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Gene set analysis is commonly used in functional enrichment and molecular pathway

analyses. Most of the present methods are based on the competitive testing methods

which assume each gene is independent of the others. However, the false discovery

rates of competitive methods are amplified when they are applied to datasets with high

inter-gene correlations. The self-contained testing methods could solve this problem,

but there are other restrictions on data characteristics. Therefore, a statistically rigorous

testing method applicable to different datasets with various complex characteristics

is needed to obtain unbiased and comparable results. We propose a self-contained

and competitive incorporated analysis (SCIA) to alleviate the bias caused by the limited

application scope of existing gene set analysis methods. This is accomplished through a

novel permutation strategy using a priori biological networks to selectively permute gene

labels with different probabilities. In simulation studies, SCIA was compared with four

representative analysis methods (GSEA, CAMERA, ROAST, and NES), and produced the

best performance in both false discovery rate and sensitivity under most conditions with

different parameter settings. Further, the KEGG pathway analysis on two real datasets

of lung cancer showed that the results found by SCIA in both of the two datasets are

much more than that of GSEA and most of them could be supported by literature.

Overall, SCIA promisingly offers researchers more reliable and comparable results with

different datasets.

Keywords: GSA, competitive method, self-contained method, topology-based method, functional enrichment

analysis

INTRODUCTION

In recent years, gene set analysis (GSA) has become the most common method in functional
genomics studies, because evaluating a single p-value for a gene set is statistically more powerful
than genewise tests. Typically, by choosing gene sets that represent biological pathways, GSA can
help to bring insights into biological mechanisms, cellular functions, and disease states (Kanehisa
et al., 2012). Various statistical procedures for gene set testing have been proposed and can be
divided into three generations roughly in chronological order (Khatri et al., 2012; Zyla et al., 2017).
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The first generation of GSA used over-representation analysis
(ORA), where the first step is to define differentially expressed
genes (DEGs) and non-DEGs in the input gene list by a certain
threshold (Beissbarth and Speed, 2004). Then, the proportion of
DEGs between a given functional gene set and the background
gene set are tested by hypergeometric, binomial, or chi-square
distribution. This comparison of the DEG proportions is the
original theory of competitive testing. ORA has been reported
with minor variations by many different authors (Khatri and
Draghici, 2005). Even though the ORAmethod seems simple and
effective, there are two serious drawbacks. First, the information
about the strength of gene expression is lost by gene binarization.
Second, the assumption of inter-gene independence needed by
the testing methods is not satisfied in most cases.

The second generation of GSA, known as functional class
sorting (FCS), was proposed to avoid these deficiencies. Instead
of defining genes as DEGs and non-DEGs, different univariate
gene-level statistics such as t-statistic (Al-Shahrour et al., 2005;
Tian et al., 2005), Q-statistic (Goeman et al., 2004), signal-
to-noise ratio (Subramanian et al., 2005), fold change score
and Z-score (Kim and Volsky, 2005), or their trans-formations
(Tian et al., 2005; Ackermann and Strimmer, 2009) are used
to measure DEGs and overcome the first problem of ORA.
Then, a gene-set-level statistic is aggregated by these gene-level
statistics. Aggregation approaches can be sum, mean, median
of the gene-level statistics (Jiang and Gentleman, 2007), or
calculating statistics such as the Kolmogorov-Smirnov statistic
(Mootha et al., 2003; Subramanian et al., 2005), Wilcoxon rank
sum (Barry et al., 2005), or the max-mean statistic (Efron and
Tibshirani, 2006). Because the distributions of gene-set-level
statistics are usually unknown, permutation procedures are used
to complete FCS tests. According to different null hypotheses
and corresponding permutation objects, FCSs can be classified
as competitive or self-contained methods.

Assuming that all the input genes are independent of each
other, competitive methods usually permute gene labels but lose
the inter-gene information, which causes the false discovery rate
(FDR) to be uncontrolled when the inter-gene correlations are
high. Self-contained methods test each gene set independently
by permuting sample labels but lose all the information outside
the given gene set, which causes the FDR to be uncontrolled
when the percentage of DEGs in the background genes is high.
Irrespective of the prerequisites for the permutation procedure,
the ORA methods can be considered as generalized competitive
methods, whereas the classical methods based on multiple linear
regression (Mansmann and Meister, 2005; Kong et al., 2006), by
definition, are special cases of self-contained methods.

