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As large amounts of heterogeneous biomedical data become available, numerous 
methods for integrating such datasets have been developed to extract complementary 
knowledge from multiple domains of sources. Recently, a deep learning approach has 
shown promising results in a variety of research areas. However, applying the deep 
learning approach requires expertise for constructing a deep architecture that can take 
multimodal longitudinal data. Thus, in this paper, a deep learning-based python package 
for data integration is developed. The python package deep learning-based multimodal 
longitudinal data integration framework (MildInt) provides the preconstructed deep learning 
architecture for a classification task. MildInt contains two learning phases: learning feature 
representation from each modality of data and training a classifier for the final decision. 
Adopting deep architecture in the first phase leads to learning more task-relevant feature 
representation than a linear model. In the second phase, linear regression classifier is used 
for detecting and investigating biomarkers from multimodal data. Thus, by combining the 
linear model and the deep learning model, higher accuracy and better interpretability can 
be achieved. We validated the performance of our package using simulation data and real 
data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging 
datasets in Alzheimer’s disease to predict the disease progression. MildInt is capable of 
integrating multiple forms of numerical data including time series and non-time series data 
for extracting complementary features from the multimodal dataset. 

Keywords: multimodal deep learning, data integration, gated recurrent unit, Alzheimer’s disease, python package

INTRODUCTION

As the amount of biomedical datasets grows exponentially, the development of relevant data 
integration methods that can extract biological insight by incorporating heterogeneous data 
is required (Larranaga et al., 2006). Recently, deep learning approaches have shown promising 
results in numerous applications such as natural language processing, computer vision, and speech 
recognition. In addition, in the field of translational research, deep learning-based predictive 
models have shown comparable results (Chaudhary et al., 2017; Choi et al., 2017; Lu et al., 
2018; Lee et al., 2019). In previous studies, they integrated multiple domains of data using deep 
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learning models to discover integrative features that cannot be 
explained by a single domain of data. For example, multimodal 
neuroimaging dataset is combined in (Lu et al., 2018) using 
deep learning-based framework for discriminating cognitively 
normal with Alzheimer’s disease (AD), which resulted in 
considerable performance improvement. For the multi-omics 
data integration, RNA-seq, miRNA-seq, and methylation data 
from The Cancer Genome Atlas (TCGA) are incorporated using 
auto-encoder for predicting hepatocellular carcinoma survival 
(Chaudhary et al., 2018). Furthermore, in (Lee et al., 2019), 
multimodal gated recurrent unit (GRU) is used to integrate 
cognitive performance, cerebrospinal fluid (CSF), demographic 
data, and neuroimaging data to predict AD progression. 
Data integration is believed to help improve the classification 
performance by extracting complementary information from 
each domain of source.

However, integrating heterogeneous data is a challenging 
task. First of all, multimodal data might hinder learning 
complementary feature representation due to the presence of 
mutually exclusive data, that is, a useful feature representation 
of the data might not be learned well since the task-irrelevant 
portion of the data could interfere with the task-relevant portion. 
In addition, dealing with datasets that consist of multiple time 
points is another issue for data integration. Time series data 
include multiple time points of data, whose length is varied over 
samples, while non-time series consists of a single time point of 
data. Thus, additional transformation steps for time series dataset 

should be preceded to convert the variable-length sequence 
data into fixed-size representations without losing information. 
Finally, most commonly, the more various datasets are used, the 
less sample size is available. Traditional data integration methods 
use only samples overlapped by all modalities. Since only a few 
samples contain all modalities of data, it is inevitable to use a 
small portion of the samples, even though abundant samples 
are available.

In this paper, we provide a deep learning-based python 
package for heterogeneous data integration. The most significant 
advantage of our package is the flexibility in which irregular time 
series data are processed. As the main component of our package, 
we combine multiple GRUs with simple concatenation-based 
vector integration, which makes it possible to incorporate any 
number of modalities. Furthermore, nonoverlapping samples, as 
well as overlapping samples, can be used for training a classifier. To 
demonstrate the validity of our package, we conduct experiments 
on simulation data and real data. For simulation data, we generate 
multimodal time series data using the autoregressive model and 
solve a binary classification task. For the real data, as a pilot test, 
patients with mild cognitive impairment (MCI) is used to predict 
AD progression.

