) and significance in panel (D) (top) was determined by linear regression.
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harbored CD24 amplification, which was on par with ERBB2
amplification. Consistently, BRCA samples harboring CD24
amplification exhibited highest mRNA expression than those that
exhibit diploid CD24, while CD24 deletion samples had the lowest
mRNA expression of CD24 (Figure 2D). Therefore, the gain of
copy number is probably a major mechanism that contributes to
the up-regulation of CD24 in BRCA.

CD24 Ampilification Positively Correlated
With Cell Proliferation and MYC
Signaling Pathway

To gain insights into the molecular mechanisms underlying
pro-tumorigenic action of CD24 amplification in BRCA cells,
we first analyzed differential gene expression patterns between
CD24 amplified samples (N = 199) and CD24 non-amplified
samples (N = 883) in TCGA BRCA dataset (Figure 3A). In
total, 79 genes were identified as significantly up-regulated
genes, which include six genes (ATG5, Cé6orf203, QRSLI,

PREP, RTN4IPI, and AMDI) located very close to CD24
genomic region at chromosomal loci. More interesting, we
found four cell cycle genes (CENPW, CDC20, FOXM]I,
and PRPII) and four cytokeratin genes (KRT16, KRT6B,
KRT17, and KRT81) of these up-regulated expressed genes,
which indicating that multiple genes involved in cancer
cell proliferation and invasion pathway may be activated
concordantly. Besides, several B cell receptor genes were enriched
among CD24M BRCA, the significance of such enrichment
remains to be elucidated.

We further performed gene set enrichment analysis (GSEA)
using the MSigDB hallmark gene sets (Subramanian et al,
2005), which revealed that a large number of gene sets were
positively enriched in samples harboring CD24 amplification
compared with CD24 non-amplification samples (Figure 3B).
Among the 11 significantly enriched gene sets, the groups
of “MYC targets” (including V1 and V2), whose expression
is connected to c-Myc-dependent phenotypes such as cellular
proliferation, transformation, or apoptosis, showed particularly
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strong enrichment, which was confirmed by dramatically up-
regulated expression value of PGKI (Tang et al., 2009), a
MYC target marker gene, in CD24 amplification samples
(P < 0.0001; Figure 3B). Notably, genes involved in the
“G2/M checkpoint” (genes involved in progression through
the cell division cycle) and “E2F targets” (genes encoding
cell cycle related targets of E2F transcription factors) were
also highly positively enriched in patients harboring CD24
amplification. As an example, HMGAI, an E2F target gene
that marks the G2M checkpoint (Schuldenfrei et al., 2011), was
significant up-regulated CD24 amplification samples (P < 0.0001;
Figure 3B). In summary, these data demonstrate a positive
correlation between CD24 amplification and cell proliferation, a
key step in oncogenesis.

CD24 Ampilification Negatively
Correlates With Estrogen Response
Activity in BRCA

Gene set enrichment analysis showed that only two hallmark
gene sets (“estrogen response early” and “estrogen response late”)

were negatively correlated with CD24 amplification (Figure 3C).
Then we examined the mRNA expression of human ER (ESRI)
among BRCA patients with different CD24 copy number
status. As shown in Figure 3C, ESRI decreased dramatically in
BRCA patients harboring CD24 amplification (P < 0.0001). We
further accessed the ER status based on IHC data of TCGA
BRCA patients and compared the ER-negative rates among
different CD24 copy number groups. We observed a significantly
higher rate of ER-negative patients in CD24 amplification
groups compared with CD24 diploid and deletion groups
(Figure 3D, P < 0.0001).

CD24 Amplified Samples Exhibit a

Selective Increase of TP53 Mutations

To determine whether CD24 amplification tumors were enriched
for the mutations of driver genes, we evaluated its association
with the mutation profile of three most commonly altered genes
(PIK3CA, TP53, and GATA3) in BRCA. We used the OncoPrint
function of cBioPortal for Cancer Genomics tools® to explore

“http://www.cbioportal.org/
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the mutation rate of these three genes in TCGA BRCA dataset
(Figure 4A). Remarkably, the mutation rate of TP53 in CD24
amplified samples is 2.6-fold higher than the non-amplified
samples, reaching nearly 65% of the total samples (Figure 4B).
In contrast, the CD24 amplified samples have reduced mutation
rate of PIK3CA and GATA3 genes. Nevertheless, there was no
hotspot mutation of TP53 that was specifically enriched in any
groups (Figure 4C). These data are consistent with our previous
report showing a critical role for CD24 in inactivation of mutant
p53 proteins (Wang et al., 2015).