To address the second problem of ORA, some competitive
FCS methods that take account of the correlations among genes
have been proposed. The method of Nam (2010) removed the
bias caused by the inter-gene correlations, while the method
of Wu and Smyth (2012) alleviated the problem by estimating

Abbreviations: GSA, gene set analysis; ORA, over-representation analysis; DEGs,

differentially expressed genes; FCS, functional class sorting; FDR, false discovery

rate; CSSPN, condition-specific shortest-path network; SCIA, self-contained and

competitive incorporated analysis.

the variance inflation factor. However, the information of inter-
gene correlations is partially neglected in these procedures, which
causes reduced sensitivity or uncontrolled FDR. Self-contained
FCS methods seem to be more powerful than competitive ones
and do not assume that all the genes are independent, but
their null hypothesis is usually over restrictive (Goeman et al.,
2004; Tian et al., 2005; Khatri et al., 2012). They assume that
the gene set does not contain any genes with expression levels
that are associated with different experimental conditions. Under
this hypothesis, a few DEGs may cause a given pathway to
be defined as a significant differential pathway (Khatri et al.,
2012). Although the method of Wu et al. (2010) moderated
this hypothesis using a Monte Carlo based testing method, the
parameter describing the least proportion of DEGs in a pathway
is given arbitrarily instead of calculated by the expression of
genes outside the gene set. Even though competitive methods
are overwhelmingly more commonly used than self-contained
methods in the genomic literature (Gatti et al., 2010), information
is still lost during the permutation procedures. Thus, the collision
of applicable scopes between self-contained and competitive
methods remains unsolved.

The third generation of GSA, known as the pathway
topology (PT)-based approach, is based on the large amount
of publicly available pathway knowledge. Mitrea et al. (2013)
introduced dozens of PT-based methods with different principles
and applicable conditions. Most of these methods consider
topological information as a weight that measures the centrality
of nodes but ignores the spatiotemporal specificity of topological
information and changes in the topological structure between
different experimental conditions (Fang et al., 2012; Gu et al.,
2012; Dona et al., 2017). On this basis, the method of Yuan
et al. (2016) proposed a novel statistic that combines node (gene
expression) changes with edge (inter-gene correlation) changes.
The utilization of biological information greatly improved the
performance of PT-based methods, however, the testing methods
of them are essentially the same as FCS methods in that they
perform the same pipeline (Mitrea et al., 2013). Therefore,
the above defects of FCS methods are not solved by PT-
based methods.

Here, we propose a new GSA method with less information
loss that can alleviate the bias of self-contained and competitive
methods caused by their limited applicability. First, to capture all
the information within a given gene set like other self-contained
methods, a powerful multivariate statistic C is developed to
test node changes and edge changes simultaneously. We chose
Hotelling’s T2, a self-contained statistic with the ability to
penalize gene collinearity (Ackermann and Strimmer, 2009),
for node testing because of its suitability for overcoming the
limitation of competitive methods, and linear regression to test
the edge changes among genes. Because of the additivity of chi-
square distributed variables, these two statistics are transformed
to the chi-square scale and summed up to get the C statistic.
Second, we developed a novel permutation procedure based on
a condition-specific shortest-path network (CSSPN, proposed
by Dezso et al., 2009). The genes in the CSSPN are selectively
permuted instead of permuting the whole gene labels as usual.
This procedure does not disrupt inter-gene correlations but uses
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inter-pathway information from a priori biological networks,
which creates a platform for the incorporation of self-contained,
competitive, and PT-based methods. The whole pipeline is called
self-contained and competitive incorporated analysis (SCIA),
which has been implemented in an R package “SCIA” available on
GitHub https://github.com/YiqunLiHIT/SCIA. Results from this
study showed that the sensitivity and FDR of SCIA outperform
four other commonly used GSA methods in most conditions in
simulated datasets and the results are more stable with different
real datasets of lung cancer.

STATISTICAL MODELS AND METHODS

Notations and Background Network
The main objective of SCIA is to detect gene sets that are
differentially expressed under different experimental conditions.
Here, we consider the gene set as pathway P for one experimental
condition and P′ for another. N1 and N2 are the sample size for P
and P′, respectively. For convenience, we assumed that P and P′

are under linear models:

X1
β1→X2

β2→ . . . . . . Xn−1
βn−1−→Xn

X
′
1

β1
′

→X2
′ β2

′
→ . . . . . .X′

n−1
β ′

n−1−→ X
′
n

with n nodes and n − 1 edges, where βi (1 ≤ i < n)
represent the regression coefficient of Xi and Xi+1. Let U =
(

X1 − X1
′, X2 − X2

′, . . . . . . , Xn − Xn
′) denote the vector of

difference in the means of two groups. S and S′ are the covariance
matrices of P and P′, respectively. These notations are also used
in the simulation studies.