Methods
As shown in Figure 1, MildInt comprise two learning phases: 
1) feature extraction from each modality of data and 2) learning 

FIGURE 1 | Longitudinal total intracranial volume, hippocampal volume, and entorhinal cortex thickness from brain imaging data, genomic data, cognitive 
assessment, and any forms of numerical data that can be taken using our framework. In phase 1 (blue-dashed rectangle), each modality of data is separately 
processed for learning feature representation. Both time series and non-time series data can be accepted to produce fixed-size feature vectors using a gated 
recurrent unit (GRU) component (green-dashed rectangle). Then, the learned representations (rectangles colored by red, green, and yellow) are simply concatenated 
to form an input for logistic regression (LR) classifier in phase 2 (red-dashed rectangle).
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the integrative feature representation to make the final prediction. 
In phase 1, time series data from a single domain is transformed 
into a fixed-size vector. Then, vectors from each modality of data 
are integrated and fed to logistic regression (LR) classifier for 
the final decision making in phase 2. We use GRU as our main 
component for learning feature representation from the time 
series data. Additionally, we apply the concatenation-based data 
integration method to integrate multiple sources of data into a 
single vector.

PHASE 1: FEATURE EXTRACTION FROM 
EACH SINGLE MODAL TIME SERIES DATA

Recurrent Neural Network
Recurrent neural network (RNN) is a class of deep learning 
architecture composed of multiple recurring processing layers 
to learn a representation of sequential data (LeCun et al., 2015). 
An RNN processes an input sequence one element at a time and 
updates its memory state that implicitly contains information 
about the history of all the past elements of the sequence. The 
memory state is represented as a Euclidean vector (i.e., a sequence 
of real numbers) and is updated recursively from the input at the 
given step and the value of the previous memory state. Given a 
sequence X = {x1,x2,…,xt…,xT} memory state and output at each 
time step are computed as follows:

 st = tanh (U(s)xt + W(s)st−1 (1)

 ot = softmax(V(o)st) (2)

where U, W, and V are parameters to be learned for computing 
input, memory state, and output, respectively. Output is 
resulted from softmax function whose role is to convert the 
vector of hidden state into a probability vector via the following 
operation:
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where ui is the i-th element of the vector u and k is the number 
of labels. Finally, loss function is defined with cross-entropy to 
quantify the distance between true label and estimated one. In 
our package, only the last output oT is picked and used for the 
estimate because the output is regarded to carry the past features 
relevant to estimation.

In natural language processing, speech recognition, and 
anomaly detection in time series, RNN is popularly used for 
analyzing the sequence of words and time series data (Deng et al., 
2013). One of the main advantages of using RNN is that variable 
length of time series data can be processed. This advantage is a 
critical part of our framework that is capable of accepting any 
variable length of time series data. However, extracting features 
in a long sequence of data is hard for RNN, which is known as a 
long-term dependency problem (Bengio et al., 1994). To handle 

this problem, long short-term memory (LSTM) and GRU have 
been developed and practically used. 

Learning Feature Representation Using 
Gated Recurrent Unit
GRU and LSTM are the extension of RNN in which additional 
parameters regulate the memory state, making it possible to 
“forget” irrelevant, outdated past information. Although both 
LSTM and GRU can handle long-term dependency problem, we 
selected GRU as the main component of MildInt. Since GRU has 
fewer parameters than LSTM, it is expected that GRU is easier for 
training in the field of translational informatics where only a few 
samples are available. 