Prognostic Significance of CD24
Ampilification in BRCA

Breast cancer is a heterogeneous disease with diverse pathological
features and survival outcomes (Sorlie et al., 2003), and
the basal-like or triple-negative BRCAs (TNBCs, lacking
expression of the ER, PR and HER2), characterized by a
poor prognosis and no specific targeted therapies group
(Badve et al., 2011). We first investigated the distribution
of basal-like patients among different CD24 copy number
groups. As shown in Figure 5A, Basal-like patients were
significantly enriched in CD24 amplification groups compared
with CD24 diploid and deletion groups (both P < 0.0001),
which was confirmed by dramatically up-regulated expression
of six basal-like genes (FOXCI (Ray et al, 2010), VGLLI
(Castilla et al,, 2014), TTK (Rakha et al., 2008), EGFR
(Cheang et al., 2008), KRT6B (Lehmann et al., 2011), KRT81
(Lehmann et al., 2011); Figure 5B).

We further examined the distribution of three BRCA

DSC2 (Landemaine et al, 2008) and HDAC2 (Roy et al,
2014); Figure 5C) expression values. Consistent with
the correlation between CD24 amplification and BRCA
metastasis (Supplementary Figure S1D), the marker genes
of BRCA metastasis are significantly up-regulated in CD24
amplification groups.

To determine if the copy number amplification of CD24 has
prognostic value on the clinical outcome of BRCA patients, we
employed a Kaplan-Meier survival analysis for TCGA BRCA
patient cohort. As shown in Figure 5D, BRCA patients with
the CD24 amplification had significantly poorer survival rates
compared with the CD24 diploid (P = 0.031) and CD24 deletion
(P = 0.017) patients. In addition, CD24 deletion increased the
probability of disease-free survival (Figure 5D).

To further assess the prognostic potential of CD24
amplification in BRCA, we performed the univariate and
multivariate Cox regression analysis, including diagnosis age,
tumor subtype, mutation count, TP53 mutant status and CD24
expression value. The multivariate result adjusted for standard
clinical and pathological parameters confirmed that the impact
of CD24 amplification on OS was independent of BRCA subtype
and TP53 mutant status (Table 1). Altogether, the results show
that CD24 amplification is a biomarker to predict both clinical
Basal-like stratification and adverse outcome for BRCA patients.

CD24 Amplification in Prostate, Lung and

Ovarian Cancers
To determine the general significance of CD24 amplification
and cancer prognosis, we also analyzed the correlation between

metastasis marker genes (CCLI8 (Chen et al, 2011), CD24 gene copy number and mRNA expression among prostate,
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test in panel (B), One-way ANOVA in panel (C), and log-rank test in panel (D).
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TABLE 1 | Cox regression analysis in TCGA BRCA patients.

Characteristics Univariate Multivariable

Hazard ratio (95% Cl) P-value Hazard ratio (95% CI) P-value
CD24_CNV (Amp vs. Non-Amp) 1.79 (1.15-2.79) 0.010 1.88(1.13-3.12) 0.015
CD24_Expression (High vs. Low) 1.62 (1.07-2.44) 0.022 1.32 (0.83-2.10) 0.243
CD45_Expression (High vs. Low) 0.66 (0.44-0.98) 0.041 0.69 (0.44-1.06) 0.093
TP53_Mutation (Mutated vs. WT) 1.35 (0.90-2.03) 0.147
Patient mutation count 1.00 (1.00-1.00) 0.005 1.00 (1.00-1.00) 0.005
Diagnosis age 1.04 (1.02-1.05) 2e-06 1.03 (1.02-1.06) 1.78e — 05
Subtype (vs. Luminal)
Basal-like 1.38 (0.80-2.39) 0.252
HER2-enriched 2.36 (1.26-4.44) 0.007
Normal-like 2.04 (0.87-4.76) 0.099

lung and ovarian cancer, all known to overexpress CD24
(Fang et al., 2010). As shown in Figure 6A, CD24 amplification
was observed at a high rate among ovarian cancer (20.3%)
and lung cancer (19.6%), while prostate cancer rarely (0.4%)
showed CD24 amplification. Nevertheless, a positive correlation
was observed between gene copy number and CD24 mRNA
levels. Besides, a strong association was observed between CD24
amplification and OS of lung cancer patients (Figure 6B).
Surprisingly, despite a high rate of CD24 amplification in ovarian

cancer, such amplification has no prognostic value for OS
rate (Figure 6B).