We chose the background network of CSSPN as the
Human Protein Reference Database (HPRD) network (Library
et al., 2009), a centralized platform to visually depict and
integrate information pertaining to do-main architecture, post-
translational modifications, interaction networks, and disease
associations for each protein in the human proteome. Other
comprehensive networks, such as the integrated network of seven
common used networks in Edge Set Enrichment Analysis (Han
et al., 2015) can also be used as the background network of SCIA.

C Statistic
The C statistic is proposed to measure the difference of a given
gene set in different experimental conditions. It consists of two
parts, the node difference model and the edge difference model.
The node difference model is based on Hotelling’s T2 method:

T2 = N1N2

N1 + N2
UTS−1

c U

where,

Sc =
(N1 − 1) S+ (N2 − 1) S′

N1 + N2 − 2

Under the self-contained null hypothesis H0: U = 0, T2 follows
a chi-square distribution with degrees of freedom equal to n
representing genes in the given pathway with a sufficient sample

size. This allows Hotelling’s T2 statistic to be combined with
other statistics that also follow a chi-square distribution, because
chi-square distributions are additive on the freedoms. There are
many transformations of Hotelling’s T2 statistic which show its
different characteristics. It can be transformed as:

F = N1 + N2 − n− 1

(N1 + N2 − 2)n
T2

following an F distribution with the degree of freedom of n and
N1 + N2 − n − 1 under a relatively small sample size. This
allows Hotelling’s T2 statistic to be used alone when the sample
size is insufficient. Typically, Hotelling’s T2 test is not only a
node testing method but is related to the Pearson correlation
coefficient. For convenience, assuming n = 2 and N2 is big
enough, the estimated value Xi

′ (1 ≤ i ≤ 2) can be considered
as constants µi (1 ≤ i ≤ 2), then Hotelling’s T2 statistic can be
transformed as:

T2 = t21 + t22 − 2ρt1t2

1− ρ2

where t1 and t2 denote the t-statistics for the two component
genes, and ρ represents the Pearson correlation coefficient

between X1 and X2. If t1 = t2, Hotelling′s T2 statistic can be
simplified to:

T2 = 2t21
1+ ρ

This transformation of T2 indicates that when X1 and X2

are positively correlated and have similar changes in different
experimental conditions, there would be a penalty on the Pearson
correlation coefficient, which can avoid the disadvantages of the
competitive methods. When X1 and X2 are negatively correlated
but both have positive changes in different experimental
conditions, which indicates that the correlation of X1 and X2 has
changed in different experimental conditions, the T2 statistic is
would be more sensitive.

Although Hotelling’s T2statistic only slightly considers the
correlations between genes, a statistically rigorous edge testing
statistic is still needed. Based on the linear regression method,
a Z-score-like statistic is combined with Hotelling’s T2 statistic
in the C statistic. β̂i and β̂i

′ can be estimated by the least square
method. Then the Z-score-like B statistic can be written as:

Bi =
β̂i − β̂i

′
√

var
(

β̂i

)

+ var
(

β̂i
′
)

under the null hypothesis H0: β̂i = β̂i
′, Bi follows a standard

normal distribution the same as the Z-score, and B2i follows a
chi-square distribution and can be combined with Hotelling’s T2

statistic. Thus, we obtained the C statistic as:

C = T2 +
n−1
∑

i=1

B2i
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which follows a chi-square distribution with the degrees of
freedom equal to n+(n−1), and can be used to test node changes
and edge changes simultaneously. Notably, when the sample size
is very small, T2 and B2i will not obey the chi-square distribution,
the parameter of SCIA about the correlation test should be set
as “FALSE.”