Regulating long-term information is handled by reset 
and update gates. Parameters for both gates are learned for 
determining how xt is processed [equation (4)–(7)]. Update 
gate decides how amount of the previous memory value st−1 is 
passed on. Suppose zt is computed as 1 by equation (4), then 
only the previous memory is passed on, while newly computed 
hidden value ht will be forgotten [equation (7)]. On the other 
hand, reset gate manipulates the computation between previous 
memory st −1  and the current input xt. In equation (6), reset gate 
determines the amount of previous memory value st −1. Note 
that GRU is a general case of RNN because setting rt to 1 and 
zt to 0 for t = 1,2, … , T leads GRU to functioning exactly the 
same as RNN.

 z x s Wt t t
z= + −σ ( )( )U (z)

1  (4)
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 s st t t= − −( )1 1z z h +t t  (7)

In Figure 1, xm
t  represents m-th modality of data at t time 

point. Tm is the maximum time length of m-th modality. A 
single GRU takes each modality of time series data separately 
for learning fixed-length representation in the first phase. Note 
that every modality of data is assumed to be a time series data in 
our package. For the single time point modalities, they are also 
considered as length-1 time series data for ease of integration. 
Without multiple time points of input data, GRU is only a fully 
connected network with a prior hidden state. Thus, the GRU 
component is able to take not only time series data but also non-
time series data as well. The feature representations learned in the 
first phase are optimized only by a single modality of data. Thus, 
phase 1 can be used for a feature learning phase from a single 
domain of source. 

PHASE 2: FINAL CLASSIFICATION

In the second phase, integration of multiple domains of data 
takes place. The feature representations are learned separately in 
the first phase. Thus, a vector produced from a GRU component 
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contains only the information of a single modality. For learning 
integrative feature representation in the second phase, vectors 
are simply concatenated (Figure 1). Based on the concatenated 
vector, any classification algorithm can be used in phase 2. In our 
package, we provide LR because it yields good interpretability by 
analyzing beta coefficients of the trained classifier. Also, in the 
experiments with real data and simulation data, an LR model was 
used for the final decision.

LR is a classification algorithm in which the outcome is the 
probability of binary classes. Sigmoid function transforms the 
linear combination of the input features into probability values 
that can be mapped to the binary class. We apply l1-regularized 
LR for the classification. A python library Sklearn (Bengio et al., 
1994) is used for LR in our package. 

RESULTS

To validate the performance of our package, experiments on 
simulation data and real data are conducted. In the experiment 
with simulation data, multimodal time series data are 
generated and tested for binary classification. The classification 
performance of our package is compared with other well-known 
methods such as logistic regression (LR), random forest (RF), 
and support vector machine (SVM). In the experiment with real 
data, four modalities of datasets, such as cognitive performance, 
cerebrospinal fluid (CSF), demographic data, and MRI data of 
patients in Alzheimer’s disease, are used for MCI conversion 
prediction that is also set to binary classification.

CLASSIFICATION TASK ON THE 
SIMULATION DATA

In this section, we demonstrate the performance improvement 
using multimodal data and time series data. In the first 
experiment, only a single time point of data is used to evaluate 
the performance improvement of MildInt over other prominent 
classification algorithms such as SVM, LR, and RF. In the 
following experiment, the performance of using time series data 
is observed to evaluate the effectiveness of applying additional 
time points of data.

To generate time series data for binary classification, we apply 
the autoregressive model. First two underlying networks A0 and 
A1 are generated for the parameters in the autoregressive model. 
It is assumed that individual record is generated based on the 
underlying network in which 0-labeled data are generated from 
network A0 while 1-labeled data from A1. The underlying network 
A0 is built in which edges are randomly selected as either 0 or 1, 
and a network A1 against A0 is built with a distance d ranging 
from 0 to 1 in equation (8) where A

ij0  is an element of the i-th 
row and the j-th column in the network A0 whose size is n × n.