DISCUSSION

Numerous studies have shown CD24 overexpression
and its prognostic significance in multiple cancer types
(Kristiansen et al., 2003; Fang et al., 2010). However, the cause of
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CD24 overexpression remained largely enigmatic. Our analysis
presented herein established a strong correlation between
CD24 overexpression and copy number amplification, thus
suggested gene amplification as a potential mechanism for
CD24 overexpression. CD24 plays several critical roles in cancer
pathogenesis and cell surface CD24 has long been associated
with cancer metastasis through its role as selectin ligand (Aigner
et al.,, 1997). Consistently, our data showed CD24 copy number
variation was correlated with expression levels of genes known
for their association of cancer metastasis, including CCLIS,
HDAC2, and DSC2. CD24 has oncogenic activity through its
regulation of Src¢/STAT3 pathway (Bretz et al., 2012). We have
reported that CD24 over-expression is critically important for
the inactivation of mutant p53 protein in cancer cells (Wang
et al., 2015). It followed that cancer samples with most TP53
mutations must overexpress CD24. By showing a 2.6-fold
enrichment of TP53 mutations among CD24 amplified samples,
the data presented here provided further clinical support for
the interaction between CD24 and TP53 (Wang et al., 2015;
Li et al., 2018). The high rate of CD24 amplification among
multiple cancer types satisfies major criteria of CD24 as a bona
fide oncogene (Hanahan and Weinberg, 2011). Obviously, while
gene amplification provides a genetic fix that facilitates CD24
overexpression in the cancer cell, this is not the only mechanism
by which CD24 is induced at high levels among cancer. Only
2/496 prostate cancer patients show CD24 amplification.

Therefore, non-amplification mechanisms, such as activation of
HIFla (Thomas et al., 2012), may work either independently or
in concert with gene amplification to drive a high level of CD24
expression in cancer.

By comparing the OS of patients with or without CD24
amplification, we showed that CD24 amplification was
among the most significant genetic prognostic indicator of
OS for BRCA patients. Based onHR, the impact of CD24
amplification (HR = 1.79) was considerably stronger than
TP53 mutations (HR = 1.35) and basal-like cancer type
(HR = 1.32). Since the association remains robust and significant
in multivariate analysis, CD24 amplification can be considered as
an independent diagnosis marker for BRCA patient prognosis.
Besides, CD24 amplification is enriched in basal-like BRCA
patients which has a poorer prognosis, it is of interest to
consider whether CD24 amplification is the driving factor for
poor prognosis. We consider CD24 gene amplification as the
primary factor in prognosis as the impact is undiminished after
multivariate analysis and its impact is higher than basal-like
features. The significance of CD24 amplification is further
enhanced as the frequency of CD24 amplification is relatively
high among major cancer types, including breast (18.4%),
ovarian (20.3%), and lung cancer (19.6%). Surprisingly, CD24
amplification in ovarian cancer does not associate withOS.
One potential interpretation may relate to the fact that only
intracellular CD24 appears to affect ovarian cancer survival
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(Kristiansen et al., 2002). Therefore, factors that control CD24
processing may mask the impact of gene amplification.

To our knowledge, this is the first demonstration of CD24
copy number amplification during carcinogenesis. Despite
functional role for CD24 in aspects of cancer development,
there is no clinical evidence that CD24 expression is significant
enough for cancer (Fang et al, 2010; Kwon et al, 2015).
Our analysis revealed, previously undescribed and marked the
oncogenic role of CD24 copy number amplification in the
BRCA. It is certainly convinced that the oncogenic features
associated with CD24 amplification cancers could influence
response to BRCA treatment strategies. Lacking independent
dataset and experimental validation is a limitation to this
work, however, given the remarkably CD24 amplification
associated with oncogenic and prognosis signatures, we believe
that this phenomenon is generalizable. The future analysis of
other datasets with large cancer patients cohort and abundant
experimental results will be important to confirm these findings.
An increasing amount of evidence demonstrates that non-coding
RNAs (ncRNAs), particularly microRNAs (miRNAs) (Lu et al,
2005; Chen et al., 2019) and long non-coding RNAs (IncRNAs)
(Huarte, 2015; Chen et al, 2017), are aberrantly expressed
in several complex diseases, including various cancers. And
many high-quality computational inquiries into the genomic
investigation of ncRNA-gene-cancer associations (Chen and
Yan, 2013; Chen and Huang, 2017; Chen et al., 2018a,b),
revealed the prognosis value and drug target potential for
clinical use. There may be many ncRNA-mediated epigenetic
changes to CD24 expression to be discovered in the future, as
an important complement to overexpression and copy number
amplification, provide a more accurate prediction for clinical
outcome. Besides, the machine-based-learning approaches are
being developed to aid the diagnosis of clinical samples.
A variety of these machine learning techniques, including
decision trees, Bayesian networks, support vector machines,
and convolutional neural networks have been widely applied
in cancer research for the development of predictive models,
resulting in effective and accurate decision making (Kourou
et al,, 2015; Montazeri et al., 2016; Esteva et al,, 2019; Li et al,,
2019). We believe that an approach with integrated molecular
feature analysis (like oncogenic copy number amplification
analysis) and machine learning prediction models in the future
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