CSSPN-Based Permutation Procedure
To avoid the shortcoming of self-contained methods and utilize
additional inter-pathway information from a priori biological
networks, a CSSPN is built by SCIA. First, a set of DEGs should
be selected as the terminal genes of CSSPN, and a set of initial
genes can usually be selected in the same way. For each pair of
genes (Xi , Xt), where Xi is in the initial gene set and Xt is in the
terminal gene set, all the shortest pathways are searched under
a background network, such as HPRD (see section Notations
and Background Network). When the results are not unique,
the pathway with the highest C score will be chosen for a sub-
pathway permutation procedure. In this procedure, 1,000 nodes
are selected randomly as the initial gene set for each Xt , which
is the only terminal gene in this procedure. Assuming there are
x shortest pathways, built by the randomly selected genes and
Xt , that have higher C scores than the given gene pair (Xi, Xt),
the permutation p-value of the sub-pathway (Xi, Xt) is x/1,000.
The permutation p-value andC statistic p-value are both adjusted
using the method of Benjamini and Hochberg (1995), and only
if the two p-values are <0.05, the sub-pathway is defined as
a statistically significant pathway. Then, all the significant sub-
pathways among the initial gene set and the terminal gene set
are used to build the CSSPN. All the genes in the CSSPN can
be considered as DEGs with edges and can be used in classical
functional enrichment analysis.

In SCIA, background genes are used selectively in the
CSSPN-based permutation procedure. Essentially, the selection
of background genes means the information from the a priori
biological network is utilized, because all the genes neighboring
DEGs in the background network are used at a higher probability
to establish the CSSPN. Additionally, because the permutation
procedure does not destroy any inter-gene or inter-pathway
structures, almost no information is lost in SCIA.

RESULTS

Simulated Data and Scenarios
Simulated Data
The simulated data were generated under a linear model
(Formula 1). Firstly, we generated the initial node X1 of a given
pathway P from the normal distributionN

(

µ1, σ1
2
)

. And then,
the neighbor node X2 = β1X1 + ε1, X3 = β2X2 + ε2
. . . . . . Xn = βn−1Xn−1 + εn were generated in the same way.
Where εi ∼ N

(

0, τi
2
)

(1 < i ≤ n) was the residual error

term. Similarly, we generated X1
′ ∼ N

(

µ1
′, σ1

′2
)

, Xi
′ =

βi−1
′Xi−1

′+ εi
′ with εi

′ ∼ N
(

0, τi
′2

)

(1 < i ≤ n)representing

the pathway P′under another experimental condition. Under the
H0 hypothesis that there is no change in nodes and edges between
different experimental conditions, we set the default simulating

parameters as:µ1 = µ1
′ = 1, σ1

2 = σ1
′2 = 1,τi

2 =
τi
′2 = 1, and βi = βi

′ = 0.5. In most of the following
simulations without mentioned specially, the gene number n in
a pathway was set as 5, the sample sizes N1 and N2 of different
experimental conditions were both set as 100, and the simulations
were repeated 1,000 times.

Scenarios
Four scenarios and 16 conditions were used to simulate different
data structures and prove the extensive applicability of SCIA.
The H0 hypothesis condition was designed to evaluate the FDR
and the H1 hypothesis condition was designed to evaluate the
sensitivity. The basic setting for the H1 hypothesis is node or
edge changes, with three additional conditions: sample size, inter-
gene correlation, and percentages of DEGs in background genes
that are outside the given pathway. In each scenario, only one
additional condition is set as different values to highlight the
robustness of SCIA. Thus, the four scenarios are:

(1) Node change, 0% background DEGs, different correlations,
and fixed sample size.

(2) Node change, 10% background DEGs, different correlations,
and fixed sample size.

(3) Node change, different percentages of background DEGs,
fixed correlations, and fixed sample size.

(4) Edge change, 0% background DEGs, fixed correlations, and
different sample sizes.

Scenarios 1 and 2 were designed to simulate datasets with
different inter-gene correlations, scenario 3 was designed
to simulate datasets with different percentages of DEGs in
background genes, and scenario 4 was designed to simulate
datasets with edge changes under different sample sizes. Details
of the parameter settings under these scenarios are listed in
Supplementary Data Section 1.

Evaluation of SCIA Performance With
Simulated Data
To evaluate its performance, SCIA was compared with two
powerful self-contained approaches, ROAST and NES, and
two commonly used competitive approaches, CAMERA and
GSEA (More details about these methods are stated in
Supplementary Data Section 2). The application scope of these
methods is quite different, so we compared SCIA with them
under corresponding application conditions. As shown in
Table 1, only competitivemethods are suitable for scenario 3, and
only self-contained methods are suitable for scenario 4.