 A A d for i j n
ij ij1 0 1= − ≤ ≤, ,  (8)

The distance d is a value for how likely two matrices A0 and 
A1 are distinguishable. For example, if d = 1, then A0 and A1 are 

opposite matrices where edges in A0 are not in A1 while edges 
in A1 are not in A0. On the other hand, if d = 0, A0 and A1 are 
exactly the same. Thus, dataset generated with higher d is easier 
to be separated. Second, we pick up sets of nodes from the 
underlying network to make subnetworks. Each subnetwork is 
considered as each modality of data because each modality of 
data is assumed to have a part of information for understanding 
entire networks. Finally, time series data are generated using the 
nonlinear autoregressive model in equation (9) where M is a 
subnetwork and ε is an error term with 0 mean and 0.1 variance.

 
x Mxt t= −σ ( ), ~ ( , . )1 0 0 1+ ε ε   (9)

 x0 1 1~ ( , ) −  

We generated 1,000 samples whose length of time points is 10. 
Among 1,000 samples, only 500 samples contain all modalities 
of data, while the rest of them have only a part of all modalities. 
For evaluation, we ran fivefold cross-validation 10 times in which 
every fold has the same ratio of positive and negative samples.

In Figure 2, we only used a single time point of data to compare 
the classification performance depending on modality. Figure 2A 
shows inconsistent accuracies of SVM, RF, LR, and MildInt over 
distances since single modality of data does not contain enough 
information for understanding whole underlying networks. 
Thus, the performance becomes more affected by the error term. 
Contrary to the performance with single modality, performance 
using multi-modality of data is less affected by error term. As 
shown in Figure 2B, accuracy is improved consistently over 
distances from 0.5 to 1.0. In particular, the performance of MildInt 
shows 1.0 accuracy over distances from 0.8 to 1.0 since MildInt 
can take non-overlapping as well as overlapping samples on input, 
while SVM, RF, and LR can only use overlapping samples.

From Figure 3, we can see the effectiveness of using time series 
data. As increasing the number of time points, the performance 
using single modality is consistently increased (Figure 3A). 
Using multi-modality of time series data whose length is more 
than 6, two sets of data are perfectly classified from the distance 
0.5 to 1.0 as seen in Figure 3B. Intuitively, data from multiple 
time points have more information than data at a single time 
point. Thus, MildInt can exploit temporal changes in time series 
data for the correct classification.

CLASSIFICATION TASK ON THE REAL 
DATASET

For the experiment with real data, we used 865 subjects in MCI 
obtained from Alzheimer’s disease neuroimaging initiative cohort 
(ADNI) for predicting AD progression. The overall objective of 
ADNI is to test whether neuroimaging, biological markers, clinical, 
neuropsychological assessment could be combined to measure the 
AD progression. We downloaded four modalities of data including 
cognitive performance, CSF, magnetic resonance imaging (MRI), 
and demographic information; each of which has 802, 601, 865, and 
865 samples, respectively, from the ADNI data repository (http://
adni.loni.usc.edu). Informed consent was obtained for all subjects, 
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and the study was approved by the relevant institutional review 
board at each data acquisition site (for up-to-date information, see 
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/
documents/policy/ADNI_Acknowledgement_List%205-29-18.
pdf). All methods were performed in accordance with the relevant 
guidelines and regulations. Among the four modalities of samples, 
601 overlapping samples are available with 200 MCI converter and 
401 MCI non-converter samples. Cognitive performance and CSF 
are time series data with lengths of 4.05 and 1.69 on average. MRI 
and demographic information are considered as length-1 time 
series data in our package. Note that all modalities are given in 
numerical vector forms. For example, we extracted gender, age, 
level of education, and cognitive assessment from patients’ record. 
Especially for MRI data, a preprocessing was performed to extract 
features, such as total intracranial volume, hippocampal volume, 
and entorhinal cortex thickness, which are relevant to predicting 
MCI conversion. Recent methods (Lama et al., 2017; Sandeep et al., 
2017) that extract features also can be used before running our 
package. The summary statistics of samples and hyperparameters 
are shown in Table 1.