SCIA Successfully Controls the FDR Under Different

Inter-gene Correlations in Simulated Datasets
First, we compared SCIAwith self-containedmethods in scenario
1 under different inter-gene correlations in simulated datasets.
The FDRs were well-controlled by all the three methods
(Table 2), and Figure 1 clearly shows the sensitivities of the
three methods were quite similar, indicating the C statistic
allowed SCIA to match the advantages of the self-contained
methods. Noticeably, ROAST had high sensitivity under the
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TABLE 1 | Application scope of the different methods evaluated in this study.

Conditions SCIA Self-contained Competitive

NES ROAST CAMERA GSEA

High

intergene

correlations

√ √ √ √ ×

High prop. of

background

DEGs

√ × × √ √

Correlation

changes

testing

√ √ × × ×

“
√
” indicates the method was designed for the condition; “×” indicates the method was

not designed for the condition and may have problems in sensitivity or FDR.

TABLE 2 | FDR is well-controlled by SCIA similar to other self-contained methods

under different inter-gene correlations in simulated datasets.

Correlations SCIA NES ROAST

0.0 0.048 0.056 0.052

0.3 0.046 0.045 0.046

0.6 0.056 0.049 0.061

0.9 0.044 0.082 0.038

FIGURE 1 | SCIA produces sensitivities similar to those for the self-contained

methods under different inter-gene correlations in simulated datasets.

high inter-gene correlation. However, high sensitivity with inter-
gene correlations close to 1 is not useful for combination with
competitive approaches because a small percentage of highly
correlated DEGs may produce unreasonable significant results.

Second, we compared SCIA with competitive methods under
scenario 2. Table 3 clearly shows that the FDR of GSEA lost
control, which is common for competitive methods due to the
correlation between genes, whereas CAMERA adjusted the high

FDR only under a moderate inter-gene correlation of all genes
but failed to control the FDRs under high inter-gene correlations.
SCIAwas themost robust method with well-controlled FDRs and
similar sensitivities as CAMERAwith comparable FDRs. Because
there were no randomly selected DEGs in the given pathway,
the SCIA results in scenarios 1 and 2 are comparable, which
indicated that the information of background genes outside the
given gene set was well-utilized by SCIA. A notable question is
that the intersection ratio of the results obtained from SCIA and
GSEA is decreasing with the increasing of inter-gene correlation,
because GSEA is more sensitive in finding significant pathways
with less but consistent expression changes. This result indicated
that SCIA and GSEA could find different types of differentially
expressed gene sets.

SCIA Has Higher Sensitivity and Lower FDR Than

Two Competitive Methods Under High Percentages

of DEGs in Background Genes
When the percentages of DEGs in background genes are high,
there are likely to be relatively high overlaps between a given gene
set and backgroundDEGs. Therefore, self-containedmethods are
invalid in scenario 3 and SCIA was compared with competitive
methods. Table 4 shows that SCIA had higher sensitivity than
the other two methods and, interestingly, the FDR was negatively
correlated with the percentage of DEGs in background genes.
These results are reasonable and reflect the incorporation of
different GSAmethods in SCIA. Like other competitive methods,
when the percentage of DEGs in background genes was high,
SCIA assigned a competitive penalty of the significance to the
given pathway, and when the percentage of DEGs in background
genes was low, SCIA assumed only a few percentages of the
DEGs would produce a significant result for the given pathway
because there was no other explanation for these DEGs. Notably,
in complex diseases such as cancer, DEGs usually account for
more than 40% of the genes in a dataset, under which condition
SCIA was the best method both in sensitivity and FDR.

SCIA Has Higher Sensitivity Than the Two

Self-Contained Methods in Testing Changes of

Inter-gene Correlations
Most competitive methods cannot simultaneously test node and
edge changes; hence, we compared SCIA with self-contained
methods under scenario 4 with the sameH0 hypothesis and FDRs
(Table 2) as scenario 1. The influence of different sample sizes
was measured at the same time. Figure 2 shows that SCIA had
the highest sensitivity and the slowest drop in sensitivity with
decreasing sample sizes. However, when the sample size was 10
pairs, the sensitivity of SCIA dropped sharply because of the
approximation of chi-square distribution (see method), which
needs sample sizes of 15–30 pairs. Unsurprisingly, ROAST had
the lowest sensitivity because it was not designed for this purpose.
Besides, although the edge testing modules of SCIA and NES are
quite similar, SCIA was more sensitive because edge changes are
also considered by Hotelling’s T2 (see method), indicating SCIA
does not simply superpose node testing and edge testing methods
like NES.
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TABLE 3 | SCIA has lower FDRs than the competitive methods under different inter-gene correlations in simulated datasets.

Pearson correlation

coefficients

FDR Sensitivity

SCIA CAMERA GSEA SCIA CAMERA GSEA

0.0 0.016 0.048 0.042 0.286 0.183 0.126

0.3 0.018 0.065 0.112 0.257 0.287 0.304

0.6 0.029 0.104 0.216 0.256 0.442 0.529

0.9 0.033 0.381 0.424 0.304 0.821 0.297

TABLE 4 | SCIA has higher sensitivity than the competitive methods under

different percentages of DEGs in background genes.

Proportion FDR Sensitivity

SCIA CAMERA GSEA SCIA CAMERA GSEA

0.2 0.157 0.124 0.188 0.760 0.580 0.507

0.4 0.112 0.138 0.161 0.788 0.559 0.513

0.6 0.093 0.151 0.169 0.816 0.528 0.413

Evaluation of SCIA Performance With Real
Datasets
We applied SCIA to recover differentially expressed genes and
pathways involved in lung squamous cell carcinoma (LUSC), a
common type of non-small-cell lung cancer using two datasets,
one from the NCBI’s GEO (Gene Expression Omnibus) and one
from TCGA (The Cancer Genome Atlas) database. The GEO
dataset (Series Accession: GSE103512, Brouwer-Visser et al.,
2017) contains 23 LUSC sub-type cancer samples and 9 normal
samples. The LUSC dataset from TCGA contains 502 LUSC
samples and 51 normal samples.

The two LUSC datasets were used as input to compare the
sensitivity and robustness of SCIA and GSEA. In the CSSPN-base
permutation procedure of SCIA, all the genes were mapped to
the HPRD network, then the top 2% of DEGs (about 200 in each
dataset) were defined as the initial and terminal genes of CSSPN
(see method). All the nodes in the CSSPN were used for classical
functional enrichment analysis based on a hypergeometric test.
Unlike the simulation studies, the adjustment of permutation p-
values (see method) should be moderate here. This is because,
under the H0 hypothesis of simulation studies, there is no
relation between the background network and the given gene set,
whereas, in real organisms, hundreds of genes in the background
network will differentially expressed in response to the DEGs
in the given gene set. Due to the C statistic p-values of all the
single pathways were already Benjamini and Hochberg (1995)
adjusted, we did not adjust the permutation p-value in the
following analysis, indicating there are approximate 500 genes
in the HPRD background network that, on average, are affected
by the terminal DEGs. This p-value threshold is a parameter of
SCIA and can be set as different scores according to different data
and requirements.

The results of the KEGG functional enrichment analysis are
shown in Supplementary Tables S1–S4. SCIA found 131 and 64

FIGURE 2 | SCIA performs better in edge testing than the self-contained

methods under different inter-gene correlations and different sample sizes.

pathways and GSEA found 46 and 40 pathways in the GSE103512
and TCGA LUSC datasets, respectively. Among them, 55 (42%)
SCIA pathways were common between the two datasets, whereas
only 5 (11%) of the GSEA pathways were common between
the two datasets. These results illustrated that there was little
comparability between the two results of GSEA, while, SCIA
could demonstrate common results in different lung cancer
datasets and the individual differences in the two researches,
implying the two results of SCIA with different datasets were
comparable. More than 33 of the 55 SCIA pathways found in
both of the two datasets have been reported previously to have
relationships with lung cancer (Table 5), including the non-small
cell lung cancer. While, most of these pathways were not detected
by GSEA. This result showed that SCIA could find many positive
pathways that GSEA could not, and the high proportion of
results with literature supporting indicated that the intersection
of results of SCIA with different datasets could increase the
reliability. Further, SCIA produces a CSSPN, which can be
considered simply as a set of DEGs. SCIA detected 41 DEGs in
the two datasets, and more than 27 (Supplementary Table S5)
of these genes have been reported previously to be related with
lung cancer.
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TABLE 5 | SCIA found more literature supported KEGG pathways than GSEA in

two non-small-cell lung cancer datasets.