Figure 4 shows the accuracies of our package using time 
series data. We removed the accuracy from the model with 
demographic data because the prediction performance was 
too low. The performance improvement using time series data 
is marginal due to the sparsity of time points. More than half 

of the samples contain missing values, and even the length 
of time points is short. Furthermore, we have longitudinal 
samples for only two modalities of data (cognitive performance 
and CSF). Thus, it is hardly expected that the performance is 
enhanced using longitudinal data. However, classification 
accuracy was improved using multiple domains of data. As seen 
in Figure 4, integrating four sources of data shows the best 
predictive performance compared with the performance with 
single modalities. Finally, we compared the performance of 
MildInt with previously developed methods for MCI conversion 
prediction. As observed in Table 2, MildInt showed comparable 
prediction results.

FIGURE 2 | Classification performances of test set with MildInt, SVM, random forest, and logistic regression using single modality of data (A) and multi-modality of 
data (B).

FIGURE 3 | Classification performances using time series data with single modality (A) and multimodality (B).

TABLE 1 | Summary statistics for data and hyperparameters in the experiment 
with real data.

#Features Hidden 
dimension

Time length 
(avg)

Time length 
(sd)

Cognitive 
performance

2 3 4.05 1.71

Demographic 
information

4 5 1 0

CSF 5 6 1.69 0.95
MRI 3 4 1 0

CSF, cerebrospinal fluid; MRI, magnetic resonance imaging.
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CONCLUSION

MildInt provides multimodal GRU for heterogeneous data 
integration. The main advantage of our framework is that variable-
length time series data and multimodal data can be processed. 
In addition, every available sample from all modalities including 
non-overlapping samples can be used for training classifier. The 
performance of MildInt is evaluated with simulation data and real 
data. In the experiment with simulation data, it showed the best 
performance when multimodal data and time series data were 
integrated. Additionally, in the experiment with real data, integrating 
cognitive performance, demographic information, CSF, and MRI 
imaging data show the best performance for MCI conversion 
prediction. Also, any numerical form of data such as gene expression, 
methylation, and single nucleotide polymorphism data can be 
combined in our package. MildInt is suitable to use in cases where 
time series data such as multiple time points of methylation data and 
non-time series data such as single nucleotide polymorphism should 
be incorporated for learning integrative feature representation. 
Furthermore, compared with previously developed methods, MildInt 
showed comparable prediction ability that can efficiently incorporate 
multiple domains of resources.

REQUIREMENTS

This package works on python 2.7.x in platforms such as Mac 
OS X, Windows, and Linux. MildInt requires python packages 

such as Pandas, Numpy, Tensorflow, and Sklearn to be installed 
independently. To make MildInt fully functioning, Tensorflow 
with graphics processing units (GPU) from NVIDIA should 
be equipped. The GPU-enabled version of Tensorflow has 
requirements such as 64-bit Linux, NVIDIA CUDA 7.5 (CUDA 
8.0 required for Pascal GPUs), and NVIDIA, cuDNN v4.0 
(minimum) or v5.1 (recommended).
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FIGURE 4 | Predictive performances using multi-modality and single modality of data.

TABLE 2 | A list of previous models that train classifiers mainly with mild cognitive impairment (MCI) samples. 

Method Subjects
(MCI-C/MCI-NC)

Data source ACC SEN SPE

SVM (Zhang and Shen, 2012a) 43/48 MRI, PET, CSF 0.73 0.68 0.73
SVM (Cheng et al., 2012) 43/56 MRI, FDG-PET, CSF 0.79 0.84 0.72
SVM (Zhang and Shen, 2012b) 35/50 MRI, PET, cognitive score 0.78 0.79 0.78
Gaussian process (Young et al., 2013) 47/96 MRI, PET, CSF, APOE genotype 0.68 0.90 0.52
Hierarchical ensemble (Huang et al., 2017) 70/61 MRI 0.79 0.86 0.78
Deep neural network (Lu et al., 2018) 235/409 MRI, PET 0.82 0.79 0.83
MildInt 163/376 Cognitive score, neuroimaging data, 

CSF biomarker, demographic data
0.79 0.83 0.77

MCI-C, MCI-Converter; MCI-NC, MCI-NonConverter; ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; APOE, Apolipoprotein E; FDG; Fluorodeoxyglucose.
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