KEGG pathway name Adjusted p-value of SCIA GSEA

Cell cycle 3.89E-45 Yes

Cellular senescence 3.99E-12 No

Epstein-Barr virus infection 2.31E-11 Yes

Viral carcinogenesis 5.59E-10 Yes

p53 signaling pathway 4.81E-09 Yes

FoxO signaling pathway 1.19E-08 No

Platinum drug resistance 2.16E-07 Yes

Hepatitis B 1.43E-06 No

Transcriptional misregulation in

cancer

1.92E-06 No

Small cell lung cancer 5.74E-06 No

Human papillomavirus infection 1.39E-05 No

MicroRNAs in cancer 1.62E-05 No

Glioma 3.25E-05 No

Kaposi’s sarcoma-associated

herpesvirus infection

3.10E-05 Yes

Apoptosis 3.51E-05 No

Non-small cell lung cancer 5.11E-05 No

Hepatocellular carcinoma 9.52E-05 No

Hippo signaling pathway 0.0001275 No

TGF-beta signaling pathway 0.0004040 No

Adherens junction 0.0006536 No

PI3K-Akt signaling pathway 0.0006624 No

Proteoglycans in cancer 0.0058405 No

Wnt signaling pathway 0.0084030 No

AGE-RAGE signaling pathway in

diabetic complications

0.0151588 No

HIF-1 signaling pathway 0.0302121 No

Hepatitis C 0.0339220 No

Basal cell carcinoma 0.0343406 No

Mitophagy—animal 0.0362401 No

ErbB signaling pathway 0.0418948 No

Insulin resistance 0.0418948 No

Apoptosis—multiple species 0.0427196 No

Measles 0.0427196 No

Amyotrophic lateral sclerosis

(ALS)

0.0427196 No

“Yes” means the pathway is found by both SCIA and GSEA with adjusted p-value < 0.05.

“No” means the pathway is found by SCIA but not by GSEA.

DISCUSSION

SCIA is the first GSA method that combines the advantages
of self-contained, competitive, and PT-based methods. SCIA
has three main advantages over the other methods as was
shown by the simulation studies. First, SCIA is powerful
and statistically rigorous under high inter-gene correlations,
which are conditions under which most competitive methods
lose control of FDR. Second, SCIA has higher sensitivity and
minimum FDR compared to two competitive methods (GSEA,
CAMERA) under a high proportion of DEGs in background
genes, which are conditions that make most self-contained
methods invalid. Moreover, SCIA uses an a priori biological
network and performs better than ROAST and NES in testing

edge (inter-gene correlation) changes. Overall, the FDR of SCIA
was well-controlled and its sensitivity was higher than that of the
other four methods tested (GSEA, CAMERA, ROAST, and NES)
under most simulated conditions, highlighting the extensive
applicability and unbiased results of SCIA.

The robustness of SCIA can be attributed to two aspects.
First, its extensive applicability with reliable and unbiased
results, as mentioned above, are the most important reasons.
Second, through the CSSPN-based permutation strategy in
SCIA, a reasonable hypothesis is innovatively combined with
a priori biological information. Briefly, if DEGs can be
mapped only in one gene set, a positive weight is added
to them because there is no other explanation for the
differential expressions of these genes. Therefore, for SCIA,
comprehensiveness of the background networks is more
important than its accuracy. However, when the a priori
biological networks are more comprehensive, the hypothesis
of SCIA becomes more reasonable and the results are more
precise. This robustness gives SCIA the ability to calculate with
different datasets and to integrate the results of SCIA with
different datasets.

There are many potential applications for SCIA, including
differential expression analysis (Dona et al., 2017), sub-pathway
analysis (Martini et al., 2013), and micorRNA target gene
prediction (Wang, 2008). First, all of the genes in the CSSPN
can be considered as DEGs and used independently. In addition,
CSSPN itself can be considered as a cascading effect pathway
when the input data are from a knockout/over-expression
experiment of a single gene. Second, if the function of differential
pathways can be biologically confirmed, the sub-pathway of the
given functional pathway can be built without the permutation
procedure. Third, the choice of initial gene set is very flexible
and can be tailored for different purposes. For instance, if
the input data are derived from a microRNA knockout/over-
expression experiment, the initial gene set can be select as the
predicted target genes of the microRNAs, and the significant
predicted targets will have more potential to be the targets of
these microRNA in a specific experimental condition.
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